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Preface 

The Banff NATO Summer School was held August 14-25, 1989 at the Banff Cen
tre, Banff, Albert, Canada. It was a combination of two venues: a summer 
school in the annual series of Summer School in Theoretical Physics spon
sored by the Theoretical Physics Division, Canadian Association of Physi
cists, and a NATO Advanced Study Institute. The Organizing Committee for 
the present school was composed of G. Kunstatter (University of Winnipeg), 
H.C. Lee (Chalk River Laboratories and University of Western Ontario), 
R. Kobes (University of Winnipeg), D.l. Toms (University of Newcastle Upon 
Tyne) and Y.S. Wu (University of Utah). 

Thanks to the group of lecturers (see Contents) and the timeliness of the 
courses given, the school, entitled PHYSICS, GEOMETRY AND TOPOLOGY, was 
popular from the very outset. The number of applications outstripped the 
90 places of accommodation reserved at the Banff Centre soon after the 
school was announced. As the eventual total number of participants was 
increased to 170, it was still necessary to tum away many deserving 
applicants. 

In accordance with the spirit of the school, the geometrical and topologi
cal properties in each of the wide ranging topics covered by the lectures 
were emphasized. A recurring theme in a number of the lectures is the 
Yang-Baxter relation which characterizes a very large class of integrable 
systems including: many state models, two-dimensional conformal field 
theory, quantum field theory and quantum gravity in 2 + I dimensions. 

Two separate workshops, one on "Geometrical Methods in Gauge Theories" and 
the other on "Physics, Braids and Links" were held during the school. 
These provided students and lecturers alike another venue to discuss 
recent developments in topics closely related to those lectured on in the 
formal part of the school. In addition, a heavily attended poster session 
gave every participant the opportunity to discuss her or his recent work. 

The content of this book has two parts. Part One is the lectures; those 
by Frohlich, Isham, De Vega and Seiberg are considerably expanded from the 
respective oral versions given at the school. Part Two contains some of 
the papers presented at the " Physics , Braids and Links" workshop. It is 
hoped that these will serve as a useful complement to Part One. 

In the preparation of this book, invaluable editorial assistance was pro
vided by Margaret Carey who, in addition to typin~ several manuscripts, 
formatted a good number of other pretyped manuscnpts into the required 
camera ready form. Photographs of the lecturers were taken by Peter Leivo. 
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We are thankful to all of those who contributed to the success of the 
school: the lecturers, the question-asking students, the participants at 
the workshops, the authors and inspectors of the posters and, last but not 
least, the organizers and volunteers who helped in running the school. 

The school was mainly funded by a NATO Advanced Study Institute Award and 
a Natural Science & Engineering Council of Canada Conference Grant. Addi
tional funding came from AECL-Chalk River Laboratories, TRIUMF, Canadian 
Institute of Particle Physics, University of Winnipeg, and from the 
Canadian Association of Physicists in the form of a loan. These supports 
are gratefully acknowledged. 
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Field Theory Methods and Strongly Correlated Electrons 

Abstract 

Ian Affleckt 

Canadian Institute For Advanced Research 
and 

Physics Department 
University of British Columbia 
Vancouver. B.C .• V6T2A 6. Canada 

The one-dimensional Hubbard Model at arbitrary filling is reviewed using 
non-abelian bosonization and emphasizing the hidden 0(4) symmetry at 
half -fi lling. This provides a one-dimensional warm-up for theories of high-T c 

superconductivity involving ·holons· and ·spinons·. 

J. Introduct ion 
There is currently enormous interest in the two dimensional Hubbard model 

and its generalizations. as theories for high-Tc superconductivity. Many open 

questions and controversies remain at this time. Many of the ideas and 
assumptions made about the two dimens,"onal case are inspired by the one 
dimensional version which is much better understood. In particular. bosonization 
leads to a remarkable separation of the charge and spin excitations which have 
recently become known as ·holons· and ·spinons·. It seems likely that many of 
these features are special to the one-dimensional case. Nonetheless. it is 
worhwhile to understand this case as well as possible. both as a warm-up for the 
two-dimensional problem and because of the application to quasi-one-dimensional 
systems. A very nice review of the 1 D theory was given by V. Emery in 1979.1 
Discussion of its experimental relevance may be found in other articles in the 
same conference proceedings. 1 

A certain amount of progress has been made in bosonization techniques 
since that time thanks to non-abelian bosonization and the general development of 
conformal field theory. The aim of these notes is to re-examine the problem from 
a more modern perspective. A much more extensive discussion of the related 
problem of one-dimensional Heisenberg models was given in [2]. where the Hubbard 
model was also discussed in passing. In those notes only the case of half-filling 
was covered. wherein spinons but not holons, occur. In the present notes! will 

t Presented at the Nato Advanced Study Institute on Physics. Geometry and Topology, 
Banff, August 1989. Research supported by NSERC of Canada. 
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endeavour to avoid repeating the contents of [2] as much as possible and focus on 
the case not covered: spin-charge separation away from half-filling. I will also 
emphasize the hidden 50(4) symmetry of the Hubbard Model at half-filling and use 
it in bosonization. The reader is referred to [2] for original references and to 
other articles in the same volume for reviews of conformal field theory. 

2. The Hubbard Model: Strong Coupling Limit 

The Hubbard Hamiltonian is: 
HH = -U:<i.j>(~to/i~o/,j + h.c.) + Utinifnu.. 

Here ~io/ annihilates an electron on lattice site i with spin 0/, niJ. and nif are the 

electron numbers ~to/i~o/i .where 0/=1 or 2 (not summed). A sum over nearest 

neighbours (each pair occuring once) on some lattice is implied in the first term. 
This is a standard model for electrons in well-localized atomic orbitals with a 
probablility t for transitions between neighbouring atoms. The constant U, which 
is normally positive, represents a highly screened Coulomb repulsion between 
electrons. It costs energy U to put 2 electrons on the same site. This very 
simplified form assumes that the screening length is on the order of the lattice 
spacing. In the extended Hubbard model a nearest neighour repulsion is also 
maintained. The on-site interaction can be written in a number of equivalent 
ways, including: 

H' = (U/2)tini2 or, (-2U/3)tiSi2. 

Here ni is the total electron number: 

ni = ~to/i~o/i (summed over 0/), 

and Si is the electron spin operator: 

Si = ~to/i(1/2)Co/~~~i' 
The various ways of writing H' differ by constants plus terms proportional to tini' 

the total electron number. This is a conserved quantity so such a term just shifts 
the chemical potential. 

The strong-coupling limit of the Hubbard Model at half-filling (the total 
number of electrons equals the number of sites) is of special interest. Setting 
t=O, we see that any of the 2V states (V is the volume, or the number of sites) 
with one particle per site is a ground state. Of course, this large degeneracy is 
broken by the hopping term. This problem may be studied in degenerate 
perturbation theory. A single application of the hopping term always produces a 
doubly occupied site and so increases the energy by' U" Note that the system is an 
electric insulator in the strong-U limit. Transport of an electron by L sites only 
occurs in Lth order perturbation theory and is suppressed by a factor of (t/U)L. 
Wave-functions are exponentially localized. This insulating behaviour at 
half-filling could not occur without interac,tions., Trivial insulators always have 
filled bands. This type of non-trivial insulator, known as a Mott-Hubbard insulator 
is often observed. It occurs, for example, in compounds closely related to high-Tc 

superconductors. Mixing of the ground states occurs in second-order degenerate 
perturbation theory in t. Let us consider the mixing induced by the hopping term 
on a particular link: 

<J. f I Hint(Eo-HO)-l Hint I J. f> = -2t2/U, 

<J. f I Hint(Eo-HO)-l Hint I f J.> = 2t2/U. 

(The factor of 2 arises because there are two possible intermediate states with 
both electrons on either of the 2 sites. The minus sign occurs from 



anti-commuting the creation operators.) The matrix element is zero for para \lei 
spins, since the 2 electrons cannot go onto the same site in the intermediate 
state. We may write down an effective Hamiltonian in the space of singly 
occupied states which has the same matrix elements. 

Heff = Jr<i,j>[5i·5j - 1/41. 

where, 
J = 4t2/U. 
Thus Mott-Hubbard insulators are expected to be antiferromagnets. This is 

also frequently observed; in fact this may be the main mechanism responsible for 
anti ferromagnetism. The magnetic interaction results from an exchange process in 
which neighbouring electrons share each others orbitals. This occurs more 
efficiently for anti-parallel spins due to the Coulomb repulsion and Fermi 
statistics. 

The one-dimensional Heisenberg model is not trivia\. In particular the naive 
antiferromagnetically ordered state with anti-parallel neighbouring spins (which 
occurs in higher dimension) is prevented from occuring by Coleman's theorem. It 
turns out that a convenient way of understanding the basic physics of the Hubbard 
model is to study weak coupling where the continuum limit can be taken. One can 
then investigate whether the behaviour is smooth right up to infinite U. 

The Hubbard model has an obvious 5U(2)xU(1) symmetry. There is actually a 
hidden 50(4) symmetry, or two commuting 5U(2)'s, at half-filling which will be 
quite useful when we bosonize. This hidden symmetry can be seen by introducing 
real fermions: 

1}I1 = (E.1 +iE,2)I2, 1}12 = (E,3+ iE,4)/2, on even sites, and 

1jt1 = (E,2- iE,1 )/2, 1jt2 = (E,4-iE,3)/2, on odd sites 

obeying: 

{E,ar,E,br'l = 2&r ,r'&ab' 
The hopping term takes the manifestly 50(4) invariant form: 

HO = (-itl2)r<i,j>E,aiE,aj (for i odd and j even). 

Noting that: 
Ijttoli ljtoli- 1 = (i/2)(E,1 C,2+C,3E,4)' 

we see that the Hubbard interaction: 
H' = (U/2)ri(ljttoliljtoli _1)2 = (-Ul96)riEabcdE,ai C,bi E,ci E,di' 

is also 50(4) invariant. 
Alternatively, we may construct a matrix from the complex fermions: 

on even sites and: 

on odd sites. 

(1 a) 

(1 b) 

An ordinary 5U(2) transformation corresponds to right multiplication of'll: 'II ~ 
'IIU, while the hidden 5U(2) transformation is left multiplication. [The ordinary 
U(l) charge symmetry is a sub-group of the hidden 5U(2)1. To see that these are 
indeed both symmetries of H note that the hopping term can be written: 

3 
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HO = -itI:<i,j>tr'Vit'V j (for i odd and j even), 

while the Hubbard interaction is proportional to I:iDet'Vit'Vi. 

The number density and pair creation operators form a triplet under the 
hidden SU(2): 

Sj =(1/2)[(-1 )j(lJtj2IJtj1 +h.c.),-i(-1 )j(lJtj1IJtj2-h.c.),lJttoljlJtolj-1l = tr'Vi t O''V/4. 

On the other hand the ordinary spin operators are: 

Sj = tr'Vt j'VjO'/4. 

Note that a chemical potential does not respect the hidden SU(2) since the number 
density forms part of a triplet. The 0(4) invariant filling factor is seen to be 
half -fill ing since this corresponds to: 

<53>=0. 
Note that a chemical potential term: 

j.l I:i'V\ l~'Vi~l' 
breaks the SO(4) symmetry down to the obvious SU(2)xU(1) subgroup. Thus the 
hidden SU(2) symmetry is broken by moving away from half -fill ing. 

The tranformation: 

lJti2 .... (-ni lJt\2, 

leaves the hopping term invariant and changes the sign of U. Thus the positive 
and negative U models are equivalent, with a redefinition of operators. This 
redefinition switches the charge and spin operators, 

ni-1 .... lJttiO'zlJti = 2Szi, 

(-n ilJt j2IJtj1 .... lJtt2jlJtjl = IJt/O'-lJtj =2S-j 

ie. Sj ...... Sj. 

The triplets of spin and charge operators are interchanged under the duality 
transformation. 

3. Continuum Limit 
The continuum limit is based on weak coupling. We begin by considering 

the model at u=o. 
H = -tI:i[lJti+ 1 tollJtiol+ h.c.]. 

We may immediately find the ground state by Fourier transforming: 
H .... -2tI:kcosaklJttolklJto/k. 

The dispersion relation is drawn below. We find the groundstate by filling the 
Fermi sea up to the Fermi points ±kF. kF is determined by fixing the total charge, 

or filling factor, kF/TC. 

The low-energy excitations involve creating holes just below the Fermi 
surface and electrons just above it. Thus we are only concerned with the IJtk 
operators for k '" ±kF. Essentially we may truncate the Fourier expansion and only 

keep k in the range 
I k±kF I ~A. 

where A is an ultraviolet cut-off which can be taken to be «2TC/a, where a is the 
lattice spacing. This will be sufficient to study the physics at length scales » 
1 1 A. Thus we write: 

lJt(x)1 .,fa", eikFXIJtL(X) + e-ikFXIJtR(X), 

where IJtR and IJtL are slowly varying on the lattice scale and contain the Fourier 

modes near ±TC/2a respectively. It is convenient to define continuum Fourier 
modes: 



E 

k 

a(k) = ljI(kF+k), bt(k) = ljI(kF-k), for k > 0, 

where a and b are electron and hole (or positron, in the relativistic limit) 
annihi lation operators. Thus IjIR annihilate right-moving electrons and creates 

right-moving holes: 

IjIR = (l/.ja)rk>o[e-ikXak + eikxbtkl. 

Likewise, IjIL is written in terms of the left-moving electrons and holes: 

IjIL = (1 l.ja)rk<O[e-ikXak + eikxbt k]' 

In the continuum approximation we linearize the dispersion relation near the Fermi 
surface. This leads to the continuum Hamiltonian 

H = ivIdx[ljIt~(d/dx)IjIRo/ - IjItL oI(dldx)IjILo/l, 

where v=2tasinkFa, the Fermi velocity. 

In what follows, we generally follow the convention of setting v=l: it can 
always be restored by dimensional analysis. We have obtaineq a Lorentz-invariant 
massless free Dirac fermion theory with 2 ·f1avours·, the spin components. (Note 
that the electron spin appears as an internal quantum number in the (1 +1) 
dimensional field theory: there is no intrinsic spin in one dimension.) The 
continuum free fermion theory has chiral U(1) and SU(2) symmetries. Operating on 
the left fermions we have a U(l) charge symmetry: 

IjlLio/ .... ei91j1Lio/' 
and an SU(2) spin symmetry: 

IjlLi 0/ .... 90/13Ij1Li 13 . 

Here, go/13 is an SU(2) matrix. Likewise we may make independent transformations 

on the IjIR's. The charge and spin of the left and right-moving fermions are 

separately conserved. Corresponding to these symmetries we have conserved 
currents. The light-cone components of the currents can be wri tten: 

JL,R !IE :ljIt L,Rio/IjIL,Rio/:' 

JL,R • IjIt L,Rio/ (1 12)Oo/13Ij1L,Ri13' 

(Note that the bold-face symbol J, denotes an SU(2) vector of currents.) The 
energy-momentum tensor can be written in a Sugawara form quadratic in currents: 

T L = (Tt/2)vJL JL + (2Tt/3)vJL ·JL 

5 
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(and similarly for TL). Here we have re-instated the velocity of light, v. 

We now consider the interaction term. For small U (ie. U«t), only states 
close to the Fermi surface are mixed with the groundstate (and low energy states) 
so we may use the continuum approximation. Thus we rewrite the interaction in 
terms of IJiL,R. This gives a variety of different terms. Because of the 

assumption that IJiL,R vary slowly, terms with phase factors of the form e:!:2ikFx 

can be ignored. (More correctly they lead to higher deri vi ti ve operators which are 
irrelevant.) This will generally also be true of terms with phase factors e:!:4ikFx, 
except in the special case kF=TC/2a, corresponding to half-filling, where these 

phases become zero since x=na. Upon rearranging the order of the operators 
(which only generates constants and terms proportional to the total conserved 
fermion number) we get five different non-derivitive 4-Fermi operators. These 
can be written: 

(JL JL +JRJR)' (JL ·JL + JR·JR) 

JLJR, JL·JR 

[e-4ikFX(EcI~lJit L cllJit L~) (IJiRcrIJiRSE crS) + h.c.] 

We see from the definition of the continuum fermi fields, that the Single charge 
and spin symmetries of the Hubbard model correspond to the diagonal subgroup of 
the chiral symmetries of the free fermion theory, under which left and right 
fermions transform the same way. These five interaction terms are the most 
general operators respecting the diagonal U( 1) and SU(2) symmetries of the 

Hubbard model and containing even numbers of left and right fields. Thus if we 
consider more general interactions in the lattice model we can only change the 
five continuum coupling constants; no other operators will appear. The first two 
terms are of the form of the free Hamiltonian and can be regarded as simply 
renormalizing the velocity. Since the coefficients of these two terms are not the 
same, we get two different velocities for the charge and spin terms. A theory 
with two different ·velocities of light· could not be Lorentz invariant. 
Fortunately, as we sha1\ see, the charge and spin sectors decouple and can be 
considered separately so we obtain two decoupled Lorentz invariant theories with 
different velocities of light. 

The left-right terms correspond to Lorentz-invariant interaction terms in 
the Lagrangian (the same terms as in the Hamiltonian, but with a change of sign). 
This can be written: 

Lint = A1(1I4)JLJR + A2(1/16)[(Eclj3lJit LcllJitLj3)(IJiRcrIJiRSE?J&) +h.c.] + A3h·JR 

These coupling constants have the values 
-A1 = -A2 = A3 = U/t. 

The A2 term is only present at half-filling where the phase vanishes. We have 

obtained a generalized, SU(2) invariant Thirring model. 
The hidden SO(4) symmetry at half filling is present in the continuum 

theory due to the relations between the coupling constants. We make the hidden 
symmetry manifest by introducing left and right matrices 'ilL and 'VR as was done 

for the lattice model in EQ. (1). The ordinary SU(2) currents become: 
JL = (1/2)tr'Vt L 'ilL 0 

whi Ie the hidden SU(2) current is: 

JL = (1/2)tr'Vt L O'VL· 

JL 3 is proportional to the charge current JL. The two 50(4) and Lorentz invariant 

interactions are JL·JR and JL·JR. This second interaction is proportional to 

(1/4)JLJR - (1/16)[(Eclj3lJitLcllJitLj3)(IJiRcrIJiRSEcrS) +h.c.l. 



Thus 50(4) symmetry demands that >"1 = ->"2 as was obtained above. The duality 

symmetry of the Hubbard model also implies that >"1 and >"3 switch under U ... -U. 

as well as implying that the velocities in the spin and charge sector switch under 
U ... -U. This latter duality is made more manifest by observing that the charge 
part of TL can be rewritten using standard point-splitting techniques as: 

TLc = (1t/2)vJLJL = (21t/3)vJL·JL 
Note that the symmetries of the underlying lattice model imply a

symmetry-preserving regularization of the field theory. Thus the symmetries and 
duality properties should be exactly true in the regulated interacting quantum 
field theory. Of course. once we move away from half-filling >"2 = 0 due to the 

oscillating factor arising from the lattice theory and the hidden 5U(2) symmetry is 
broken. We shall concentrate on the half-filled case for a While and then return 
to the general case in Section 4. 

At this point we bosonize. The most elegant way of doing this is to use 
Witten's non-abelian bosonization. He showed that a theory of two free massless 
complex Dirac fermions (Ie. four real fermions) is eqivalent to the 50(4) 
Wess-Zumino-Witten non-linear o-model (WZW model) with central charge k=l. In 
terms of real fermions. E.a (a=l •.. .4). the bosonization formula is: 

E.LaE.Rb oc 0ab. 

where 0 is an 50(4) matrix. Similarly. the left and right SO(4) currents of the 
fermion theory are equivalent to the currents in the WZW model. An equivalent 
and more convenient version of this bosonization formula is obtained for the 
complex f~mions by rewriting the 50(4) matrix as a product of 2 SU(2) matrices 
gcl~ and hclS in the obvious and hidden SU(2) groups respectively: 

'Itt L ~R~ oc gcl~h 11 (2a) 

'ltLcI'ltR~ oc EclCf9?S" ~h 12. (2b) 

The ordinary and hidden SU(2) currents are written in terms of g or h only: 
JL = -(il41t)trd+ggl:o. JL = -(il41t)trd+hhl:O. 

The SU(2) matrices g and hare WZW fields with central charge k=l. We see that 
the ·continuum version of the Hubbard model decouples into separate sectors: g and 
h for spin and charge excitations. This is a consequence of bosonization and the 
group-theoretical equivalence: 

SO(4) - SU(2)x5U(2). 
It should be realized that this decoupling is not an exact property of the lattice 
mode\. The two sectors are coupled by higher dimension operators. Thus we 
should only expect it to appear asymptotically in the long-distance. low-energy 
properties of the Hubbard model. 

Having separated charge and spin sectors. we are still faced with the 
problem of understanding the behaviour of each sector. We can understand the 
essential behaviour from the renormalisation group. The interaction in· each 
sector is marginal (has dimension 2); it will be marginally relevant or irrelevant 
depending on the Sign of the coupling. We see from the Appendix that. for U>O the 
spin sector coupling. >"3 is marginally irrelevant while the charge sector 

couplings. >"1 =>"2 is marginally relevant. Thus we expect to develop a gap in the 

charge sector of order: 
m oc Ae-21t/>"1. 

where A is the ultraviolet cut-off. Inserting the original units this corresponds 
to an energy gap in the charge sector at weak coupling and half-filling of: 

A oc te-41tt/U. 

Note that this exponentially small gap becomes O(U) in the strong coupling limit. 
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It is plausible that the gap increases monotonically with U (for fixed t). It is also 
plausible that the WZW field h develops an expectation value of the form: 

<holl!> oc l)oIl!' 

This is the unique form for this expectation value which is consistent with the 
hidden SU(2) symmetry of the mode\. This symmetry cannot be spontaneously 
broken due to Coleman's theorem. The bosonized model has an additional Z2 

symmetry h'" -h, which is a subgroup of the chiral (hidden) SU(2) symmetry of the 
WZW mode\. The above expectation value implies that this Z2 is spontaneously 

broken. Note that this is not inconsistent with Coleman's theorem since it is only 
a discrete symmetry which is being broken. We will give an (essentially rigorous) 
argument below that this symmetry breaking occurs. The connected parts of h 
correlation functions should decay exponentially with a correlation length of 
0(m-1). ie: 

<h t oll!(X)h2f 1)(0» ... const .. l)oIl)l)2f l! + O(e-mq, 

<ja(x)j1>(O» ... O(e-mq, etc. 

On the other hand the spin coupling. A3 renormalizes to zero at long 

wavelengths. Thus the low energy correlations in the spin theory should be 
described by the WZW fixed point (up to logarithmic corrections coming from the 
marginally irrelevant operator). This impl ies that: 

<gtoll!(x)g2f 1)(0» ... constant/r 

(actually this is multiplicatively corrected by a power of a logarithm due to the 
marginal operator). 

<JaL (x_)JbL (0» ... -1/8TC2x_ 2. etc. 

We may now read off the asymptotic behaviour of the Hubbard model 
correlation functions for the charge and spin operators introduced above, by using 
their bosonized forms. Thus. for any lattice operator bilinear in fermions, we 
first rewrite it in terms of ~L.R and then bosonize. This gives. in general. two 
terms with phases 1, or e±i(TC/2a)x = (_ox/a. 

Sx/a = (JL + JR) + const.(_1)x/a (trh).(trgcs) 

§x/a = (JL + JR) + const.(_1)x/a(trhCS).(trg) 

Now using our assumption that <trh> .. 0, whereas <trhCS> = 0 by the unbroken 
hidden SU(2) symmetry. we see that the § correlation function (charge density and 
pair creation operator) decays exponentially. whereas the 5 (ordinary spin) 
correlation function decays with power laws determined by the dimensions of J 
and g: 
<Sa(O,O)Sb(x.t» = a2I)ab[_(1/8TC2)(1/x+2.1/x_2). 

const.(-l )x/a(x2_t2)-1/2]. 
(The coefficent in from of the non-alternating term is actual1y determined 
completely by the condition that the conserved total spin obey the same 
commutation relations in the lattice and continuum theories. On the other hand 
the coefficient in front of the alternating term is non-universal and is not 
determined by any general argument. Finally, it should be remembered that we 
have set v=l in this formula.) 

Of course. these results apply equal1y wel1 to the U<O theory at 
half-filling, due to the duality transformation. We simply interchange the § and 5 
operators so that the ordinary spin correlation function decays exponentially 
whereas the charge denSity and pair creation operator correlation functions decay 
with these power laws. This can again be seen to be consistent with a physical 
picture of the large (negative) U limit. 



4. Away From Half-Filling 
Our continuum analysis goes through essentially the same way at general kF 

except for the crucial difference that A2 =0, ie the term: 

(Eo/~ IjIt L o/ljIt L ji )(IjIR?J'IjIRsE ?J'S) no longer appears in the continuum Lagrangian due to 

the alternating phase factor. We see from the renormalization group equations in 
the Appendix that Al does not renormalize so that adjusting U simply moves Al 

along the fixed critical line. Thus we we expect to get gapless spin and charge 
excitations, in agreement with the large U limit. 

The most convenient way of handl ing the charge sector once the hidden 
SU(2) is broken down to the obvious U(I) subgroup, is to replace the WZW field h 
by an eqivalent free boson, cpo We adopt standard string theory normalization so 
that the Lagrangian is written: 

L = (1/21t)(djl<P)2. 

The boson is defined as an angular variable, that is cP and CP+21tR are regarded as 
equivalent. It is well known that the k=1 SU(2) WZW model is equivalent to a free 
boson with radius R=I/..{2. The currents and the field h can be rewritten in terms 
of cp: 

i..(2 '9 
e 

;./2 ~ 
e 

-i..(2 '9 
e 

gcx: 
e 

where cP = CPL + CPR, f = CPL - <PR' 
The charge part of the Lagrangian becomes: 

L = (1/21t)(1-AI/8TC)(djl<P)2 + const.A2·cos.;s cP 
(We temporarily include A2 in order to reanalyse the half-filling case in terms of 

cp.) We may rescale cP by.jl-A/8TC in order to give the kinetic energy the 
canonical normaliZation. This means the radius changes to 

R = [(I- AI /8TC )/21' 12. 

The cosine interaction is now cOS2CP/(I-AI/81t)1/2. This has scaling dimension: 

x = 2/(I-AI/8TC). 

Since Al = -U/t in the Hubbard model. we see that this cosine interaction is 

relevant for U>O. In fact we have just obtained the sine-Gordon model [with 
ji2=8TC/Cl-AI/8TC) using a conventionally (ie. non string theory) normalized boson 

field]. We reobtain the previous conclusion that the model develops a mass gap. 
We in fact learn more using the spectrum of the sine-Gordon model which is based 
on the semi-classical analysis and known to be correct in the quantum theory. 
The symmetry of translation cP ~ <p + TC/R is spontaneously broken. Note that due 
to the periodic definition of cP this is only a Z2 symmetry. The spectrum for 

small Al consists of a massive soliton doublet. This Z2 symmetry corresponds to 

h ~ -h in the WZW representation and the known results on the sine-Gordon model 
SUbstantiate the claim made earlier that this Z2 symmetry is spontaneously 

broken.. 
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We may now easily analyze the model IIway from half-filling. Since the 
sine-Gordon interaction is now IIbsent. we simply obtain a free boson critical 
theory in the charge sector. but with a U dependent radius. All fermion bilinear 
correlation functions may be read off by rescaling <p. Requiring preservation of 
the canonical commutation relations implies: 

<p ... (2/R) 1 12<p. ~ ... (R/2) 1 12~. 
Thus: 

S/a = (JL + JR) + const[eikFx·ei<P/R + h.c.]trga 

n/a = (1 IJR)dl <P + i-constleikFX·ei<P/R - h.c.1trg 

Eo(f,ljIo(ljIf, oc exp(i2R~)([e2ikFXe-i<P/R+ h.c.] + const·trg} 

We can now read off the scaling dimensions of these operators (half the 
correlation exponent). Note that in each case the first term contains purely spin 
or charge operators while the other contains a product of both. 

unform 2kF 

spin &. charge 1 1/2+1/4R2 

pair 
R2+1/4R2 1/2+R2 

Note that all dimensions are 1 for U=O. R=l/./2. the free fermion case. 
With increasing U and R the pair dimensions get larger while the 2kF spin and 

charge dimensions get smaller. Standard arguments3which treat the 10 model 
exactly and the 3D couplings in mean field theory suggest that long-range order 
will occur with the addition of weak 3D Inter-chain couplings only if the 
dimension Is less than 2. This suggests that the quasl-IO positive U Hubbard 
model may show spin-density or charge-density wave long-range-order but not 
superconductivity. Although the quasi-IO case is not directly relevant. this 
represents some difficulty for proponents of Hubbard model-based theories of 
high-T c superconducti vi ty. 

To complete our renormalization group analysis of the Hubbard model and to 
understand what may happen if we add more general lattice interactions (nearest 
neighbour repulsion. for example) it is essential to eXllmine all possible relevant 
operators Which may be added to the critical theory. In general. any interaction 
not forbidden by symmetry should be generated (even if it does not appear in a 
tree level analysis such as performed above). Let us begin with 50(4) invariant 
Hamiltonians. (Generalizlltions of the Hubbard model which are 50(4) invariant at 
half filling clln be easily be written down.) The only non-trivial primary field in 
the k=l SU(2) WZW model is g (or h) itself. The only Lorentz invllriant and 
diagonal 50(4) invariant operators which could be added to the Lagrangian are the 
current-current terms already considered and trg. trh. trg·trh. Even allowing for 
non-Lorentz invariant operlltors which respect the limited spatial symmetries of 
the lattice model (eg. parity) permits no further relevant operators besides these 
two(except for renormalization of the velocities already considered). Fortunately. 
there are discrete symmetries of the IlIttice theory Which forbid these operators. 
Consider the symmetry of trllnslation by 1 site. In the continuum fermion 
formulation this is an internal discrete symmetry: 

IjIL ... iljlL' IjIR'" -IIjIR· 

This is actually a Z2 subgroup of the chirlll U(1) symmetry of the free fermion 

continuum theory. From the bosonization formulas of Eq. (2) we see that it 
corresponds to: 

9 ... g. h ... -a3ha3. 



This forbids the interactions trh or trh·trg. There is a second symmetry of the 
form: 

g .. -g and h" -h. 
which is considerably more subtle in the fermionic theory. Note that all fermion 
bilinears are invariant under this transformation. Consequently if we begin with 
an arbitrary fermionic Lagrangian (including al\ irrelevant local fermion operators) 
its bosonized form wil\ respect this symmetry. Since we only generate local 
fermionic operators in perturbation theory in the lattice fermionic theory. it 
follows that the symmetry holds to all orders in perturbation theory. This 
additional symmetry forbids the interaction term trg. 

A related fact is that. even though the first symmetry is spontaneously 
broken in the Hubbard model at half-filling. as we discussed above. there is no 
non-zero order parameter local in fermion operators. Local order parameters in 
the Hubbard model can only be non-zero if both symmetries are broken. 
Spin-Peierls. dimer order occurs if: 

(-1) iSi ,Sj. 1 oc trg·trh 

is non-zero. (This equation is obtained by using the operator product expansion to 
eliminate current operators.) This requires both trg and trh to have expectation 
values. breaking both discrete symmetries. Thus although. i~ some formal sense. 
there is a broken discrete symmetry in the half-filled Hubbard model. there is no 
corresponding order parameter local in fermion operators. (This is perhaps 
somewhat analogous to a situation in the 20 Ising mode\. One can define a dual 
order parameter which is non-zero in the high- T phase. However. this order 
parameter is non-local in the original spin variables: al\ local order parameters 
are zero. Whether or not one should consider the high-T phase to have a broken 
symmetry is largely a matter of definition.) An alternative point of view might 
be that the bosonic theory is only equivalent to the fermionic one if we make the 
identification: 

(g.h) - (-g.-h). 
The same discrete symmetries persist away from half-filling with the 

SO(4) symmetry broken. h'" -h becomes cP .. TCRcp. as discussed above. We also 
need to worry about possibly generating trhcs 3 or trhcs 3trh. since they are 
permitted by the remaining U(1) subgroup of the hidden SU(2). However. these 
ioperators are forbidden by the discrete symmetries. 

We now are in a position to describe the general phase diagram for 
generalized Hubbard models with arbitrary interactions respecting the same 
symmetries as the ordinary Hubbard model. There are two possible phases for the 
spin sector. depending on the sign of the Single marginal operator one with a gap 
and one without. There are three phases in the charge sector. There is a gap less 
phase with no broken symmetries and two phases with gaps in which either trh or 
trhcs 3 is non-zero. These order parameters correspond to cosCP/R and sincp/R. 
Which is non-zero depends on the sign of A2: ie. the sign of the cos2CP/R 

ir:Jteraction. Altogether we have six phases. However there are only only non-zero 
local fermionic order parameters in the two phases where there are both charge 
and spin gaps as discussed above. These phases have either spin-Peierls order or 
charge-density-wave order depending on whether trh or trhcs3 has an expectation 
value. The latter follows from the fact that trg·trhcs 3 is the bosonized form of 
the alternating part of the charge density. While only these six phases should 
occur at weak coupling. at sufficiently strong coupling in some models both trh 
and trhcs 3 might be simultaneously non-zero. corresponding to simultaneous ISing 
and dimer order. In sine-Gordan language this means that both cosCP/R and sincp/R 
are non-zero. This could occur when R is sufficiently large that a cos4!p/R term 
is relevant since the classical minimum can then occur at arbitrary cpo 
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Away from half-filling translation symmetry forbids the cos2rp/R term and 
inhibits the development of a charge gap. Translation by one site now corresponds 
to: 

':IlL ... eikF'/IL' '/IR'" e-ikF'/IR, 

or 
g ... g, rp ... rp +2kFR. 

This symmetry would only permit interaction of the type cos(nTCrp/kFR) for integer 

n. However, the periodic definition of rp implies that only cosnrp/R is 
single-valued. Hence cosine interactions can only occur for commensurate fi II ing 
factors: kF/TC = p/q, p and q integer. For this filling factor the most relevant 

operator is cosqrp/R with dimension q2/4R2. This will only be relevant for R ~ 
q/2.j2. Since R=l 1-12" at weak coupling, only the q=2, half-filling instability 
occurs at weak coupling. The other ones correspond to other types of order with 
larger uni t cells and should occur in some models at sufficiently strong coupling. 
(They probably don't occur in the ordinary Hubbard model.) 

V\' Conclusions 
Field theory methods, in particular bosonization, are very useful in 

understanding the behaviour of the one-dimensional Hubbard model. At half-filling 
the low energy spin-degrees of freedom are described by the k=l SU(2) WZW model 
(with a marginally irrelevant interaction added) for any positive U: as has been 
well verifed by numerical work. Away from half-filling there are also gapless 
charge excitations. Field theory methods predict that two decoupled free boson 
theories, one for spin (equivalent to the WZW model) and one for charge, describe 
the asymptotic behaviour. 

In the two dimensional case the existence of independent spin and charge 
excitations remains an open question. 

Appendix: Renormalization Group Equations: 
In a general 20 conformal field theory, the one-loop j!-function can be 

obtained from the operator product expansion. For a set of marginal interactions, 
0i with (Minkowski Space) Lagrangian: 

L ' = Ei"iOi, 
the j!-function: 

d"i/dlnL = j!ijkAjAk, 
with: 

0i(X)Oj(y) ... j!ijkOk(X)/TC(X-y)2. This follows from expanding e-S to 

quadratic order in L " using the operator product expansion and the integral: 
Jd2X/x2 = 2TClnL, 

where L is the infra-red cut-off. We consider an anisotropic interaction: 
L ' =Ea"aJL aJRa, 

(Don't confuse these "a's with the three couplings defined in the Hubbard model.) 
In general the operator product expansion for a current and ang operator (of 
arbitrary dimension) is: . 

JRa(z)O(z') = SRaO(z')/21ri(z-z'), 

where SRa is the generator of SU(2)R transformations in the representation under 

which ° transforms. (This follows from doing a contour integral over z Which 
gives the commutator of the two operators.) Thus: 

JRa(Z)JRb(Z') = EabcJRc/21t:iCz-z'), 

d" 1 1 dlnL = - "2"3/2TC 



dA2/dlnL = -A1 A3/21t 

dA3/dlnL = -A2A1/21t 

Let us now specialize to a general U(1) invariant interaction: 
L' = A+_(1I2)(JL+JR- + JL-JR+) + A3JLzJRz: 

dA+jdlnL = -A+_A3/21t 

dA3/dlnL = -A+_2/21t. 

These are very well-known RG equations which occur in a number of problems, 
including Kosterlitz's analysis of the 2D classical xy mode\. Noting that 

d(A+_2-A32)/dlnL = 0, 

we see that the RG flow lines are hyperbolas: 

For A3~O and I A± I ~A3' the coupl ings flow to the fixed line on the positive A3 

axis, but otherwise they flow to infinity. Finally, let us consider the SU(2) 
invariant case, A+_=A3' This condition determines the separatrix: the straight 

line RG flow to (and from) zero coupling. For A initially positive, it renormalizes 
to zero. 
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1. Introduction 

1.1 Some remarks on the history of fractional statistics 

Since the beginnings of quantum theory the notion of identical particles and their 

statistics played a key role in the study of quantum systems. Implicitly, Bose-Einstein 

statistics already appeared in Planck's law of black body radiation and more explicitly 

in the study of monatomic gases carried out by Bose and Einstein. Pauli discovered 

his famous exclusion principle in the context of the old quantum theory. After the 

discovery of quantum mechanics, Heisenberg showed that the statistics of identical 

particles is described by the symmetry properties of n-particle wave functions under 

permutations of their arguments. For bosons, the complete wave functions are totally 

symmetric, for fermions they are totally anti-symmetric. 

In local, relativistic quantum field theory, statistics was cast in the form of 

commutation relations between pairs of local fields at space-like separated argu

ments: Two Bose fields at space-like separated arguments commute, while Fermi 

fields anti-commute. The principles of local, relativistic quantum field theory led to 

the discovery of another basic fact: Bosons have integral spin, while fermions have 

half-integral spin. This connection between spin and statistics, though previously 

known in examples, was first shown to be a general feature of local, relativistic quan

tum field theory by Fierz, in 1939, in the context offree-field theory [1]. It was later 

shown to be a general consequence of the basic principles of local quantum theory 

[2]. 

After the advent of the quark model in strong interaction physics [3], the statis

tics problem became important again: For hadrons to have the observed spin, quarks 

had to have half-integral spin. Assuming that the spin-statistics connection is correct 

for unobservable particles (quarks), one concluded that quarks had to be fermions. 

This, however, led to difficulties in constructing phenomenologically viable quark 

wave functions for hadrons, in particular for the proton. A possible way out of 

these difficulties appeared to be to view quarks as particles with parastatistics: The 

symmetry properties of n-particle wave functions would then be described by higher

dimensional representations of the permutation group, Sn, of n elements. However, 

ultimately the statistics problem in the quark model of hadrons turned out to be 
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one motivation (among several ones) for the introduction of colour and was neatly 

resolved by it: By introducing additional internal degrees of freedom the appar

ent parastatistics of quarks could be reinterpreted as ordinary Fermi statistics, and 

the standard connection between spin and statistics was saved. [The possibility of 

converting parastatistics into ordinary Bose- or Fermi statistics through the intro

duction of additional internal degrees of freedom had apparently been suggested by 

Fierz, Glaser and others.] 

A deep analysis of statistics based on fundamental postulates of local quantum 

theory was carried out by Doplicher, Haag and Roberts [4], at the beginning of the 

seventies. They classified all possible statistics (para-Bose and para-Fermi statistics 

of order d = 1,2,3, ... ) compatible with locality and certain general assumptions on 

the nature of physical states, for theories in four or more dimensions. The start

ing point of their analysis was reconsidered and given a better and more general 

foundation that includes gauge theories by Buchholz and Fredenhagen [5]. In an 

awsome effort, Doplicher and Roberts finally succeeded in proving that the paras

tatistics of "charged" particles in local, relativistic quantum theory could always be 

reinterpreted as ordinary Bose- or Fermi statistics by introducing additonal, internal 

degrees of freedom on which a global, compact internal symmetry group acts [6]. 

It has been known for some time that in quantum theory in two and three 

space-time dimensions the statistics of particles and fields is not in general described 

by representations of the permutation groups. In two-dimensional space-time, the 

concept of particle statistics becomes meaningless. Particle positions form an or

dered set in a one-dimensional space, and hence the symmetry properties of wave 

functions under exchanging particles are not physically relevant. [For example, the 

Pauli principle can be understood as a consequence of local hard-core interactions 

in a system of bosons.] However, the statistics of fields in local quantum theory in 

two-dimensional Minkowski space i§ an interesting concept, at least for a certain class 

of theories. In the early seventies, the quantum theory of solitons in simple models of 

two-dimensional, relativistic quantum field theory became topical among theorists. 

The commutation relations of what people nowadays call vertex operators of the 

massless free field in two space-time dimensions were studied by Streater and Wilde 

[7] and found to be different, in general, from local commutators or anti-commutators. 
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More subtle examples of "exotic" commutation relations between soliton fields and 

meson fields in two-dimensional, interacting scalar theories with soliton sectors (>.If'~ -

and, more generally, P( If' h-models exhibiting quantum kinks) were studied by one of 

us in [8]. It was recognized there that the key facts behind the appearance of soliton 

sectors and exotic field statistics in two space-time dimensional theories are vacuum 

degeneracy and the property of two-dimensional Minkowski space that the causal 

complement of a bounded double cone consists of two disconnected wedges. It was 

recognized only fairly recently by several people that the new field statistics encoun

tered in two-dimensional models with quantum kinks [8] may lead to representations 

of the braid groups. Earlier, one of us (J.F.) noted that, in the Euclidean description 

of two-dimensional quantum field theory, exotic statistics manifests itself as non

trivial monodromy of Euclidean Green functions. This was a model-independent 

interpretation of the monodromy properties found in the study of order-disorder cor

relation functions of the two-dimensional Ising model by Kadalloff and Ceva [9] and 

exploited in the work of Jimbo, Miwa and Sato [10]. For a brief sketch of such results 

see [11], and [12] for interesting related results. 

While, during the late seventies, there was little interest in two-dimensional 

models, the situation changed after a res urge of interest in string theory and the 

appearance of the fundamental paper of Belavin, Polyakov and Zamolodchikov on 

two-dimensional conformal field theory [13], in 1984. Soon, it was recognized that 

the chiral fields of two-dimensional conformal field theories provide interesting ex

amples of exotic statistics, or "exchange algebras" [14]. This was conceptualized in 

[15]. In this paper, a general theory of exotic statistics in two-dimensional theo

ries, not limited to conformal theories, was sketched, and it was suggested that the 

proper framework for a more rigorous analysis was algebraic field theory [16,4], in 

combination with the theory of Yang-Baxter representations of the braid groups [17]. 

Subsequently, this point of view was developed in [18]. It should be emphasized, 

however, that there are examples of field statistics in two-dimensional theories not 

covered by the framework of [18). Similar themes in the context of conformal field 

theory were studied in [19J. 

In these notes, we focus on the study of field- and particle statistics in three

dimensional local quantum theory which is of considerable interest in condensed mat-
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ter theory. It appears to be a rather old observation that, for quantum-mechanical 

systems in two-dimensional space, particle statistics is described by representations 

of the braid groups, [20]. In fact, the right story to tell about statistics in quan

tum mechanics is that it is described by unitary representations of the fundamental 

group of the classical configuration space of identical particles on the Hilbert space of 

quantum mechanical wave functions. In two space dimensions the classical n-particle 

configuration space is 

(1.1) 

where 

for some i f. j}, 

and Sn is the permutation group of n elements. It is easily seen that the fundamental 

group of Mn is given by 

where Bn is the braid group on n strands [21,17]. 

Quantum mechanical systems in two-dimensional space with abelian braid statis

tics were first proposed and studied by Leinaas and Myrheim [22]. Consider an array 

of identical point particles carrying an electric charge q and a magnetic flux (vortic

ity) r/J. Such particles have been termed "anyons" by Wilczek [23]. Naturally, such a 

system exhibits an Aharonov-Bohm effect: If one particle moves around a positively 

oriented loop enclosing k particles the total wave function picks up a phase factor 

exp(2ikqr/J). If two particles are exchanged along paths whose composition forms a 

positively oriented loop enclosing k particles the wave function gets multiplied by a 

factor exp( iqr/J + 2ikqr/J). 

Elements of the braid group Bn label homotopy classes of loops in Mn of which 

the two loops just described are examples. The braid group Bn has generators Ti, i = 
1, ... ,n - 1 j the generator Ttl describes the exchange of particle i with particle i + 1 

(in some order chosen on the points of E2) along paths whose composition forms a 

(!:;!~ii::ll~) oriented loop in the plane not enclosing any other particle. An element 

b E Bn can be written as a word in the generators {T1,' .. , Tn-1} modulo the relations 

TiTj = TjTi, for li-jl~2. (1.2) 
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The unitary representation of Bn carried by the space of n-anyon wave functions is 

defined by assigning a phase factor exp( ± i q </» to TTl, for all j = 1, ... , n - 1. This 

is a one-dimensional (abelian) representation of Bn. We shall see that there are, in 

principle, other non-abelian representations of Bn that could describe the statistics 

of non-abelian anyons. Let p be a representation of Bn. If 

then p factors through a representation of Sn, and the corresponding particles have 

ordinary permutation group statistics. Thus if 

1 
q</>/27r E - Z 

2 
(1.3) 

anyons are bosons or fermions. More precisely, if q</>/27r is an integer anyons are 

bosons, while if q</>/27r is a half-integer anyons are fermions. For other values of 8 == 

q</>/27r, anyons have what has been called fractional-, or intermediate-, or 8-statistics. 

We shall speak of braid (group) statistic~ as opposed to permutation (group) 

statistics. 

It should be emphasized that it is not necesary to think of anyons as particles 

carrying electric charge and vorticity. By a gauge transformation the vector potential 

can be gauged away. But then if 8 <f. tz the Hilbert space of anyon wave functions 

must be chosen to be a space of multi-valued functions with half-monodromies given 

by the phase factors exp(±2.7ri8). Such wave functions can be viewed as single-valued 

functions on the universal cover, M n, of Mn. This description of n-anyon systems 

is more natural if there are no electrostatic interactions between anyons, i.e. if the 

Coulomb interactions are absent or nearly completely screened. 

In this picture, an n-anyon wave function will have the form 

'Ij!(~l""'~n) = ITC Zi- Zj)211 g(~l""'~n)' 
i<j 

(1.4) 

where g(~l"" '~n) is a single-valued, symmetric function on (E2)Xn, and Zj is the 

complex number (x} +i xl) corresponding to ~j' An example is a Laughlin-type wave 

function [25] 

n 

const. IT(Zi - Zj)211 IT exp( - 1 zk 12 /4) . (1.5) 
i<j k=l 

20 



To conclude this section, it might be mentioned that a somewhat systematic 

analysis of gauge theories with Chern-Simons term (and related 0(3) non-linear (1'-

mod.els with a. IIopf term) in three spa.ce-time:: Jillle::m;ium; Je::sLri1illg partide::s with 

braid statistics was initiated in [23,26-28). It was noted in [15,28) that the braid statis

tics of anyons is closely related to the 't Hooft commutation relations between Wilson 

loops and vortex creation operators. Some general comments on three-dimensional 

theories are also contained in [18). 

1.2 Physical realizations of braid statistics 

One should ask why, as physicists, we should care about anyons and braid 

statistics? Is there experimental evidence for excitations with braid statistics in 

two-dimensional systems of condensed matter physics? By now, the standard an

swer is that excitations with braid statistics appear to play an important role in 

systems exhibiting a fractional quantum Hall effect. Moreover, pure anyon gases, 

with 8 E Q\ tz, appear to be superconductors of a new type [29). It has been 

speculated that anyon superconductivity may describe (essentially two-dimensional) 

high-Tc superconductors. This would be fairly plausible if one could exhibit doped 

anti-ferromagnets that admit a flux phase breaking parity and time reversal invari-

ance. 

Let us briefly recall Laughlin's argument explaining the role of anyons in the 

fractional quantum Hall effect: An idealized experimental set-up is sketched in Fig.l 

Fig. 1 
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The transverse conductivity is 

(1.6) 

Experimentally, one finds that in films of G a AI", As1 _", at low temperatures and 

in strong magnetic fields, u"''I' plotted as a function of the electron density p, has 

plateaux at the values 

2 • { 1,2,3, ... 
v e Ih, WIth v = 1 2 1 2 2 

5' 7' 3' 5' 3'··· , 
(1.7) 

more generally, for v = plr, where p and r do not have a common divisor, and 

r is odd. [More recently, plateaux appear to have been observed for even values 

of r, too.) Fractional values of v could be understood as an effect of fractionally 

charged excitations in such a system: Suppose there are charge carriers of charge 

q = I e, I E Q, in the conducting rectangle depicted in Fig. 1. Imagine that the 

total magnetic flux through the loop £ is increased adiabatically by one quantum 

of flux from ¢'" to ¢'" + 6.¢"" (6.¢", = hie). The microscopic quantum-mechanical 

Hamiltonians H (¢"') and H (¢'" + 6.¢",) of the system are then gauge-equivalent, hence 

have the same spectrum. If the Fermi energy of the system is in a mobility gap, the 

adiabatic process described above will therefore not change the total energy of the 

system. Suppose that during that process n charge carriers of charge Ie move from 

one to another edge in the x-direction. This changes the total energy by an amount 

6. U = nle V",. 

By Faraday's induction law the work of the current in the y-direction, during the 

same adiabatic process, is given by 

6. W = _jOO dt 1 d¢", = 
-00 11 dt 

Since the total energy remains unchanged, 

6. U + 6. w = o. 

By (1.6), (1.8) and (1.9), 

h 
-1 -

1/ e (1.9) 

(1.10) 

Comparison with experimental data, (1.7), shows that if the naive argument just 

sketched is correct then I must be fractional, for fractional values of v. For strongly 

correlated many-electron systems, one might imagine mechanisms giving rise to "soli-
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tons" which correspond to a fraction, liT, of an electron. [Solitons of this kind are 

well known in one-dimensional systems such as polyacethylene.] Solitons correspond

ing to a fraction of an electron carry fractional charge and fractional spin. Excitations 

with fractional spin in two dimensional systems necessarily obey fractional statistics, 

as we shall see in Sect. 3. Phenomenological wave functions for an assembly of n 

such excitations have the form (1.4), with () = /;., [25]. 

We believe that a detailed understanding of how anyons emerge in two-dimensio

nal, highly correlated many-body systems is still missing. 

1.3 Three-dimensional gauge theories with braid statistics 

Next, we give a mini-review of three-dimensional gauge theories with Chern

Simons term describing particles with braid statistics. The simplest examples are 

abelian gauge theories. They have an action given by 

1 
S[A] = -

2 
f [e- 2 F2 + 2(} e''''>' AI' all A>. - 2jl' AI' 

}'vp 11' 
+ (pure matter terms)] . (1.11) 

The term proportional to () is the Chern-Simons term, breaking parity, jl' is the 

matter current. By varying the action with respect to A we find the modified Maxwell 

equations. In particular, one has that 

1 -"2 div E 
e 

·0 () B 
= 3 - 211' • (1.12) 

This equation shows that if the electric field is screened vortices carry an electric 

charge 2s.. r/J, (r/J == J d2z B(z, t) is their vorticity), and particles with an electric 

charge q carry vorticity ql(}. The abelian braid statistics of charged particles and 

vortices in such theories can be understood as a consequence of the Aharonov-Bohm 

effect. This can be substantiated in models by means of non-perturbative calcu

lations with functional integrals [26], (or in an operator formalism, using 't Hooft 

commutation relations [28]). Abelian gauge theories with Chern-Simons term have 

been studied in detail in [30], and their particle spectrum and statistics are analyzed 

in [23, 26-28, 31]. 

We now ask whether non-abelian gauge theories with Chern-Simons term in 

three dimensions might describe particles with non-abelian braid statistics? Here we 

only sketch a preliminary answer to this question. 
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Consider a simply connected, compact gauge group G(~' SU(N». Let A be 

a vector potential (connection) with values in Lie(G). Following Witten [32], we 

consider the pure Chern-Simons theory with action 

So.s.[A] = ~ f tr(A 1\ dA + -32 A 1\ A 1\ A) 
411' J,,,P (1.13) 

This theory can be quantized using geometrical quantization [32] or functional in

tegrals [33]. Gauge-invariance and unitarity constrain the coupling constant of the 

theory to be quantized, 

kejJ. = n + kG, n = 1,2,3, ... , (1.14) 

where kG is the dual Coxeter number of Gj (e.g. hG = N, for G = SU(N». 

Static colour sources in this theory have non-abelian braid statistics described by 

Yang-Baxter matrices that are identical to the braid matrices of the Wess-Zumino

Witten models corresponding to the group G, at level n. These braid matrices 

can be understood as holonomy matrices of the Knizhnik-Zamolodchikov connection. 

These results follow from [32-34]. Although pure Chern-Simons theory has interesting 

applications to pure mathematics [32], it is uninteresting for physics. It is a purely 

topological theory, and hence its Hamilton opertor vanishes on physical states. The 

physical state spaces are finite-dimensional. 

An idea for constructing non-topological gauge theories with non-abelian braid 

statistics is to add non-topological terms to So.s .. Consider a theory with Euclidean 

action 

S[A] tr(F2 ) - ~ tr(Al\dA+ -AI\AI\A) J 'k J 2 
411' 3 

+ ). J ~(lP A + m)'I/J + ... , (1.15) 

where g,). and m are positive constants, and 'I/J is a two-component spinor field in 

the fundamental representation of Gj (there may be further matter fields, e.g. Higgs 

fields). The conjectured properties of this theory are as follows. 

1) The first two terms in S[A] on the r.h.s. of (1.15) make the gluon massive 

[30]. Hence all interactions mediated by gluons are expected to be of short range. In 

particular, one expects tha.t there is no confinement of colour in this theory. 
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2) Long-range interactions in this theory are purely topological, just like in pure 

Chern-Simons theory. The effective action at very large distance scales is essentially 

a pure Chern-Simons action with a renormalized value of k, the renormalization 

depending only on the number and nature of matter fields [30]. 

3) Since particle statistics can be determined at arbitrarily large distance scales, 

one expects, on the basis of 1) and 2), that the statistics of coloured particles in this 

theory is the same as the statistics of static colour sources in pure Chern-Simons 

theory, for a renormalized value of k, which we have described above. 

4) Coloured one-particle states in this theory are expected to be created by 

applying Mandelstam string operators to the physical vacuum, n. The Mandelstam 

string operators, denoted by 'ljJ(C.,), are smeared out versions of 

'ljJ(y) P(exp 1 AIl(e) dell), 
-r. 

(1.16) 

where "'{y is a space-like path starting at y E M3 and reaching out to space-like 00. 

By averaging the operators (1.16) over Poincare transformations in the vicinity of 

(1I,0), we obtain operators, 'ljJ(C.,), localized in some space-like cone Cz with apex 

at some point x E M3 (and with arbitrarily small opening angle) which are densely 

defined, closed operators on the physical Hilbert space. [By polar decomposition, 

thelSe operators could then be replaced by colour-carrying, bounded operators; see 

also Sect. 2.] 

A more careful definition of the operators 'ljJ(C.,) reveals that they are multi

valued. They are elements of fibres of a certain vector bundle of operators over 

the circle of asymptotic directions in two-dimensional space. In order to construct a 
o 

section of operators in this bundle, we choose a "reference cone", C, (corresponding 

to a boundary condition at 00), as sketched in Fig. 2. 

o 
'e 

Fig. 2 
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o 

The angle B through which C is rotated to have the direction of C'" is called the 

asymptotic direction, as (C.,), of C"'. We define the operator 'IjJ(C""B) as a limit 

'IjJ(C""B) = lim 'IjJ(C",(R,B)). 
R-+oo 

(1.17) 

o 

The space-like cone C'" can also be reached by rotating C through an angle B - 271"j 

see Fig. 3. 

Fig. 3 

We define 

'IjJ(C""B - 271") = lim 'IjJ(C",(R,B - 271")). 
R-+oo 

(1.18) 

The point is that 'IjJ(C."B) and 'IjJ(C""B - 271") are distinct: 

(1.19) 

where the operator V-2". commutes with all local observables of the theory and can 

be expressed in terms of the fractional spins of coloured particles. 

The operators {'IjJ( C"" O)} are expected to obey (non-abelian) braid statistics: If 

C'" and C". are space-like separated then 

(1.20) 

for 0 :( cpo The operators R+ and R- are unitary operators commuting with all local 

observables of the theory. Braid statistics (as opposed to permutation statistics) 
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arises if R+ :f:. R- - which is expected for the gauge theories discussed here, unless 

the Chern-Simons term in the effective (large-scale) gauge field action vanishes. 

One may wonder whether the gauge theories discussed here are of purely aca

demic interest? It is conceivable, though far from established, that such theories 

arise as large-scale effective theories in highly correlated two-dimensional quantum 

many-body systems. It is a challenge to find physically plausible model systems of 

this type. 

From now on, we outline a general analysis of braid statistics in three-dimensional 

local quantum theory which is mathematically rigorous [28]. It lends support to the 

idea that systems with infinitely many degrees of freedom in two space dimensions, 

with broken parity (and time reversal invariance), will generically exhibit excitations 

with braid statistics. 

2. The algebraic formulation of local 
quantum theory 

In the algebraic formulation of local, relativistic quantum theory [16,4], the basic 

object is an algebra of local observables. Physical properties of a system are extracted 

from the representation theory of that algebra. 

The construction of algebras of local observables might proceed as follows: We 

imagine that we are given a local, relativistic quantum field theory, in the sense of 

Wightman [2], in the vacuum representation. The vacuum Hilbert space is denoted 

by 'Hl . It contains a Poincare-invariant vector n, the physical vacuum. Of particular 

interest for our purposes are gauge theories. The gauge-invariant, local observables 

of such a theory are Wilson loop operators W(C), where C is a space-like loop in M3, 

Mandelstam string operators, denoted t{J(-Y.,y), where 'Y.,y is a space-like curve start

ing at :z: and ending at y, and local, gauge-invariant currents, J::, ..... ,.. (x, t), where 

ILl, ... , ILk are Lorentz indices, and a labels different currents with the same tensorial 

properties under Lorentz transformations. In order to obtain densely defined, closed 

operators on 'Hl , the distributional fields introduced above must be smeared out with 

test functions. Let 0 be a bounded open region in M3 , e.g. a double cone, and let f 

be a test function with supp f C o. If J::, ..... ,.. is a real current, and f is a real test 

function one expects that the operator 
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JQ (f) = J d3 z J (i t) f(i t) 1'1, ... ,Jl.Jc ILl,···,IlIe" (2.1) 

is selfadjoint on the vacuum sector 'HI. Similarly, by averaging Wilson loops and 

Mandelstam operators over (finite-dimensional) families of loops or curves, respec

tively, contained in 0, we can hope to construct further selfadjoint operators on 'HI. 

All these operators have the common feature that they are localized in the space-time 

region 0. 

We now define the local algebra A( 0) to be the von Neumann algebra generated 

by all bounded functions of all the gauge-invariant, selfadjoint operators localized 

in 0 introduced above. The algebra A( 0) is closed in the weak operator topology 

determined by the scalar product on 'HI. 

If S is an unbounded space-time region in M3 we define the algebra A(S) by 

setting 

A(S) = U A(O) n , 
ocs o bounded 

(2.2) 

where the closure is taken in the operator norm. In particular, the "algebra of all 

(quasi-) local observables", A, is" defined to be 

(2.3) 

The algebras A(S), A are C*-algebras. We define the "relative commutant", ACeS), 

of A(S) in A by 

AC(S) = {AEA: [A,B] = 0, 'v'BEA(S)}. (2.4) 

Let Co be a wedge in two~dimensional space. The causal completion, C, of Co is 

defined as follows. Let C~ (the causal complement of Co) be given by 

C~ = {z E M3 : (z - y? < 0, 'v'y E Co}. (2.5) 

Then one sets 

C = (C~)'. (2.6) 

The causal completion of a wedge Co is called a simple domain. If the opening angle 

of Co is smaller than 1f' C is called a space-like cone. 

Let UI be the unitary representation of the quantum mechanical Poincare group 

p~ on the vacuum sector 'HI. We define a representation, cr, of 1'~ on A by setting 
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(2.7) 

This is a representation of p! as a group of *automorphisms on A. 

Next, we recall some basic properties ofthe net {A(O)}o c t.,13 oflocal observable 

algebras and the representation a of p! on A which are believed to be true in every 

"reasonable" local, relativistic QFT. 

(1) Locality: For all A E A(S) and all B E A(S'), 

[A,B] = 0, (2.8) 

i.e. A(S') ~ AC(S); (S' is the causal complement of S, see (2.5». 

(2.9) 

(3) Duality [4,5]: Let B be an algebra of bounded operators on 'H1. By B' we 

denote the algebra of all bounded operators on 'Hl commuting with all operators in 

B, (the "commutant of B"). It is reasonable to expect that 

(2.10) 

where (.)' denotes closure in the weak operator topology. See [5] for more discussion 

of (2.10). 

(4) Poincare covariance: Let 

Then 

(2.11) 

The basic objects in the algebraic approach to local quantum theory are 

(2.12) 

satisfying properties (1)-(4), above. For a more precise description of this structure 

see [4-6, 28]. 
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The physics of a system described by a given pair {{A(O)}o C M3, a} can be 

inferred from the representation theory of {A, a}. 

Definition 2.1 A *representation, j, of A on a separable Hilbert space 'Hj is 

called a covariant positive-energy representation iff there exists a unitary represen

tation, Uj, of p~ on 'Hj such that 

o j(a(A.e»(A)) = Uj[A,a] j(A) Uj[A,a]-I, for all A E A and all (A,a) E P~; 

([A,a] denotes an element in p~ projecting onto (A,a)). 

o Uj(ll, a) = eie> .Pj, with spec(Pj) ~ V+, where V+ denotes the closure of the 

forward light cone. This is the relativistic spectrum condition. 

The superselection sectors of a system described by {A, a} are the representation 

spaces, 'Hj, corresponding to irreducible covariant positive-energy representations, j, 

of A. 

The physical state space of the theory, 'H, is defined to be 

'H = $ 'Hj 
3 

(2.13) 

where the direct sum extends over all inequivalent, irreducible covariant positive-

energy representations of A. It carries a unitary representation 

U = $ Uj 
J 

of P ~ satisfying the relativistic spectrum condition. 

(2.14) 

Buchholz and Fredenhagen have analyzed the covariant positive-energy represen

tations of A for systems which admit a complete particle interpretation and without 

zero-mass particles, [5]. For simplicity, we may suppose that there is only one vac

uum sector, 'HI, containing a unique vacuum fl. Then the results in [5] show that 

(under suitably precise hypotheses on the particle structure of the theory) a covari

ant positive-energy representation, j, of A has the property that, for an arbitrary 

space-like cone C C M3 , 

(2.15) 

where ':::: denotes "unitarily equivalent". This implies that there exists a unitary 

operator, Vc, from 'Hj to the vacuum sector 'Hl such that 

j(A) = Vc" A Vc , (2.16) 
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for all A E AC(C); (we are identifying the abstract element A E A with the operator 

l(A) on 1-£1)' The proof of (2.16) involves using the Reeh-Schlieder theorem [2]. 

We now define a representation, p~ = Pc, of A on 1-£1 by setting 

Pc (A) = Vc j(A) VC' • (2.17) 

For A E A, pc(A) is a bounded operator on 1-£11 and by (2.16), 

Pc (A) = A, for all A E AC(C). (2.18) 

Let Co. be some auxiliary space-like cone of arbitrarily small opening angle, and let 

We define an enlarged C*algebra, BC., containing A, by setting 

w,. 
(2.19) 

It has been shown in [5] that Pc has a continuous extension to BC", and if C is 

space-like separated from Co. + x, for some x, then Pc is a *morphism on BC., i.e., Pc 

is a linear map from BC• into B C• such that 

pc(A. B) = pc(A) . pc(B) and pc(A*) = pc(A)*. (2.20) 

We may often keep the choice of Co. fixed and then write B for BC •• 

Ne;x:t, we introduce the notion of "charge-transport operators" [4,5) which plays 

quite a basic role: Consider two *morphisms, pc. and pCz , of B equivalent to a given 

covariant positive-energy representation,j, of B. Then there exists a unitary operator 

r PCl , PC 2' a "charge-transport operator", such that 

(2.21) 

on 1-£1' Let S be any simple domain containing C1 U C2 • Then, since 

(2.22) 

it follows that 

rpc.,PCz E (AC(Cd n A C (C2 »' 
~ (AC(S»' = A(S) W • (2.23) 
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The last equality in (2.23) follows from duality, (2.10). Thus if S is in the causal 

complement of C .. + z, for some z, r PCl'PC, E B, and hence i(r PCl'PC,) is defined, for 

an arbitrary covariant positive-energy representation, i, of B. 

Note that it does not follow from (2.23) that r pcl,pc. E A( C1 ) w V A( C2 ) w. In 

fact, theories in which 

(2.24) 

have ordinary permutation statistics. In other words, braid statistics is tied to a 

failure of (2.24), [28]. The operators t/!( CIIl , 8) introduced in (1.17) are likely to deter

mine charge transport operators for which (2.24) does not hold, as discussed in [28] 

for abelian gauge theories. 

Summary According to [5], the class of representations of {A,a} describing 

the physics of a system (at zero temperature) consists of all covariant positive-energy 

representations, j, localizable in space-like cones, in the sense of Eqs. (2.15), (2.16). 

These representations are unitarily equivalent to representations of A on 1-£1 deter

mined by *morphisms, p~, of the extended algebra B localized in space-like cones 

C. If pt and pt are both unitarily equivalent to j, and C1 and C2 are space-like 

separated from C .. + z, for some z, then there is a unitary intertwiner, rpCt,pc., (a 

charge-transport operator), such that 

(2.25) 

We denote by L the complete list of all inequivalent. irreducible. covariant positive

energy representations of {A, a} localizable in space-like cones. 

The fact that Pc is a *morphism of B (if C C (C .. + z)', for some :z:) and (2.23) 

permit us to define a composition of representations in L: For C1 C (C .. + z)' and 

C2 C (Ca + z)', for some:z:, pt(A) E B, for A E A ~ B, j E Lj hence, for i E L, 

(2.26) 

is well defined. We define i x j to be the representation of A, unique up to unitary 

equivalence, unitarily equivalent to the vacuum representation, 1, of p~. 0 pt (A). 
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If C1 and C2 are chosen to be space-like separated then P~2 0 pt (A) 

pt 0 pt (A), hence 

i X j jxi. (2.27) 

Clearly, i X j is localizable in cones. One easily deduces from (2.23) that, for i and 

j in L, i X j is again a covariant, positive-energy representation of {A, a}; see [28) 

for details. 

In [4,5,35) natural hypotheses on {A, a} have been isolated which imply the 

following 

Property 2.2 

(PI) Every covariant positive-energy representation of {A, a} is completely 

reducible into a direct sum of irreducible, covariant positive-energy representations. 

(P2) There is a unique involution - ("charge conjugation") on L: j E L 1-+ 

; E L, such that j x; contains the vacuum representation, 1, of A precisely once as 

a subrepresentation. 

These properties are deep properties, and it is a non-trivial task to derive them 

from the structure of {A, a}; see [5,35J. Henceforth, they will be assumed to hold. 

As a corollary of the fact that, for i and j in L, i X j is a covariant positive

energy representation of {A, a}, and of (PI), we have that i x j can be decomposed 

into a direct sum of irreducible representations belonging to L: 

Nkij k(l') 
ixj= E9 E9 , 

kEL 1'=1 
(2.28) 

where k(l') is unitarily equivalent to k E L, and Nk i; E {O, 1, 2, ... } is the multi

plicity of kin i xj. By property (P2), Nki; can also be interpreted as the multiplicity 

of 1 in k x i x j. This and (2.27) show that 

(2.29) 

We define 1 L 1 x 1 L 1 matrices, N;, j E L, by setting 

(Nj)ki = Nk;i E {0,1,2, ... }, (2.30) 

(I L 1 is the cardinality of L). Clearly 
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1 x i = i x 1 = i, 

so that 

(2.31) 

As shown in [28], (2.27) implies that 

(2.32) 

Properties (2.29)-(2.32) identify the matrices {Nj } as matrices of fusion rules. It is 

an outstanding open problem to classify all possible fusion rules. Standard examples 

of fusion rules are those derived from the representation theory of a compact group 

G, (N1ci i = multiplicity of irrep. k in the tensor product, i ® i, of two irreps. i 

and i of Gj in this connection see also [6]), or from the representation theory of 

a quantum group, Uq(Q), q = ezp(21ri/m). For example, if 7j~ IINili < 2 then 

min IINili = 2 cos (_1r_) , where n == I L I, and 
#1 n+l 

N1cji = 1, for Ii - i 1< k < min{i + i, 2(n + 1) - i - j} 

= 0, otherwise. (2.33) 

These fusion rules can be derived from the representation theory of Uq(sl(2)) , 

q = ezp(21ri/n + 2). 

Suppose now that N 1< j i =1= o. Then k appears as a subrepresentation of j x i. By 

the definition of composition, X, this implies that the representation pt 0 P~2 contains 

N1cii subrepresentations pc~ ,JL = 1, ... , Nlejij (here Cl,C2 and C are space-like cones .,. 
space-like separated from C .. + z, for some :z:). Equivalently, the representation i of 

p~(A) contains Nleji subrepresentations k(">,JJ = 1, ... ,Nleii. unitarily equivalent 

to the representation k of A. Hence the superselection sector 1ii can be decomposed 

into a direct sum of spaces 

1ii = (2.34) 

with the property that the representation i of pb(A) on 1ii(k,ijJJ) is unitarily equiv

alent to the representation k of A. 

We now wish to construct a complex vector bundle, :l == :lie j it of intertwining 

operators from 1i1e to 1ii • The base space of this bundle is the space, Mi' of all 
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*morphisms, p~, of an extended algebra Be .. localizable in some space-like cone C 

space-like separated from Co., for some choice of an auxiliary cone Co., and with 

the property that the representation l(p~(.)) of A is unitarily equivalent to the 

representation j of A. The fibre space, Vk(P~ )i, above a point p~ E M j is a 

complex vector space of operators 

v (2.35) 

satisfying the intertwining relations 

i(p~(A))V = Vk(A),foralIAEA. (2.36) 

By (2.34), the range of V is contained in the subspace Nef; Hi (k,j; J.L) of Hi. 
1£=1 

The space Vk(P~)i is equipped with a scalar product: For V and W in Vk(P~)i' 

V*W is an operator from Hk to Hk which, by (2.36), satisfies 

k (A) V* W = V* W k (A). (2.37) 

Since k is an irreducible representation of A, it follows from Schur's lemma that 

V*W = c·lI, c E C. (2.38) 

The complex number c depends anti-linearly on V and linearly on W. Moreover, for 

V = W =I 0, c is strictly positive. Hence c defines a scalar product, 

(V, W), (2.39) 

Clearly, the multiplicity, Nkji, of kin j x i i(p~(.)) does not depend on 

the choice of the *morphism p~ E M j. Hence all fibres Vk(p~)i are isomorphic, 

as complex Hilbert spaces, to eN.;;, equipped with the usual scalar product; in 

particular, 

(2.40) 

Physically speaking, local sections of .:Jkji, (operators V(p): Hk -+ Hi,p E Mi, 

satisfying the intertwining relations (2.36)), are interpreted as the unobservable 
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"charged" fields of the theory which play an important role in the construction of 

scattering theory [4,5,28]. 

In ord~r to describe the bundle .:Tic j i more explicitly, we propose to construct 

an atlas of local coordinate chart§, along with its transition functions, for .:Tic j i. The 

details of this construction are given in [28]. Here we just outline some basic ideas. 

First, we define the manifold Mj, of *morphisms of type j more precisely. We 

choose two space-like separated, space-like auxiliary cones, C! and C!I, where C!I is 

obtained from C! by a Euclidean motion. The corresponding enlarged C* algebras, 

(2.41 ) 

are defined as in (2.19). We pick two reference morphisms, pI and pH, with the 

properties that l(p# (.» ~ j, and p# is localized in a space-like cone C#, for # = 

I,ll, such that CI and CII are space-like separated from C! U C!I. We could choose 

pI = pH == Po, where Po is localized in a space-like cone Co space-like separated 

from C! U C!I. 

Next, we define two groups, U I and U II , of unitary operators, as follows: 

If p is a *morphism in M j localized in a space-like cone C such that C is space-like 

separated from C!! + z, for some z E M3 - this is written, for short, as 

p X C!! - then there exists an operator r# E U# such that 

(2.42) 

see (2.21) and (2.23). If r~,p# is another element of U# for which (2.42) holds 

then (r~p#r r~,p# commutes with p#(A), and, since Mj consists of irreducible 

morphisms, 

(2.43) 

Thus r~p# is unique up to a phase factor. We define 

(2.44) 
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It is straightforward to verify the following properties: Let PI, P2, and P3 be 

three *morphisms in Mj, with Pi X Ct!, for i = 1,2,3. Then 

(a) 

(b) 

(c) 

[r# ] = identity· 
~,Pi ' 

[(r~'Pkr] = 

[ r~l,p2] [r~ ,P3 ] 

[r# ]. Pic ,Pi , 

[r# ]. 
Pl,P3 ' 

(d) [r!i,p.] = [r!~,p.] 
if Pi and Pk are localized in a simple domain S space-like separated from C! U C!I. 

Local coordinates on Mj in the vicinity of a reference morphism p# are given 

by the coordinate map 

¢~# : p E M i ~ [r~P#] E P U# . (2.45) 

By (b) and (c), the transition function <I>!r 0 (¢!fI) -1 is given by right multiplication 

by 

This defines Mias an infinite-dimensional topological manifold modelled on the 

projective unitary group PU, where U is the group of unitary operators in a C* algebra 

B isomorphic to B#; (note that, as abstract C*algebras, BI and BI! are isomorphic). 

It is not hard to see that the fundamental group of M j is given by 

(2.46) 

The geometrical fact underlying (2.46) is that the manifold of asymptotic directions 

of the space-like cones in which the *morphisms P E M j are localized is a circle, the 

circle of points at infinity in two-dimensional space. For additional details see [28]. 

Next, we shall construct coordinate charts for the bundle Jkji. For any 

*morphism P E M i , with P X Ct! , we shall choose a representative r# # E [r# #], 
p,p p,p 

in a definite way explained in [28]. By (2.23), r~p# E B#. Let V(p#) be an 

intertwiner satisfying (2.36). Then, by (2.42) and (2.36), the operator 

V(p) = i (r# #) V(p#) p,p (2.47) 
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is an element of the fibre VIe(P)i above p. [Note that i(r~p#) is a well-defined, 

unitary operator on 7i., because r# ~ E B#, and i is a representation of B#.J Let 
P,P'" 

us choose an orthonormal basis 

(2.48) 

Then (2.47) shows that 

(2.49) 

is an orthonormal basis in VIe(p k 

Two coordinate charts on :lle;i are now constructed as follows: A pair {p, V (p)} , 

P EM;. belongs to the chart Af# of :llei' iff.p X Ct!, (i.e. p is localized in a space

like cone C with the property that C is space-like separated from Ct! + z, for some 

z E M3); # = I, or II. The Af#-coordinates of {p, V(p)} are given by 

{ [r# ""] E PU#, (V(p), i(r# #) V;Ie(p#),) Jl. = 1, ... ,NIe;i}, p,p p,p (2.50) 

where (.,.) is the scalar product on VIe(p). constructed in (2.39). 

An atlas for :lle;i consists of the two coordinate charts AfI and AfIl, together 

with transition functions on AfI n AfIl. In order to calculate the transition functions, 

we consider the geometrical situation sketched in Fig. 4: 

eJ ~-===4~/!ZzZ2'2/Z;2?Z:Z2==--

Fig. 4 
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The reference morphisms pI and pIl are localized in the space-like cones CI and CIl; 

the morphism p is localized in C. The cones C, CI and CII are space-like separated 

from the two auxiliary cones C~ and C~I. The Af'#-coordinates of {p, V(p)} are given 

by 

(2.51 ) 

with r# # E U# C 8#. The transition functions are calculated by comparing p,p 

(2.51), for # = I, with (2.51), for # = II. This requires some work [28] which we 

now sketch. 

(1) Since pH E Af'I, (see Fig. 4), we can express {pIl, Vjk(pIl)} in Af'I-coordinates. 

They are given by 

(2.52) 

where 

( III) (Vik( II) '(rI ) Vik( I)) a" I' p , P = "P ,t pII ,pI I' P . (2.53) 

(2) The calculation of transition functions on Af'I n Af'Il is complicated by the 

circumstance that there is no abstract C* algebra containing rI I, rI II I and p,p p ,p 

rH II, for arbitrary p E Af'I n Af'Il. The operators rIp pI and rIpII pI are elements 
p,p , 1 

of IY, while r Il II is an element of 8 Il . Though not disjoint, the algebras 8 1 p,p 

and 8 Il are distinct, so that, a priori, multiplication of (rI .J) * with rIl II is p,l'- p,p 

not defined. However, i(8 I ) and i(8 Il ) are both naturally imbedded in B(7ti), 

the algebra of all bounded operators on the representation space 1ti • Hence 

i(r!,pI)* i(r!~pII) is defined as multiplication of operators in B(7ti)' We define 

V i '(r I ) '(rI )* '(r Il ) -27r = t, pIl,p! 1. p,pI 1., Ptp!!,' (2 . .',)4 ) 

where p is localized in a space-like cone C located as sketched in Fig. 4.* From 

Fig. 4 we see that V~2'" has the interpretation of rotating the *morphism pIl 

through an angle -271". One might therefore expect that V~2'" can be expressed 

in terms of spins. 

* This dennition is unambiguous only if the phases of the charge transport operators 

are chosen in a dennite way; see [28} . 
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(3) In order to compute V~2"" we compare an arbitrary intertwiner 

Nkii 

V(pIl) = 2: b", V;k(pIl) E Vk(pIl)i 
",=1 

satisfy the intertwining relations 

(2.55) 

for all A E Aj (the second equation in (2.55) follows from the first one and from 

(2.54)). Hence V~2'" V(plI) belongs to Vk(pIl)i, too, and by Schur's lemma, 

there exists an N kji X N kji-matrix, (V.;~ (i, k)) ~~~1' such that 

V~2'" V(pII) = 2: CII V:k(plI), 
II 

with 

CII = 2: VII~(i,k)b",. (2.56) 

'" 
We propose to calculate the matrices V-(i,k). 

(4) We recall that all representations in L are irreducible, covariant positive-energy 

representations of {A, a}. Thus, for k E L, there is a representation Uk of P! on 

1ik. Let Uk(211") be the unitary operator representing the space rotation through 

an angle 211". Clearly Uk(211") commutes with k(A), and, since k is irreducible, it 

follows that 
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(2.57) 

where Sk is called the spin of the representation k. Since the little group in P! 
of a time-like vector is isomorphic to the covering group, SO(2) = R, of the 

subgroup of space rotations in M3 , the spin Sk can be an arbitrary real number 

in the interval [0,1). 

Consider the following loop of intertwiners: 

{V(plI, B) : -211" ::::; B < O}, 



with 

(2.58) 

where V(pII) E V,,(pII)i' and U,,(O) represents a space rotation through an angle 

o on 'H". One easily checks that 

V(pII, LI) E V ( 0 II 0 ) u "Q(J P Q_(J i' 

where Q(J is the *automorphism of A representing the space rotation through 

an angle O. Hence V(pII, -21T) E V,,(pII)i. Given the geometrical situation 

sketched in Fig. 4, it is not surprizing that one can choose the charge-transport 

operators {r!,p1' p E NI} and {r!~pll' p E NIl} such that 

(2.59) 

A complete analysis of this point is non-trivial, and we refer the reader to [28] 

for details. 

From (2.57), (2.58) and (2.59) we conclude the following theorem proven in [28]. 

Theorem 

The matrix V-(i, k) introduced in (2.56) is given by 

(2.60) 

equivalently, 

(2.61) 

D 

(5) We are now ready to calculate the transition functions on N I n NIl. By (2.52), 

left multiplication by i(r!l1,pI r maps V,,(pII)i onto V,,(pI)i. By (2.54) and 

(2.61), we have that, for an arbitrary intertwiner V(pIl) E V,,(pII)i' 

i(r!~pll) V(pIl) = i(r!,p1)i(r!l1,p1)* e21ri(.~-s;)V(pII) 

i (r!,pll) e21r i(Sk -s;) V(pII), (2.62) 
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where rI II == rI I (rI II I) *. Using (2.62) and (2.52), we find that p,p p,p p ,p 

(V(p), i (r!~pII) V:"(pIl) 

= (V(p), i(r!,pII) V:"(pIl) e21riC·.-.;) 

= L av ,. e21r iC·. -';) (V(p), i (r!,pI) V;"(pI)) , 
,. (2.63) 

where av ,. = aV,.(pIl, pI) is given by (2.53). Eq. (2.45) and (2.63) show that 

the transition function on the component of NI n NIl described in Fig. 4 is 

given by 

(2.64) 

where R[r) denotes right-multiplication by [r) and corresponds to the trans-

formation 

(2.65) 

and (av,. e21riC'k-';») describes the transformation (2.63). The transition func

tion on the component of NI n NIl shown in Fig. 4', below, is given by 

(2.66) 

Fig. 4' 

If we choose pI = pIl then 

(2.67) 



This completes our sketch of the construction of the vector bundles .:Jleji of 

intertwiners ('charged fields') from 'Hie to 'Hi. 

Formulas (2.64) and (2.66) reflect the non-trivial topology of Mj which, in turn, 

reflects the topology of the manifold of space-like asymptotic directions of space-time. 

This concludes our brief review of the algebraic approach to local, relativistic 

quantum theory [4,5,6,28). In the next section, we shall discuss the structure of the 

algebra of intertwiners. 

3. Statistics and fusion of intertwiners 

Let Ca be some space-like cone in three-dimensional Minkowski space M3 , and 

let S be a simple domain (region) contained in the space-like complement of Ca. 

[Space-like cones and simple domains were defined in (2.5),(2.6).) Let C C S be 

some space-like cone. With C we associate an angle 8(C) as follows: We choose polar 

coordinates (r,8) in two-dimensional space, {(:e,t) E M3 : t = O}. Let u(C) be the 

half-line in space bisecting the wedge Co whose causal completion is the cone Cj see 

(2.5),(2.6). Let 8(C) be the asymptotic angle of u(C)j 8(C} is called the asymptotic 

direction of C. if P is some *morphism of BC• localized in C then 8( C) is called the 

asymptotic direction of p and is denoted by as(p). We may choose our coordinates 

such that 8(Ca ) = 71", and require that 

las(p) I < 71", (3.1) 

for all *morphisms p localized in space-like cones contained in S. 

Let Pl and P2 be two "morphisms of BC• localized in space-like cones C1 and C2 , 

respectively. We say that Pl and P2 are causally independent, denoted by Pl X P2, 

iff C1 and C2 are space-like separated. 

For every irreducible, covariant, positive-energy representation j E L, we choose 

a reference morphism p~ E Mil localized in a space-like cone C~ C S, and a basis 

of intertwiners 

V.~1e (p3o·) '1J '1J ~ 11.1e -+ I Li , (3.2) 

satisfying the intertwining relations 
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(3.3) 

for J.L = 1, ... ,Nkii. [We recall that Mi is the space of all "morphisms, pi, localized 

in space-like cones with the property that the representation j of A is unitarily 

equivalent to the vacuum representation, 1, of pi(A).) 

Let pi be some other *morphism of Be. contained in M j and localized in a 

space-like cone contained in S. As explained in Sect. 2, (2.21), (2.23) there is then 

a unitary operator r,,;.pt, == r;.pt, E A( S) W such that 

. s s· 
pJ(A)rpi.pt, = rpi.ptp~(A), (3.4) 

for all A E A. Moreover, if PI, P2 and P3 are *morphisms in M i localized in space-like 

cones C S 

(3.5) 

for i,j = 1,2,3, and 

(3.6) 

See Sect. 2, (a)-(c), after (2.44). 

A basis of intertwiners, {V;k(pi)} :~il;' associated with pi is obtained by setting 

(3.7) 

see (2.49). They satisfy the intertwining relations 

(3.8) 

3.1. The statistics of intertwiners 

The structure of the algebra of intertwiners is described in the following basic 

result. 

Theorem 1 [28) 

For p and q in L, let pP E Mp and pq E Mq be two *morphisms of Be. 

localized in space-like cones contained in S. Let the intertwiners {V;k(pp.q)} be de

fined as in (3.7). Then there are matrices, called statistics matrices, 
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only depending on the classes Mp and M 9 , such that 

vji (PP) vjle (p9) 

= 2: R±(j, p, q, k )~:~ V~I (p9) VJIe (PP) , (3.9) 
l,a,/3 

provided pP X p9 and as(pp) ~ as(p9). 

o 
Remarks The proof of Theorem 1 is given in [28]. That there is a relation 

of the form of (3.9) is not difficult to see. It is a straightforward consequence of 

Schur's lemma: Consider the operator 

(3.10) 

From the intertwining relations (3.8) and their adjoint it follows that 

k(A)V = Vk(A), for all A E A. (3.11) 

Since k is an irreducible representation of A, it follows from Schur's lemma that 

v = ~ 1£, ~ E C. (3.12) 

We denote). by R(j,pP,pq,k)~:e. Next, we note that 

(3.13) 

is a basis of intertwiners from 'Hie to 'H; intertwining the representations j(pq 0 pP ( . )) 

and k( . ) of the algebra Aj see e.g. [28]. From (3.10),(3.12) and (3.13) we conclude 

that 

Vji(pP) V: 1e (p9) = 2: R(j,pP,p9, k)~:~ V~l (p9) VJIe (PP). (3.14) 
l,a,/3 

Next, one shows, using an argument invented in the proof of Lemma 2.6 of [4], that 

if PP X p9 then 

(3.15) 
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for as(p1') ~ as(pq), where the matrices (R±(j,p, q, k )!:~) only depend on the classes 

Mp and Mq of *morphisms to which pP and pq belong, but are independent of the 

specific choice of p1' and pqj they are also independent of the choice of the auxiliary 

cone Ca , (as long as Ca is space-like separated from the localization cones of pP and 

pq). Although these facts are not difficult to prove, technically, they are somwhat 

more subtle than (3.14). For proofs see [28). 

Next, we investigate the properties of the statistics matrices (R#(j,p, q, k )~:~) 

somewhat systematically. For that purpose we introduce a graphical notation: 

~/: 
/;~ 
P q 

" L / jVk 
/i'" 
P q 

(3.16) 

R-(j,p,q,k)~. (3.17) 

We have dropped the Greek multiplicity indices Il, v, a and (3 j (a more complete 

notation would be 

a {3 

~L~ 
/;~ , etc.jrepeated indices are to be summed over). 

PtJ-L q,1I 
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Iterating equ. (3.9), we find that 

(1) 

m 

k 8. 
I 

k (3.18) 

p q p q 

where 

(3.19) 

p 

or 

II 

j ... _+_ c5~, ,.",11 = 1, ... , Nipj. (3.19') 

p , P-
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By considering 

(3.20) 

and assuming that as(pp), as(p'l) and as(p") are ordered in some way and pP,p'l 

and p" are pairwise causally independent, (i.e. pP X p'l, pP X p" and p'l X P"), 
we find by permuting the order of the factors in (3.20) to 

(3.21) 

in two distinct ways that 

(2) 

L 
b 

tln 
j ~) l 

j-I"k\ 
(3.22) 

a 
p q r p q r 

here it is assumed that as(pp) > as(p'l) > as(p"). Other related identities are 

found for other orderings of as(pp), as(p'l) and as(p"). The equations (3.22) are 

homogeneous, cubic equations in the matrices R±. They represent the sos-form of 

the Yang-Baxter equations (YBE) without spectral parameter. The derivation of 

(3.22) from (3.20) and (3.21) was first given in [15]. 

From (1) and (2) we conclude that the matrices (R±(j, p, q, k)D generate repre

sentations of the groupoig, B~, of coloured braids on n strands. 

Next, we derive a basic relation between R+ and R-: We consider two *mor

phisms pP and pll, localized in space-like cones CP and CII whose projection onto two

dimensional space is shown in Fig. 5. We suppose that the reference morphisms, J?a 

and p~ are localized in a space-like cone Co. The cones CP, C'l and Co are assumed to 

be contained in a simple region S whose space-like complement, S', is the auxiliary 

cone Ca.. 
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=-/zz,s=:c .J 
--====-

~eo 

Fig. 5 

as(pl') > as(pq), 

as(pl') < as(pq). 

We also consider a *morphism, pq, localized in a space-like cone Cq, as shown in 

Fig. 5. Then we have from Theorem 1 that 

(3.23) 

and 

(3.24) 

[We omit the multiplicity indices p, '//, ... everywhere.] Since R- (i, p, q, k)~ is inde

pendent of the choice of the auxiliary cone, Ca , (3.24) does not change if Ca is replaced 
1\ 

by a new auxiliary cone, Ca , chosen as indicated in Fig. 6. 

-=r 2? zl 

Fig. 6 
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In the situation shown in Fig. 6, 

(3.25) 

We define 

" ·(fS ) V ij ( #) t # # PO' P 'Po 
(3.26) 

for # = p, q. We also recall that 

(3.27) 

see (3.7). Thus we conclude from (3.24) and the remark that R- does not change if 
f\ 

Ca is replaced by Ca that 

But in the situation shown in Fig. 6, Cq can be rotated to cq in the positive direction 
f\ 

inside S, and, since R-(i,p,q,k)} only depends on Mp and M q, but not on jjq, we 

can replace pq by pq and conclude that 

(3.29) 

From (3.26) and (3.27) we obtain that 

" ·(fS ) ·(fS )* V ij ( q) t pO ,pZ t pO ,pZ "p 
S 

" 
i(r:.,p~) i(r:Z,p.) V;i (pq). 

s 
(3.30) 

But from the calculations in Sect. 2, (2.54),(2.56),(2.60), (2.61) and (2.67), we infer 

that 

where Sj is the spin of representation j. Hence 

Vii(pq) = e2".iC.;- •• ) V:i(pq). (3.31 ) 
S 

From Fig. 5 and Fig. 6 we also learn that 

Vii (PP) = v~j (PP) . (3.32) 
S 
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Inserting (3.31) and (3.32) into (3.29) we have that 

Vii (,01') Vik (pq) e21ri('j-Sk) V~i (pp) V!k (pq) 
S S 

= e21ri('j-s.) L R-(i,p,q,k)~ Vjl(pq) V~k(,01') 
ISS 

L e21ri('j-"+"-") R-(i,p,q,k)~ Vii (pq) Vlk(pp). 
I (3.33) 

Comparing (3.33) with (3.23) we arrive at the following fundamental identity: 

(3) (3.34) 

where si is the spin of representation j. 

Remark If si is reinterpreted as the conformal dimension of a representation 

j of some chiral algebra then identities (1),(2) and (3), (see (3.18),(3.22) and (3.34)), 

become well known identities for the braid matrices of conformal field theory [19J. 

Equ. (3.34) has the following obvious, but important corollary: If all represen

tations j E L have integer spins, i.e. 

Sj = 0 mod.Z, forallj E L, 

then 

R+(i,p, q, k)~ = R-(i,p, q, k)~ == R(i,p,q, k)~, (3.35) 

for arbitrary i,p, q, k,j and I in L. In this case, (3.18) and (3.22) imply that the matri

ces (R( i, p, q, k);) define representations of the permutation groups, Sn, of n elements. 

Hence, in a theory in which all representations have integer spin, the statistics of 

the intertwiners {Vii (,o1')} is ordinary permutation group statistic!?, as analyzed by 

Doplicher, Haag and Roberts in [4J. 

Next, we prove a connection between spin and statistics. It is based on the fol

lowing simple, but basic result: Given a representation j E L, J denotes its conjugate 

representation; ; is the unique representation of pi (A), pi E Mj, containing pre

cisely one subrepresentation unitarily equivalent to the vacuum representation, 1, of 

A. 

Lemma 2 [28J 

R+( . l)mf3cx J,P, q, hI-' 
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(2) R±(· 1) lap ),p,q, ieI'''' = cq cl cl cP R±( . l)POl.l 
o"opo"ol ],p,q, qp,1 

Cp cl c1 COl. R±(l .)QIP 
0" 0q 0p, 01 ,p, q,] pI". 

We omit the proof of this lemma. 

o 

We now note that, by Lemma 2, parts (2) and (3), the only non-zero matrix 

elements of the matrices R±(1,p,p, 1);:'p,0I.!) are R±(l,p,p, 1):~ ~. By Lemma 2, part 

(1), and since p = p, 

R-(l - l)PII R+(l l)PIl ,p,p, pii = ,p,p, pI 1· 

If one chooses the intertwiners to be partial isometries then one sees that 

We may therefore introduce the notation 

By (3.36) 

R -(l - l)PIl ,p,p, pii 

Next, we apply (3.34) to conclude that 

and we have used that SI = 0 mod. Z. Finally, we note that 

Thus, combining (3.39) and (3.40) we have that 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41 ) 

This is the simplest connection between spin and statistics. More precise results of 

a similar nature will be proven below. 
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3.2 Fusion of intertwiners 

For p and q in L, we consider *morphisms pP E Mp and pq E Mq localized 

in space-like cones CP and cq, respectively, which are contained in the interior of 

a simple region S C M3. The space-like complement of S is assumed to contain 

a non-empty, space-like auxiliary cone, Ca. Then pP and pq are *morphisms of the 

extended algebra BC", defined in (2.19). In particular, the composition, pP 0 pq, of 

pP with pq is well defined on the algebra A of quasi-local observables. Property 2.2, 

(PI), (Sect. 2, after (2.27)) guarantees that the product representation p x q can 

be decomposed into a direct sum of irreducible, localizable, covariant positive-energy 

representations, i.e., 

(3.42) 

see (2.28). Let cr be a space-like cone contained in the interior of S, and let pr E 

Mr be a *morphism of BC• localized in Cr with the property that the representation 

r of A is unitarily equivalent to the vacuum representation, 1, of pr(A). Then there 

exist N rpq partial isometries, 

(3.43) 

such that 

(3.44) 

for all A E A, Jl. = 1, ... , N rpq ; see [4,5]. 

If So ~ S is a simple domain containing the cones CP , cq and cr in the interior 

then, actually, 

(3.45) 

Next, we consider a product of intertwiners V~;(PP) VJk(pq). They satisfy the inter

twining relations 

i(pP 0 pq(A)) V~;(PP) VJ"(pq) 

= V~;(PP) VJ"(pq) k (A). (3A6) 

.. 'k 
We wish to compare the properties of V~J(PP) vg (pq) to those of the operators 

(3.47) 
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which, by (3.44), satisfy the same intertwining relations 

i(PP 0 p9(A» i(r!. 0p',p' (1'» V;A: (pr) 

= i (r!. 0 p',p' (I'» V;A: (pr) k( A), (3.48) 

for all A E A, I' = 1, ..• , N rp9 ' Equs. (3.46),(3.48) and Schur's lemma suggest that 

V~i(pp) Vj"(p9) can be expanded in a sum over the operators i(r~ 0 p',p'(I'» VJ"(pr). 

This expansion will be called fusion. 

In order to make these ideas precise, we start with a special case of fusion: 

Consider the operators V;f(PP) Vfl(pQ) and Vf'I(pr). [We recall that to every repre

sentation r E L there exists a unique conjugate representation r E L such that r X r 

contains the vacuum representation, 1, precisely oncej see Property 2.2, (P2), Sect. 

2, after (2.27). From this one can conclude that 

ViI ( r) 0 nl . -p = , uess 3=r, (3.49) 

and that there exists precisely one partial isometry Vf'1 (pr) 1-(.1 -+ 1-(.,. which 

is unique up to a phase.) By (3.42) and (3.44), there exist complex numbers, 

O'cx(rjp,q), a = 1, ... ,Nrpq , such that 

(3.50) 

Since we choose the operators {V~i(pp)} to be partial isometries, it follows that 

where 0 E 1-(.1 is the vacuum vector. Hence 

(3.51) 

This formula. is quite uscful: Suppose that pP and pI! are causally independent, i.e. 

the cones CP and C9 are space-like separated. Then PP 0 p9 = p9 0 pp, and hence 

we may choose the intertwining opertors r~ 0 p9 ,p' (a) and r~9 0 pi' ,p' ( a) to be equal. 

Moreover, by Theorem 1, (3.9), and Lemma 2, part (2), 

V:f (PP) Vq1 (p9) 0 

= 2: R±(r,p,q,I):~~ V;' (p9) V,I (PP)O (3.52) 
P. 
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> if as(pl') < as(pq). Hence 

O'a(riP, q) = L R±(f,p, q, 1)::~ O'I'(ri q,p), 
I' 

provided pP X pq and as(pl') ~ as(pq). 

We now state our basic result on the fusion of intertwiners. 

Theorem 3 [28] 

(3.53) 

There exist matrices (F(i,p,q,k)i~~) only depending on the representations 

i,p,q,k,j and r, but not on the specific choice ofpp,pq and pr, such that 

v~j (pi') vJ" (pq) 

= L F(i,p, q, k );:;; O'I'(riP, q) i(r~ 0 P',p' (IL» V;k (pr) . (3.54) 
r,IL,'" 

The matrices (F(i,p, q, k);~;;) can be expressed in terms of the matrices 

o 
We shall outline the main ideas going into the proof of Theorem 3: Let P" 

be a *morphism of BeG localized in a space-like cone Ck C S and suppose that 

CP , cq and Ck are pairwise space-like separated. Let us suppose, for example, that 
- 'k-

as(pl'), as(pq) > as(pk). We consider the operator v~j(pl') VJ (pq) k(A) Vk1(pk), 

where A is an arbitrary element of A, and apply the intertwining relations (3.8) and 

the commutation relations (3.9) between intertwiners. Then 

v~j(pI') VJ"(pq)k(A) Vk1(pk) 

= i(pI' 0 pq(A») v~j(pI') Vjk(pq) V k1 (pk) 

= L R+(j,q,k,l)tp~ i(pI' 0 pq(A» v~j(pI') vjq(/·) Vql(pq) 

= L R+(j,q,k,l)tp~ R+(i,p,k,q)i~~i(pI' 0 pq(A» 

x V;"(pk) V:q(pI') Vql(pq) 

= "" R+(' k- l)ql'l R+(' k- -)"'YJI ( ) L..." }, q, , kf31 l,p" q jal' O'JI rip, q 

x i(pI' 0 pq(A» V;f'(pli)f(r~op.,p.(v» Vf'l(pr), 
(3.55) 

and we have used (3.50). Let Sp,q C S be a simple domain containing the cones CP 

and cq and space-like separated from Cli. We may choose pr to be localized in Sp,q' 
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by (3.8). We therefore derive from (3.55) that 

v~j(P") v/,(pIJ) k(A) V Tc1 (p1C) 

"R+(O k- 1)q1'1 R+(O k- _)f'''('' R-(O Xi 1)Tc61 = L...J J,q, , Tc/31 t,p, ,q jal' t, ,r, r..,l 

X u.,(rjp,q)i(P" 0 p'l(A») i(r~ Opq,p,(v)) vfTc(pr) V Tc1 (pk). 

From the intertwining relations (3.44) and (3.8) we derive that 

i(P" 0 pIJ(A») i(r~opq,p.(v)) VjTc(pr) 

= i(r~ o p9,p' (v») i(pr(A») vj1e(pr) 

= i(r~opq,p.(v») vj1e(pr)k(A). 

Combining (3.56) and (3.57) we find that 

v~j(pP) vj\p'l) k(A) VIcl(pIC) 

" R+( ok - 1)Q1'1 R+( 0 Xi _)f',,(., R-( 0 Xi 1)Tc61 = L...J J,q, , Tc/31 t,p, ,q jal' t, ,r, f'''(1 

(3.56) 

(3057) 

x u.,(rjp,q) i(r~opq,p.(v») Vj1e(pr)k(A) Vkl(p'0). (3.58) 

Ne.xt, we note that 

is dense in ?-lTc. Thus (3.58) proves (3.54), with 

F( 0 k)rll6 " R+( 0 -k 1)Q1'1 R+( 0 Xi _)f'''(11 t, p, q, ja/3 = L...J J, q, 'Tc/31 t, p, ,q jal' 

R-( 0 k- 1)Tc61 X t, ,r, 1"'(1' 

By choosing as(pk) > as(pp), as(p'l), we find that 

( k)r.,6 " R- ( . -k l)Ql'l R-( Ok - _)if"'(11 F i,p,q, ja/3 = L...J J,q, , Tc/31 t,p, ,q jal' 

1',"( 

R+( 0 -k 1)Tc61 x t, ,r, 1"'(1' 

(3.59) 

(3.60) 

We must ask whether (3.59) and (3.60) are consistent? The reader verifies without 

the slightest difficulty that the consistency of (3.59) and (3.60) follows from the 

fundamental identity (3.34). 
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In order to discuss further properties of the fusion matrices (F( i,p, q, k )j~~) it 

is helpful to introduce a graphical notation: 

We denote F(i,p,q,k)j~~ by 

r,8 

k (3.61 ) 

p,a q,/3 

As in conformal field theory [19,36] it is easy to derive the following "polynomial 

equations": 

r 

2: i 
n:) 

(3.62) 
,..". k 

n (j l 

t P q t P q 

where we have used notation (3.17). Similarly, 

2: 
n 

k ~k 
I I 

(3.63) 

t p q t P q 
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where we have used (3.16), and 

r 
" 

L:mk ~ 2 i iNk 
n jl) 

p q t P q t 

etc .. In (3.62)-(3.64) and henceforth we omit the Greek indices a,p, v, 6, .... 

Furthermore, from (3.9),(3.53) and (3.54) one easily derives [28,37] that 

r ,8 

2:: k 
l 

" R+(- l)pvl L.J T,p, q, q/Ll 

v 

r, 8 

k 

p,a q,/3 p,a q,/3 

A similar equation holds with R- replacing R+. 

Next, we introduce the monodromy matrices 

Graphically, 

M " k)I;D ll,p,q, jaj3 

n 

Iterating (3.65) we find that 
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= 2: R+(i,p,q,k)j::; R+(i,q,p,k)~~v' 
ft/LV 

~ M(i,p,q,k)~:~. 

(3.64) 

(3.65) 

(3.66) 

(3.67) 



r,8 

2: 
n, l 

,,+(- 1)qV1 = ~ R r,q,p, plJ.l 

.... v 

r,8 

k 

p,a q,/3 p,a q,{3 

r,8 

k 

pta q,/3 

Our fundamental identity (3.34) says that 

where we have used that Sl = 0 mod. Z, and (3.18) says that 

" R+(r- q p 1)qv1 R-(r- p q l)pltl = c~. L.J , , 'pp.1 , , 'qv1 U r 

v 

By combining (3.68), (3.69) and (3.70) we find that 

"M(· k)l-y6 F(· k)rp.v = e2 ,ri(8p +8q -··>F(;,p,q,k)1':",P./3v, L.J t,p, q, j"'/3 t,p, q, l-y6 • 
l-y6 

where we have also used that Sj = s"3, for all j E L. 

3.3 Spin spectrum, spin addition rules, spin-statistics 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

As shown in [37] and refs. given there, equ. (3.71) has rather interesting conse-

quences: 

(1) The fusion matrices F(i,p,q,k)~~; diagonalize the monodromy matrices 

(M(i,p, q, k)~:~). 
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(2) The spectrum of M(i,p,q,k) is given by {e2 11"i(6p +6q - •• >: r E L, Nrpq f. o}. 

(3) Let us assume that we are dealing with a theory which has only finitely many 

distinct superselection sectors, i.e., I L 1< 00. Then we have the following result. 

Theorem 4 [37] 

If the number, I L I, of superselection sectors is finite all the spins s;,j E L, 

are rational numbers. 

In analogy with conventional jargon in conformal field theory (38), field theories 

in three space-time dimensions with only finitely many distinct superselection sectors, 

I L I < 00, are called rational theories. 

(4) Next, we consider a three-dimensional theory with permutation group sta-

tistics, i.e., 

R+(j,p,q,k) = R-(j,p, q,k). (3.72) 

Then, using (3.18) one concludes that all monodromy matrices are trivial, i.e., 

M( . k)I-y6 - cI c-y c6 t,p, q, jo.j3 - OJ 0", 013 , (3.73) 

and hence all their eigenvalues are equal to 1, 

(3.74) 

for all p, q and r for which N rpq f. o. 

If q = p then Sq = sp and N 1pq f. o. In this case (3.74) implies that 

(3.75) 

or, equivalently, 

I sp E ~ Z, for all p ·1 (3.76) 

We define "spin parity", uP' by setting 

(3.77) 

Since, by (3.74), (3.72) implies that 

sp + Sq - Sr E Z, 
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for all p, q and r satisfying the fusion rules, i.e., N rpq =I- 0, we conclude, using (3.76), 

that 

(3.78) 

for p, q and r such that Nrpq =I- 0; in words: spin parity is conserved under fusion. 

Conversely, let us assume that we consider a theory with the property that 

1 
sp E "2 Z, for all pEL, and (3.79) 

UpUq = U r , for all p,q and r for which N rpq =I- o. 

Then, by (3.74) 

M( · k)h6 - d c:-y c:6 z,p, q, ja[3 - OJ 0a 0[3 (3.80) 

for all i, p, q, k,j and I satisfying the fusion rules. Hence 

(3.81 ) 

I.e. the theory has standard permutation group statistics. 

We summarize these findings in a theorem. 

Theorem 5 [28J 

The conditions 

(i) R+(i,p,q,k) = R-(i,p,q,k), for all i,p,q,k, and 

(ii) Sp E t Z, for all pEL, and up • u q = U r , for all p,q,r for which N rpq =I- 0, 

are equivalent. 

(5) The analysis developed in Sects. 2 and 3 can also be applied to theories 

in d ~ 4 space-time dimensions or to theories in three space-time dimensions with 

superselection sectors generated by *morphisms of an algebra A of quasi-local ob

servables localized in bounded space-time regions, as described in [4). In both cases, 

one shows easily (see also [4,5)) that 

for all i,p, q, k. Hence all sectors of such theories have integral or half-integral spin and 

spin parity is conserved in such theories. [The fact that, in such theories, Sj E t Z, 

for all j E L, can also be derived from the structure of the Poincare group (d ~ 4) 
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and from locality and the relativistic spectrum condition (d = 3) .] 

A fundamental theorem due to Doplicher and Roberts [6] says that, in a theory 

with standard permutation group statistics, the fusion rules (Nrpq) can be derived 

from the representation theory of some compact group, G , and, by introducing 

internal degrees of freedom on which the representations of G act, the permutation 

group statistics can be reduced to ordinary Bose- and Fermi statistics. 

(6) It follows from (3.66) and (3.71) that the 1 x 1 matrix M(l,p,p, 1)~ 

(M(l,p,p, l)~g) is given by 

(3.82) 

and we have used that sp = sp. In a relativistically covariant theory, a field-theoretic 

argument suggests that * 

(3.83) 

By definition of the angle 8p , see (3.37), 

Thus 

sp = 8p , mod. Z, (3.84) 

for all p. This connection between spin and statistics strengthens the one found 

in (3.41). Equ. (3.84) is well known for theories with standard permutation group 

statistics [2]. For more details see [28]. 

In all examples known to us, the matrices R±(i,p,q,k)~ and F(i,p,q,k)'j 

can be obtained from the representation theory of some group (R+ = R- , [6]) 

or some quantum group (R+ =f:. R-) with the help of the so called vertex - sos 

transformation: see Sect. 4. By analogy with the results of DopliCher and Roberts 

[6], one might conjecture that this is always true. In these cases, the spectrum 

{e2"'i(.7+.q-.~) : N rpq =f:. o} of the monodromy matrices, M(i,p,q,k)~ , is com-

* Under somewhat stronger hypotheses on the structure of the theory, (3.83) can be 
proven. 
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pletely determined by the representation theory of the quantum group. This ob -

servation and equ. (3.84) permit us to calculate all spins 8 p mod. Z, for all pEL. 

Let us briefly consider the example of a quantum deformation, Uq(g), of the 

universal enveloping algebra of a classical Lie algebra g, with qN = 1, for some 

integer N ~ 2. 

Then one has the formula 

(3.85) 

where vp is the highest weight of some finite-dimensional, unitarizable, irreducible 

highest-weight representation of Uq (9) , p is the sum of positive roots of 9 , and 8~4) is 

a contribution to 8 p that comes from an abelian factor in the braid group statistics of 

the theory. (For example, 8~4) = tnp, np = 0,1, would describe a contribution to sp 

due to an ordinary Fermi field.) Below, the structure of 8~4) is described completely. 

The proof of (3.85) is obtained by comparing equ. (3.71) with a formula in [45]. See 

Sect. 4 for more details concerning connections between our theory and quantum 

group theory. 

The example of abelian braid group statistics is elementary and can be analysed 

completely. 1t has interesting applications in quantum field theory and condensed 

matter physics. The results reviewed below have been conjectured in [26] on the 

basis of an analysis of concrete models describing anyons. As shown in [28], abelian 

braid group statistics implies that all representations pEL are unitarily equivalent 

to representations 1 (pP( .)) of A, where pP is a *automorphism of Be.. Then Ii is 

equivalent to 1 «PP)-l ( . )), hence p X P = 1, and every power pxn = p X ••• X P of 

the representation p belongs to L. The set {pxn : n E Z} is a subset of L invariant 

under composition, whose fusion rules are described by Z. The braid matrices of such 

theories have the form [28]. 

R±(j,p,q,k)i = ' { 
e± 2 ... i (/,..9 if all fusion rules are satisfied; 

o , otherwise. 
(3.86) 

It then follows from equ. (3.64), (with q = p, t = p, r = 1, k = 1, I = p, j = 

1, i = P and m = 1) that 
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i.e. 

(3.87) 

for all pEL. Previously, Op,p has been denoted by Op which was shown to be given 

by sp mod. Z; see (3.84). Hence (3.87) and (3.84) yield 

for all pEL. By (3.86), 

lop,p = - Op,p = - sp mod. Z , I 

R+(- - l)PP x p,p,p, P -

Furthermore (3.66) and (3.71) show that 

(R+(p x p,p,p, 1)~)2 = 

Combining (3.88)-(3.90), we conclude that 

sp x p = 4 sp mod. Z , 

for all pEL. Iterating these arguments, one finds that 

n 2 sp mod. Z , I 
for all pEL. 

(3.88) 

(3.89) 

(3.90) 

(3.91) 

(3.92) 

Equs. (3.86), (3.88) and (3.92) represent a completely general, model-indepen

dent proof of relations conjectured in [26) on the basis of an analysis of specific models 

describing anyons. 

In the non-abelian case, results analogous to (3.92) can be proven by using (3.39) 

and the polynomial equations (3.64), provided the fusion matrices {F(i,p, q, k);} can 

be calculated without using equs. (3.59) or (3.60). This is the case if, for example, the 

matrices R± and F can be derived from the representation theory of some quantum 

group via the vertex-sos transformation; see [28,37]. 

Finally, we wish to point out that the norms, IINpll, ofthe multiplicity matrices, 

Np, defined by (Np)r'1 = N rp'1 (fusion rules) define "statistical dimensions" which 

can be interpreted in terms of indices of subfactors in the sense of Jones, [18,39). 

Further results are discussed in [28]. 
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4. Connections to knot theory and to 
quantum group theory 

Let us first draw attention to a deep connection between the theory developed in 

Sect. 3 and the theory of knots and links in S3 = R3. This connection is the same as 

one described in detail in [40] in the context of conformal field theory; (see also [37]). 

The point is that from a family of matrices {R::I:(i,p, q, k )~, F(i,p, q, k)j} satisfying 

(a) equs. (3.18) and (3.22) (YBE); 

(b) equs. (3.62) - (3.65); equs. (3.83); 

one can derive a family of invariants for oriented knots and links in by an 

explicit construction described in detail in [40]. Furthermore, as was sketched in 

[40J, one can derive a family of invariants for tri-valent ribbon graphs. 

We briefly sketch the construction of invariants for knots and links from {R::I:, F}: 

In R3 we choose a two-dimensional plane, 7r, a unit vector ii normal to 7r and a unit 

vector e E 7r. Given an oriented link, C, in R3 , we choose a representative of C, (i.e. 

a system of loops in R3 representing C), which has a non-degenerate projection along 

ii onto 7r. Such a projection is called a shadow of C. If under- and overcrossings in 

the ordering fixed by ii, are recorded on the crossings of lines in the shadow of C we 

speak of a diagram, D(C), of £. The link £ can obviously be reconstructed from ii . 
and D(C). The diagram D(C) is marked as follows: If the coordinate function in the 

direction of eon 7r has a local maximum or a local minimum at a point p E D(C) 

then p is marked by a dot: 

~ 
I , , , 

Next, a marked diagram, D(C), is decorated as follows: The shadow of C on 7r de

composes 7r into disjoint regions 0 1 , .•• ,ON, where 0 1 is defined to be the region 

containing the point at infinity, and N ~ 2 is determined by D(C). Then we as

sign to every region 01 a representation kl of A belonging to the list L introduced 

in Sect. 2. Without loss of generality, we may assign the vacuum representation, 
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1, to fh. A component of D(.c) is the projection of an oriented loop (connected 

component) of the link in R3 onto 1r. Every component, C" of De.c) is assigned a 

representation j. E L. The resulting marked, decorated diagram of .c is denoted by 

V(.c;JI, ... ,jn;k2 , ••• ,kN ); (n = # of components of .c). The elements of a deco

rated diagram of .c are defined in Fig. 7 and are assigned matrices R+, R- or F, as 

shown in Fig. 7, (a)-(f): 

/ ... / 

(a) eI t5 +--+ / , , 
I 

I 
I 
I 
P 

... , 

eI 
... , 

(b) t5 / 
+----. / 

/ I , 
1 

I 1-
P 

(c) eI ~II I/. k +--+ R+(i,p.q,k),l. eicppq 

/i~ 
p q 

(d) 

(e) el (t\ 
p p 

+--+ F( k, p, p, k)~ 
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(f) 

( k )-1 
+---+ Fpl 

Fig. 7 

The angles 'Ppq are given by 

'Ppq = 21l'~. ( 4.1) 

By (F;I)-l is meant the inverse of the matrix F;l with matrix elements 

( k) (_ )111 Fpl 0l{3 = F k,p,p, k 10l{3 • ( 4.2) 

With V(C;iI, ... in;k2, ... kN) we associate a complex number i(C; iI, ... ,in; 

k2, . .. , kN) by calculating the sum of products of matrix elements of the matrices 

(R±, F, F- 1 ) associated to all the elements of V(C;iI, ... ,in; k2"'" kN) by the 

rules specified in Fig. 7, (a) - (f). 

We may now quote one of the main results of [40] (Theorem 6.1): Let C be an 

oriented link in S3 with diagram D(C). The component, i, of C projected onto Ci 

is assigned the "colour" ii E L. With an oriented, coloured link (C;i1, ... ,in) we 

associate a complex number 

( 4.3) 

Then we have the following result 

Theorem 6 The numbers I( C; iI, ... , in) define invariants for oriented, 

coloured links in S3. 

Remark. The proof is identical to the proof of Theorem 6.1 in [40]. Since it is 

somewhat lengthy, we shall not repeat it here. 

It has been outlined in [40] how, from the same data {R±,F} one can, in prin

ciple, construct invariants for oriented, coloured links embedded in general three

dimensional manifolds. See also [42] for related results. 

67 



Next, we wish to briefly address the question of connections between the theory 

developed in Sects. 2 and 3 and quantum group theory. This question has been 

discussed in the context of two-dimensional conformal field theory in [40,37,43]. The 

results, or better: speculations, found there carryover to the present framework 

essentially without change. 

Let JC be a Hopf algebra with co-multiplication b. : JC -+ JC ® JC and universal 

R-matrix n E JC ® JC. Let I be a list of finite-dimensional, unitarizable, irreducible 

highest-weight representations of JC. Comultiplication, b., is what is needed to define 

tensor product representations of JC: For i and j in I we define the representation 

i ® j of JC by 

i ® j: A E JC -- i ® j(b.(A)) E End(Vi ® Vj), ( 4.4) 

where Vi is the representation space of i E I. Let Pij : Vi ® Vj -+ Vj ® Vi be the 

transposition operator. We define 

(4.5) 

The matrices {Rij} are Yang-Baxter matrices intertwining i ® j with j ® i, i.e. 

(4.6) 

Since JC will in general not be a semi-simple algebra, it need not be possible to decom

pose a tensor product representation i ® j of JC into a direct sum of representations 

in I. But i ® j may contain some k E I as a subrepresentation. We let Nkij denote 

the multiplicity of kin i ® j. There is then a basis of Clebsch-Gordan matrices 

(4.7) 

intertwining k with i ® j, i.e., 

(4.8) 

Experience with the representation theory of some simple quantum groups suggests to 

introduce the following assumption on the structure of {JC, I}: Define a representation 

i®j®l,i,j,lEI,by 

i ® j ® 1: A ~ i ® j ® 1 ( b. ® 1I) b. (A)) . 

Let Nkiil be the multiplicity of k E I in i ® j ® 1. Then 

(AI) Nkijl = L Nkir Nrjl. 
rEI 
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Let PIe,ij/()..), ).. = 1, ... , Nleij/, be a basis of Clebsch-Gordan matrices intertwining 

k with i (8) j (8) l. 

(A2) We assume that every PIe,ijl ()..) can be represented as 

PIe,ij/()..) = L c()..,p"V;T) Pk,ir(P,) Pr,jl(V), (4.11) 
rEI,p"v 

for some coefficients c().., p" V; T) E C. 

Now we can describe the vertex-sos transformation mentioned at the end of 

Sect. 3: We consider two further families of Nkijl Clebsch-Gordan-matrices inter

twining k with i (8) j (8) 1: 

(4.12) 

with TEl. By assumption (A2), these matrices can be expanded in the basis (4.11): 

PIc,jr( a) Pr,il(f3) (Rtl (8) lIz) 

L p±(k,i,j,l);:~ PIc,ip(P,) Pp,jl(V), (4.13) 
pp,v 

and 

PIe,rz(--Y) Pr,ij(h) = L cp(k,i,j,l);:~ Pk,ip(P,) Pp,j/(V), (4.14) 
pp,v 

for complex numbers p±(k,i,j,l);~e and <p(k,i,j,l);;~. By arguments very sim

ilar to those used in Sect. 3, one can show that the matrices p±(k,i,j,l) and 

cp(k,i,j,l) satisfy polynomial equations analogous to (3.18),(3.22),(3.62)-(3.65); see 

[45,40]. Thus a Hopf algebra JC and the set I of finite-dimensional, unitarizable, 

irreducible highest-weight representations, subject to assumptions (A1) and (A2), 

determine "six-index symbols" p±(k,i,j,l); and cp(k,i,j,l); which have the same 

properties as R±(k,i,j,l); and F'(k,i,j,t);. 

The general problem one would like to solve is to find conditioils on families 

of matrices {p±(k,i,j,l);, cp(k,i,j,l);}, satisfying equs. (3.18),(3.22) and (3.62)

(3.65), which guarantee that these matrices are derivable from a Hopf algebra via the 

vertex-sos transformations (4.13),(4.14). This problem appears to be open. 
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Let us now suppose that there is a bijection from L to I taking the vacuum 

representation, 1, of .A to the trivial representation of lC, also denoted by 1, and 

preserving the fusion rules {N1cii}. A point in L and its image in I will then be 

denoted by the same lower-case Latin letter. Let us further suppose that 

(4.15) 

and 

F(k,i,j,l); = tp(k,i,j,l);. (4.16) 

Then the algebra lC plays the role of a "global symmetry algebra" of the quantum 

theory described by {.A, L}, which acts trivially on all observables in .A but can be 

made to act non-trivially on the unobservable, charged fields of the theory. This is 

analogous to what has been found in [61. In order to make these remarks more 

concrete, we define"lC - vertices" v!i(zi) : Vi -+ V", forz i E V;, by setting 

( 4.17) 

for all z E Vi, JL = 1, ... ,N"ji . 

Let D ipj be the "structure constants" discussed in Sect. 4 of [401, and refs. given 

there. Then we may introduce new charged fields, "p(p'I', zp), p'I' E M p , zP E VI" by 

setting 

2: (Dipi)!''' V;i(p") v:f(zp). (4.18) 
ii!''' 

Let p'I' and pq be two *morphisms localized in space-like separated, space-like cones, 

cP and Cq , respectively, contained in a simple domain S C M3. Let {e~} and {e~} 

be bases for VI" Vq , respectively, and set 

Then the commutation relations between tPa(p'I') ans tP~(pq) are given by 

tPa(P") tP~(pq) = 2: (R;ql) a~,'16 tP'1(pq) tP6(P") , (4.19) 
'16 
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> 
if as(pp) < as(pq). Here (R'# )"'/3,"Y6 are the matrix elements of Riql, defined in 

(4.5), in the bases {e~J and {ell. See [37,43] for details. It will be shown elsewhere 

how to construct a *algebra out of the fields {'I/J",(PP)} • 

Remarks 

(1) It is clear how to define an action of JC on the fields 'I/J(PP, zP). 

(2) If we work with the fields 'I/J(PP, zP) it is natural to define the physical Hilbert 

space ofthe quantum theory described by {A,L} as follows: 

Let 11" be the representation of A on 1ip h,1I... Then we have that 

(4.20) 

for all A E A. 

See [6] for a complete theory in the case where R+ = R-, where JC can be 

replaced by a compact group. An ansatz of the form (4.19) for commutation relations 

between unobservable, charged fields was first discussed in [15], (for theories in two 

space-time dimensions). 

5. Back to physics 

It is now time to ask how the braid statistics of charged fields (intertwiners), 

found in Sect. 3 and further discussed in the second half of Sect. 4, will manifest itself 

physically? One answer to this question is found by studying collision (scattering) 

theory in quantum theories with charged fields obeying braid statistics. A form of 

collision theory in the algebraic formulation of local, relativistic quantum theory, 

inspired by Haag-Ruelle theory [2], has been developed in [4,5] and can be adapted 

to theories with fields obeying braid statistics, as sketched in [26,28]. The result of 

the analysis presented in these papers is that the momentum-space wave functions 

describing incoming or outgoing states of charged particles have symmetry properties 

under exchanging the momenta (and spins, internal quantum numbers) of charged 

particles along oriented paths in momentum space that can be described in terms 
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of the braid matrices {R+, R-}. Thus, the statistics of charged fields (intertwiners) 

determines the statistics of asymptotic charged particles which manifests itself in 

symmetry properties of scattering amplitudes and cross sections. For all details we 

must refer the reader to [4,5,26,28J. 

Next, we wish to reconsider the question of what kinds of Lagrangian models 

of local, relativistic quantum theories in three space-time dimensions have charp;ed 

fields obeying braid statistics? Heuristically, a rather clear-cut answer can be given. 

It is known from the work of Doplicher, Haag and Roberts [4J that if the charged 

fields (intertwiners) can be localized in bounded space-time regions and the dimension 

of space-time is d ~ 3 then R+(i,p,q,k); = R-(i,p,q,k);, and, by Theorem 5, 

Sect. 3, 

1 
sp E 2" Z, for all pEL, 

and "spin parity" is conserved under fusion, (i.e, up· u q = U r if Nrpq # 0) . 

Thus, in order to find examples of theories with charged fields satisfying braid 

group statistics we must look for theories whose charged fields cannot be localized 

in bounded space-time regions, but only in space-like cones. Charged fields only 

localizable in space-like cones are a typical feature of gauge theories. 

Consider a three-dimensional theory with charged fields only localizable in space

like cones. Let P denote space-reflection at a line I C {( i, t) E M3 : t = O}. Let 0 

be a region in M3 . We define 

op = {(i,t) E M3 : (Pi,t) EO}. (5.1) 

We suppose that P is represented on A by a *automorphism O:p with the property 

that 

(5.2) 

Let pP be a *morphism of an extended algebra BC., with pEL. We define pIf, by 

setting 

pIf,(A) = O:p 0 pP 0 o:p(A). (5.3) 

Let pP and pq be *morphisms of BC• localized in space-like separated, space-like 

cones, CP and cq, (space-like separated from the auxiliary cone Ca ). It follows easily 
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from (5.2), (5.3) and (2.18) that 

> < as(r!') < as(pq) ¢:=:} as(~) > as(pl». (5.4) 

Next, suppose that, for all pEL, the *morphisms pP and p~ are unitarily 

equivalent and that Op can be implemented unitarily on the total physical Hilbert 

space of states, 1ip hy •. , of the theory, i.e., 

r!' '" p~, for all pEL, 1I"(op(A)) = U(P)1I"(A)U(P)*, (5.5) 

for all A E A, where U(P) is a unitary involution on 1ip hy... Let us recall the 

commutation relations (3.9) between charged fields established in Theorem 1 of 

Sect. 3: 

vji (r!') V;k (pq) 

= L R±(j,p,q,k)~~~ V~l(pq) VJk(PP), (5.6) 
lap 

if pP X pq and as(pp) ~ as(pq). 

By applying (5.5) and (5.4) to (5.6) we obtain the following 

Theorem 7 If space reflection at a line, P, is a symmetry of the theory. in 

the sense of egu. (5.5), then 

Le., the theory has ordinary permutation group statistic~ sp E t Z, and "spin pa

rity" is conserved under fusion. 

Thus, in order for a three-dimensional, local quantum theory to exhibit non-tri

vial braid group statistics it must have charged fields which cannot be localized in 

bounded space-time regions and it must break the symmetry of space-reflection at a 

line. 

Let us suppose that we look for a relativistic theory with these features. Then 

it must likely be a gauge theory without confinement which breaks space-reflection 

at a line. Thinking in terms of Lagrangian theories, we conclude that it must be a 

gauge theory with a Chern-Simons term in the effective gauge field Langrangian, as 

discussed in Sect. 1, or a theory which can be reformulated as a Chern-Simons theory, 
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such as an 0(3) non-linear u-model with a Hopf term in the effective Lagrangian. 

In view of applications of our theory to condensed matter physics, it is useful to 

recall the essential assumptions on which the general theory developed in Sects. 2, 3 

and 5 rests. They are as follows: 

(1) The algebra of observables, A, of the theory has a local structure 

(5.7) 

where A( C) is an algebra of observables corresponding to measurements in a localized 

region, C, of space-time; (C might be a wedge contained in a time slice). One requires 

some suitable form of locality, duality and the Reeh-Schlieder theorem; (see Sect. 2). 

(2) Existence of a space-time translation- and rotation covariant "ground state 

representation", with the property that the generator of time translations, (the 

Hamiltonian), H satisfies the spectrum condition 

H ~ o. (5.8) 

(3) One considers then the class of all space-time translation- and rotation

covariant representations, p, of A satisfying the spectrum condition (5.8) and requires 

that p be localizable in an arbitrary "wedge", with respect to the local structure (5.7), 

in the sense of (2.18). 

We emphasize that full relativistic covariance is not needed j covariance under 

the projective group of Euclidean motions in space, and time translations is already 

a little more than what we need for our analysis. 

From these remarks we conclude that braid statistics can. in principle. be 

encountered in non-relativistic systems of condensed matter theory with broken 

space-reflection symmetry! Archetypal examples are correlated electronic systems 

in a strong external magnetic field, such as quantum Hall systems. Other systems 

are two-dimensional systems with flux phases, (perhaps of relevance in high Tc su

perconductivity) . 

These matters will be discussed in more detail in a future publication. Our 

approach to these problems is somewhat comparable in its spirit to the topological 

approach to classifying defects in ordered, media [46]: Very general arguments based 

on symmetry and topological considerations yield a considerable amount of insight. 
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The algebraic structure of the BRST symmetry is explained 

in both the Lagrangian and the Hamiltonian cases. 

1. INTRODUCTION 

Three important features of the BRST symmetry have been 

gradually recognized in the last years. These are: 

(i) The definition of the BRST symmetry does not involve any 

gauge choice. even though it was historically discovered only 
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after fixing the gauge. Hence, the BRST symmetry possesses 

a manifestly intrinsic significance. 

(ii) The BRST symmetry can be constructed for arbitrary 

gauge theories with either closed or "open" algebras. 

It can be used as a substitute for the original gauge 

symmetry, whatever the structure of this gauge symmetry 

is. The group structure (if any) is thus not a fundamental 

ingredient of the BRST construction, which relies on 

more primitive concepts. 

(iii) The BRST symmetry does not depend on how one chooses 

to represent the gauge symmetry. 

The purposes of these notes is to explain 

the rationale behind the BRST symmetry with an emphasis 

on these important aspects. We will stress here the 

main ideas, without giving the explicit proofs. We refer 

to the original literature for more details. 

It turns out that the appropriate algebraic 

framework for discussing the BRST symmetry is provided 

by the "Homological Perturbation Theory" of Gugenheim 

and Stasheff [1). 

The elements of this subject of algebraic 

topology necessary for defining the BRST symmetry were 

rediscovered independently by physicists and we will 

follow here the physicists'approach, notations and termi

nology. 

These notes are based on the papers [2-6J 

where references to related works may be found. Let 

us simply indicate here that the algebraic approach 

analyzed in these notes has also been discussed along 

different lines and in more specialized situations in 

(7, 8](irreducible Lagrangian case) and [9, 10] (irredu

cible Hamiltonian case). Finally, the whole construction 

owes much to the pioneering works by Batalin, Fradkin 

and Vilkovisky [II, 12] 
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2. SOME RESULTS OF ALGEBRAIC TOPOLOGY 

We will be interested in graded derivations 

that are either even or odd and which (conventionally) 

act from the right. The elements of the graded algebra 

on which they act will be denoted by capital Latin letters, 

while the derivations themselves will be denoted by 

small Greek or Latin letters. With a right action, the 

Leibnitz rule reads 

where t.cr and ~I!. are respectively the parity of <S" and B. 

Given two derivations ~ , e ' one defines 

their graded commutator as 

It is a derivation of parity ~~+ e~ . Note that [ ] 

is actually the anticommutator when cr and e are both 

odd. The graded commutator obeys a graded version of 

the Jacobi identity, 

::: 0 

Of particular interest are odd derivations 

that are "nilpotent of order two" -or, as one also more 

simply says, just "nilpotent"-, 

(1) 

(2 ) 

(3) 
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These will be called here "differentials". The cohomology 

groups (Kerd/Imd)k of d will be denoted by Hk(d), where 

k is the grading associated with d. So, Hk(d) is the set 

of equivalence classes of elements A of degree k annihi

lated by d (dA = 0) modulo the elements of degree k in 

the image of d (ANA+dB). Because of the Leibnitz rule, a 

product structure is well defined in Kerd/Imd. 

One can also define a cohomology in the space 

of derivations. A derivation ()( is d-invariant if it 

commutes with d, (0<., d J = O. If ~ is a derivation, 

[~ ,d] is d-invariant by the Jacobi identity. Thus, one 

defines ~k(d) as the set of d-invariant derivations 

at degree k modulo the d-exact ones, eel, d] = 0, 0{ '" oj + 

[~ ,dl. The degree of« is such that deg (0<. A) = 
deg~ + deg A and can be positive or negative even if the 

degree of the elements A of the algebra is non negative. 

The main result of algebraic topology needed 

in the BRST construction concerns differential complexes 

with two gradings. One of the gradings will be called the 

"resolution degree" - or "r-degree" - and will be denoted 

by r. For reasons that will become clear later on, the 

second grading will be called "total ghost number" - or 

just "ghost number" - and will be denoted by gh. The r

degree rCA) of any element in the algebra is required to 

be non-negative, rCA) ~ O. 

(4) 

Let us assume that there are two odd derivations 

C and 
(0) 
s with the following properties, 

(5a) 

No loA) = ~ (A) - 1 (5b) 

cA -:: 0 te.(A) :: 0 (5b' ) 
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~R, 0 = 1 

Hi (8);; 0.> ~f.t (8) ::. 0 .> .a. + 0 (k = r-degree) 

n (,G) 

~-t;.(A):: 1 

In (Se), 
(.1) 
s is a derivation of r-degree one and ghost 

number one. So, 6 is a differential with trivial homology 

for k f, 0, while <.~) is "almost" a differential. It 

fails to be nilpotent by a term that is O-exact. One 
(0) 

says that s is a "differential modulo 0". 

One can define the "cohomology of ,> modulo S " 
as 

where A is of ghost number k and of r-degree ~. In 

other words, one considers elements in the algebra that 

are ~ -closed modulo 8 , and one identifies two such 

objects that differ by ~- or 8-exact terms. This makes 

sense because of (Sa), (Se) and of the fact that 6B 
vanishes for B of r-degree zero, as there is no element 

of negative r-degree. 

Working with a "differential modulo ~ " is 

somewhat awkward, and one idea of homological perturbation 

theory is to replace (~ by a true differential s without 

changing the cohomology: one constructs a "model" for (6). 

Theorem given (5), there exists an odd derivation s of 

total ghost number one with the following 

properties : 

l1.) 
+ ~ t ... 

<&.) 
3£ (~ ) :. 1 

/j2. = 0 

(5c) 

(5d) 

(5e) 

( Sf) 

(6) 

(7a) 

(7b) 

(7c) 
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This theorem is a straightforward consequence 

of the Jacobi identity and of ~k (~ ) = 0 for k " O. 

It is proven recursively as follows. First, the equations 
2 (Sa) and (Se) imply that the components of s of r-degrees 

-2, -1 and 0 vanish. So, let us suppose that we have 

constructed s recursively up to order n) 1, and let 

us set 

= 

("')2-By construction, ~ starts at order n, 

( .... ) l"-+I) 

e l' e + ... 

(l) 
where e is of r -degree k. We want 

'''') '~+f) possible to add to ~ a term s 

starts at order n+1, i.e., that one 
. bl h' f ''''-t1) a sU1ta e c 01ce 0 s • 

One has 

to show that it 
C""') such tha t ( <S" + 

can kill ee' by 

t"') t"-+tJ 
To remove e, one must take s solution of 
2 [ CO, l"'·S4)J + '''e~ o = O. This equation possesses a solution 

if and only if [0, te'] o. This condition is clearly 

necessary ( 0 2 = 0) but it is also sufficient as 
'11 t' [~, ("'e)] ~k (0 ) = 0, k " O. To check 0 = 0, one observes 

that [~ , I.e 1 is just the component of r-degree n-1 
f [ ,",,"" '''''] t"" J o L~, ~ , ~ and so, it vanishes by the graded 

Jacobi identity. 

Once the existence of s is established, one 

proves Hk (s) = Hk (c~) by expanding A,ghA = k, according 

to the resolution degree, 
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(7d) 

(8a) 

(8b) 

(8c) 



A :: 
) 

(9) 

(0) to) + to 'Ai) 
If sA = 0, then sAo = ° and 

(0) 
A is thus 

(0) 

s -closed modulo o. The addition of sB to A modifies 
'0) (0) ,.\ to) (0) ~ ttl 
A as A ..-." A + s B + 0 B • Therefore, cohomologi-

cal classes of s of ghost number k defines cohc~ological 

classes of (~l modulo b with same ghost nunber and r-degree zero. The 

mapping between these cohomological spaces is easily 

shown to be bijective by the same perturbative techniques 
(0) 

that led to the proof of the existence of s : given ~ 

solution of 
co) (0) 

S A 
(0) 

= 0, one can improve A by 

higher order terms, ~ + "more" so that sA 
(0) 

associated with A and 

O. 

Furthermore, the extensions 
(0) (0) '0) ~ en 
A + s B + 0 B differ by a s-exact term. The formula 

(7d) is thereby proven. [This proof of (7d) is actually 

just a rephrasing of standard spectral sequence arguments 

in the special case where the spectral sequence collapses 

after the second step]. 

It should be noticed that s is not unique since 

one has the possibility of adding a fi -exact term at 

each resolution degree level. 

Remark: Given the r-degree and the total ghoat number, one 

cab define a third grading ("filtration degree") by 

One has, 

"/11" CO\ _ ..I a); - "1, 

In the main applications discussed below, it is actually 

this third grading and the r-degree that come naturally. 

They are known in those cases as the "pure ghost number" 

and the "antighost number" respectively. The ghost number 

is a derived concept defined by (lOa), i.e., 

Furthermore, it turns out that the pure ghost number is 

non negative, so that (7d) becomes 

(lOa) 

(lOb) 

(lOc) 
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~<o 

3. A GEOMETRIC APPLICATION 

3.1 Geometric ingredients 

The theorem proved above can be applied to the 

following geometrical setting. 

Consider the following ingredients 

(11a) 

(11 b) 

(1) A surface ~ in a manifold I, defined by the equations 

-PQ. = 0 o 

..... 
(2) A set of vector fields Xf..o (~o = 1, "'J Bo) that 

(i) are tangent to ~ , 

~o .f! Clo = b ~~o t bo l ~ XPo of 11.0 ::. 0 ~ 2.},; 

and (ii) close on ~, 

-{?Q. 
o 

The equations (12) describing Z mayor may 

not be independent, i.e., there may not or may be some 

relations on the f 's 
a o 

-Pa. ::. 0 
o 

The need to represent ~ by an overcomplete set of equa

tions may follow from covariance requirements or may 

be dictated by topological considerations (the normal 

bundle to Z. may be non trivial). 

Similarly, we allow, if necessary, for rela
-'> 

tions among the X~ 's, 
o 
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(12 ) 

(13a) 

(13b) 

(14 ) 



-XrJi :: 
o -Fa. 

G 

generate integrable 
-'> 

By (13b), the vectors X~ 

orbi ts on ~ (figure 1) 0 

--------
~.1 

Off l. , however, the bracket CX:o ' Xj\o 1 is in general 

no longer a combination of the 1~ 'so 
o 

relation 

At this stage, we do 
a o -'P 

anong fa' R ,Xc 
o a 1 0 

not assume any additional 

and Z~o besides (12)-(15). 
<If ' 

3.2 Exterior derivative along the orbits 

One can define on ~ an "exterior derivative 

operator d along the orbits" that measures how the func-
2 tions vary along the orbits. This operator obeys d = 0 

on I. and is such that HO(d) is given by the functions 

on L that are constant along the orbits. 

-'t 
If the vector fields Xc are independent on 

o Z , the "p-forms along the orbits" on which d acts 

can be represented as polynomials in the elements 

of the dual basis, 

A = i 
t~ 

A I'IIfJio Yo 
·0···"'10 I ... fIJ 

The differential d can then be defined by 

(15 ) 

(16 ) 
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dF :: 

for the functions, and 

for the I-forms "1«0. One easily verifies d 2 o on z:.. 
-'t 

If the vector fields X~o are not independent 

on ~ , there is no dual basis. One can nevertheless 

still represent the forms along the orbits as polynomials 

in abstract objects '7e1o , as in (16), with 

However, the coefficient functions Ado.'. (0 are now 

no longer free as they must obey on L the conditions 

The exterior derivative d can still be computed accor

ding to the rules (17). One verifies again d 2 = 0 on 

L for pol y nom i a lsi n 1 010 0 bey i n g (1 9 ) • 

One can relax the condition (19) by introducing 

further formal objects ~~ in degree two, whose aim is 

precisely to enforce (19). In this more convenient des

cription, the p-forms are identified with the polynomials 

in 1~ and ~~ . One defines, for functions, 

as in (17a), but one replaces (17b) by 

(17a) 

(17b) 

(18 ) 

(19 ) 

(20a) 

(20b) 

The definition of d~~1 is given in [41 and we refer to 

that reference for the details. Again one finds d 2 = 0 on 

L . The advantage of this new alternative description is 

that the coefficients of "'1tAo and ,?rl.1 can be treated as free 

and are not subject to a condition of the type (19). This 
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condition arises when one imposes the closedness condi

tion, dA = 0 (see [4J). 

The grading of d will be called from now on 

the pure ghost number. It is non negative. The I-forms 

~«o will be identified with the ghosts below. The forms 

,«1 in degree 2 that appear when the vector fields are 

not independent on L. ("reducible case") will become 

the "ghosts of ghosts". 

3.3 From Z. to I 

The exterior differential d has been defined 

so far on the surface ~ • In practice, however, it turns 

out to be more convenient to work with functions on 

the whole manifold I. So, the problem is to "lift" d 

from ~ to I. This can be done by assuming that the 

coefficients of the p-forms are functions on I. One 

than still uses the same rules (20) for computing dA. 
~ 

This makes sense because the vector fields X«o and the 

functions C~~to ' z:; , are defined everywhere and not 

just on the surface L . 

Wi th these rules, one finds d 2 ~ 0 where "~" 
means "equal on L to" -i.e., "weakly equal to". In 

general, however, d 2 ~ 0 off ~. So, nil potency is lost. 

Furthermore, the cohomology of d is given by the set 

of weakly closed p-forms modulo weakly exact ones~ 

The situation is very similar to that encoun

tered in the theorem of the previous section. One has 

an operator that is not exactly nilpotent, and whose 

cohomology is given by a further identification besides 

the one implied by the mere addition of an exact term 

(see formulas (Se) and (6)). 

*Even when d2 = 0 off L , the identification of forms that coincide 
onZ is necessary in order to get the cohomology of the exterior 
derivative d along the orbits on Z . 
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We will show that the situation is not only 

si~ilar, but can be made to be identical. 

To that end, we introduce a second complex, the 

"Koszul-Tate resolution" [13J ' whose purpose is to enforce 

the restriction to the surface ~ through its homology. 

The differential of this complex is denoted by 0 and 

is just the ¢ of the previous section. Its grading, 

the r-degree, will be called here the antighost number 

(see remark at the end of section 2). 

The definition of 8 is given by 

Sf ::. 0 (21a) 

*" ~t.Q. ::. 
o OJJ.~f c*;,.o = 1 

Qh.}~f 1:~1 : 2. 

where F is an arbitrary function on I, and where 1:::, I:! are 
• 1 

respectively the generators in degrees one and two. 
a a 

We assume no relation on R o. Also, if there is no R 0, 
. . f h f . f a 1 . d d h . a 1 1.e., 1 t e unct10ns are 1n epen ent, t ere 1S a o 
no t* and (21c) 

al 
by just t* • a o 

is absent. The complex is then generated 

One can show [4], 

H~ (0) = 0 ~ =f 0 

Hot 0) :: 4 f.wv,b;()\A}) eM. "i. ~ 

Also, 

This follows from the existence of a contracting homo

topy r in degree k ~ 0 that acts as a derivation. 

Therefore, any derivation of antighost number k ~ 0 

obeying [c, 61 = 0 can be written as [u,f] for some 

u. 
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(21b) 

(21c) 

(22a) 

(22b) 

(23a) 



If one extends ~ to the ghosts as 

and d to t* and t* as 
a o al ' 

dl::~ .. 
o o 

2 [", ls~)'] (11) one finds d = 0 for some s, but one does not 

get [~, d 1 t* = 0 or [8, d] t* = O. This indicates 
a o al 

that (24c) is not quite the right extension of d when 

acting on t* 
a o 

or t* . The appropriate extension is, 
al 

to find and exists because the vector however, easy 
~ 

fields Xc( are tangent to L 
o 

. One defines 

dF 

and 

One easily checks (.~\ (5 + ~ ';)) t* = O. Using 
a o 

HI ( b) = 0, one then shows the existence of (~) t* 
'so') t" lO\ a 1 

such that ~ + 0 s vanishes on t* as well. The 
al 

definite expression will not be needed here and involves 

some manipulations of the structure functions and vectors 
..... a o L b o C 1(.. d 1Ma o So 01 1 f Y R c. .. Ii, , '" Il. o an '" A • 1.m1. ar y, ao' "tIo ' aI' k 1"0 0 01' _,-0 

using dl.R; 0 and H (0) = 0 for k = 1,2, one also checks 
c.oa. 0 [,ot) ~ 1 C1} that 2 s 1.S equal to - s ,0 for some s. 

One can therefore apply the theorem of the 

previous section. As Hk('~») = Hk(d), one has proved 

the existence of a nilpotent operator s graded by the 

total ghost number, such that 

o 

I+R (cl) 

(24a) 

(24b) 

(24c) 

(25a) 

(25b) 

(26a) 

(26b) 
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This nilpotent operator s exists whenever the above geo

metrical ingredients are available. 

We will now indicate why and how this construc

tion yields the BRST generator of gauge theories. We 

will see that the differential s gives actually the BRST 

symmetry. 

4. HAMILTONIAN BRST CONSTRUCTION 

The Hamiltonian description of gauge systems 

contains the previous geometric ingredients. 

Let I be the phase space. The system is classi

cally constrained to lie on the constraint surface ~ , 

where Gao are the "constraints" and are identified 

with the fao's of section 3. If the constraints all ori

gmate from the gauge invariance, as we assume for sim

plicity, they are "first class" ~~ 

The constraints functions Ga play two roles. 
o 

Not only do they constrain the system to be on ~, but 

they also generate the gauge transformations through 

the Poisson bracket [14], 

The vector fields Xao are tangent to ~ and close on 

~ by the first class property. So, all the previous 

conditions are indeed met, with Xa -'" Xc( 
o 0 

Furthermore, because of (29), there is a com

plete symmetry between, on the one hand, the differential 
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(27) 

(28) 

(29) 



~ associated with the constraint aspect of the problem 

(Ga : 0) and, on the other hand, the exterior derivative 
o 

d associated with the gauge orbits generated by 

There are as a result as many generators 

~ a ' ~ a ••• (:. t~ ,t~ ••• of previous section) of 
o 1 0 1 G. 

the Koszul-Tate complex as there are generators , ~ 

~G.1, ••• of the exterior derivative complex. If one 

declares that these generators are conjugate, 

Jr. ... 

one finds that the "BRST symmetry" s whose existence is 

guaranteed by the previous theorem can be taken to be a 

canonical transformation, 

The grading and nilpotency properties of simply for the 

BRST generator.n., 

~(a) = 1 

[.n.~ .0.1 = 0 

The fact that s is a canonical transformation 

is not implied by the theorem of section 2. This property 

can be checked, however, along identical lines: one 

directly proves the existence of it by expanding it 

again according to antighost number [2, 4, 6J. 

The existence of a canonical structure in the 

extended phase space including the ghosts "'}4.0, "']Q.1 , ••• 

and their momenta ~O-o' ~G.1' ••• follows from the presence 

of a canonical structure in phase space to begin with, 

as well as from the fact that the two different complexes 

hidden in s are both generated by the same functions 

Gao' respectively through (27) and (29). 

(30) 

(31) 

(32a) 

(32b) 
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As a consequence of the above general theorem, 

one finds HO(s) = HO(d) ,., i gauge invariant functions}. 

So, BRST invariance completely captures gauge invariance. 

Remarks 1. In the expansions 

.),) = 

of !t and s, one does not have 

even though the equality 

is true for the whole sums. This is because the antighost 

number of LA, t?1 is in general not equal to the antighost 

number of A plus k. One has for instance 

but 

antigh (JIG.) +"-1 
o 

antigh ("Q.o) + 1-1 

antight ~a.i) + fc.-2. 

etc ••• 

2. A first class constraint surface is also called 

a "coisotropic surface" in mathematical terminology. This is 

because the induced 2-form on L has minimum rank (equal to 

diml -codim 1 ). The null directions are just spanned by the 

vector fields Xa tangent to the gauge orbits. 
o 

3. Different representations of the constraint sur

face and of the gauge transformations, Ga ~ Ga o 0 
can be shown to lead to canonically related !l's 

b = MaO Gb , 
o 0 

[2, 4]. 
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S. LAGRANGIAN BRST CONSTRUCTION 

The general construction of the BRST symmetry 

within the Lagrangian formalism requires the antifields of 

Batalin and Vilkovisky [8, 121 . It contains again the 

same two key geometrical ingredients : a surface L , and 

a set of vector fields tangent to! that close on ~ • 

Furthermore, there is also a symmetry between these two 

ingredients. That symmetry allows f01 a canonical des

cription of the BRST symmetry. However, the symmetry is 

shifted by one unit as compared with the Hamiltonian 

description. Accordingly, the required canonical struc

ture is odd ("antibracket")*. 

To see explicitly how these features are rea

lized, consider the case when the gauge transformations 

are independent. We denote the fields/field histories 

by ,i and the gauge transformations by 

These transformations leave the action SoC <p) invariant, 

and close "on-shell", 

[ ~o/ , Q.~ 1 i = 
. i . 

dR~ ~~ ~ R1 
ot 0 ~~ 'f!o 

~~~ 

= C!,.. (4)) "~(f + Hli oSo 
a(~ 0;1 > 

Mid -::. 
H1i 

"'~ ¥ 

Let I be the space of all the field histories. 

Let ~ be the stationary surface where the equations 

of motion hold, 

*The general theory of odd canonical structures may be 

found in [lSJ. 

(33a) 

(33b) 

(34a) 

(34b) 
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z.. " ::.0 

The vector fields XOf. defined by Xor. F _ (~F/ o~~ )R~ 
are tangent to Z. and close on L by virtue of (34a). 

Hence, they generate orbits, the "gauge orbits". The 

gauge invariant functions are defined on the quotient 

space of the stationary surface l: by the gauge orbits. 

These are again the geometric ingredients 

described in section 3. One can hence construct the 

Lagrangian "BRST symmetry" s along the lines of the 

general theorem proved there. 

To that end, one needs the following spectrum 

of variables (besides th~ fields +i) 

(i) for 0 : 

(see 21) 

(ii) for d 

<1>1 J ~~f (<I>~) :: 1 J 

<p! J ~f(cP!) = 2.) 

~4>*: - Ho 
~ -

'iicJ>i. 

d~! :; (2.~ ¢t 

cw. and 

The BRST transformation s acts on ~i, ¢~, 
4:. The variables ¢f and ¢: of the Koszul-

Tate complex are known as the "antifields", the variables 

c~ are the "ghosts". There is again a symmetry between 8 
and d : 

I 

~ 
I I! I I 
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(35 ) 

(36a) 

(36b) 

(37 ) 

(38) 



This symmetry follows from the fact that it is the same 

action So that determines both the stationary surface 

through (35) and the gauge symmetries through (33). 

It is therefore tempting to declare that 

(' i, 4~) and (Col, 4:) form conjugate pairs, 

(¢i :I ~i):: 

(Col" 4>~) = 
However, the Grassoann parities and the ghost numbers do 

not match. This is in contrast with what happens in the 

Hamiltonian description. The "anti bracket" ( ) must 

accordingly carry an odd Grassoann parity and a ghost 

number equal to +1. 

It turns out that the Lagrangian BRST symmetry 

whose existence is guaranteed by the above theorem is 

again a canonical transformation, but this time in the 

antibracket, 

(39a) 

(39b) 

(40) 

The grading and nil potency properties of s imply for the 

"BRST generator" S, taking the features of the antibracket 

into account, 

oJlS~o HS) -:: 0 

( ~, S) ::: 0 

The fact that s is a canonical transformation 

is not implied by the theorem of section 2. This proper

ty can be checked, however, along identical lines: 

one directly proves the existence of the generator S 

by expanding it according to anti ghost number [8, 5], 

S(¢,q/)c.) = 

(~) 
antigh S = i 

('* 
S+ 

(41a) 

(41b) 

(42a) 

(42b) 
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c.o) 
The zeroth order piece S of S is simply the classical 

action So' 

(0) 

S = (42c) 

This is required if s is to contain 0 (see(36a)). 

Remark a detailed exposition of the antifield formalism 

with a discussion of the Lagrangian path integral 

may be found in [161. It is also explained there 

that different representations of the gauge symme

try lead to canonically related generators S's. 

6. GAUGE FIXED BRST COHOMOLOGY 

The theorem of section 2 can be used in reverse 

as follows. 

Let s be a differential which can be decomposed 

according to some "resolution degree" as 

+ L. 
i~1 

(0) 

It.(I\}=o 
c1) D 

lC.(h ) = R 

Assume that 8 is cohomologically trivial for r ~ 1. Then, 
2 from s = 0, one knows that 

and furthermore, by the theore~ the cohomology of 

modulo 8 is equal to the cohomology of s. 

(0) 
s 

(43a) 

(43b) 

(44a) 

(44b) 

This application of the theorem is of interest 

for analyzing the so-called "gauge fixed BRST cohomology", 

which we now describe. 
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In order to construct the Lagrangian path 

integral, it is necessary to eliminate the antifie1ds <,h~ • 
<pi (We collectively denote the fields and the ghosts 

Col by cpA ; the antifie1ds ¢~ and ¢: are denoted by ~~]. 1. 

This is done as follows. 

(i) First one makes an appropriate canonical transforma

in the anti bracket. This transforms S( cf>, «Ill:') into 

S,,\, (~ , cp*"), where t is a function that characterizes 

the canonical transformation. 

(ii) Second, one sets the antifie1ds equal to zero to 

get the gauge fixed action St ( 4> ), 

The canonical transformation is "appropriate" 

has no gauge invariance. 

if St (p ) 

In the gauge fixation procedure, all the anti

fields are put on the same footing, independently of 

their antighost number. Let us introduce a r -degree 

that gives equal weight to each antifie1d, 

(45) 

tC.( <p~) :: 1 (46a) 

tt l~A) = 0 

So, «A) just counts the number of antifields in A. 

irrespectively of their antighost number. 

Let 4'", be the form of the BRST symmetry 

after canonical transformation, 

with St:: S '" ( ~ , ~*). One can expand~)'f according to 

the r-degree, 

I' 
/<l "I' = 

(46b) 

(47a) 

(47b) 

(48) 
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One gets 

so that the antifields cP'}. can be viewed as the generators 

of the Koszul complex associated with the gauge-fixed sta

tionary surface. The Koszul differential ~' is cohomologi-

cally trivial for r ~l because the equations of motion 

as! (,) 
'04>/\ 

o are independent as the action is gauge fixed. 

Furthermore, 

to)) 
The operator s'f defines what is known as the gauge 

fixed BRST symmetry. It is a differential modulo oJ. 
Using (6) and (49), one finds that its cohomology modulo 

15' is given by 

(0\ 

(49) 

(50) 

~f' A : 'AA & (5la) 

o4>1'l 

A A+ 
(0), e. + ru- Ir ~ '" .hof 

~¢A 

with A( ~ ), B( 4) and tv,A( ~ ). By the above theorem, 

this gauge fixed BRST cohomology is guaranteed to be 

equal to the BRST cohomology of the non-gauge fixed s. 

7. FINAL COMMENTS 

In this paper, we have explained what we be

lieve is the algebraic structure of the BRST symmetry. 

This structure, rediscovered by the physicists, had 

actually been studied by mathematicians before and is 

part of "homological perturbation theory". The only 

slight subtlety in applying the theorems of homological 

perturbation theory is to identify the appropriate gra

dings appearing in the problem. 
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Besides the study of the algebraic structure 

of the BRST symmetry, the lectures given at Banff also 

covered some aspects of the operator quantization. It 

was in particular stressed that one could define a 

sensible scalar product in the space of the ghosts and of 

the gauge modes if one used the (pseudo-) Fock represen

tation of the (graded) commutation relations. The scalar 

product in the "big" Hilbert space reduces then to the appro

priate, finite scalar product in the space of the physi

cal states. This approach is equivalent to the "weak 

Dirac" quantization in which only the negative frequency 

components of the constraints are imposed on the physical 

states. 

The details can be found in [17]. 
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BLACK HOLE QUANTIZATION AND A CONNECTION TO STRING THEORY 

Gerard 't Hooft 
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3508 TA UTRECHT, The Netherlands 

1. I NTRODUCTI ON 

Gravitation is the weakest and the strongest force known in 
physics. When considered as a force between two single electrons, it is 
nearly 43 orders of magnitude weaker than the electro-magnetic force. 
But gravity works collectively: when an amount of matter, somewhat more 
than the mass of our Sun, is allowed to cool and compress under its own 
weight, then sooner or later a complete collapse has to take place. No 
other force can then overcome the gravitational one. The process of 
collapse can be computed using well-established laws of physics, and few 
physicists doubt on the final outcome: a black hole l . 

Black holes form an extremely interesting theoretical laboratory. A 
qui te surprising result was found by S. Hawking2 in 1975. Applying 
quantum field theory to the region surrounding a black hole he 
discovered that a black hole must radiate matter of all sorts, behaving 
like an ideal radiating black body with a temperature T given bY* 

kBT = l/81£H , (1. 1) 

where kB is Boltzmann's constant and H the black hole mass, in units 
where fi=C=K=1 (K is Newton's gravitational constant.) 

This result impl ies that black holes must loose energy, becoming 
ever lighter. The mass loss per unit of time is proportional to T4 
(the energy density of the radiation), and the surface area, which goes 
like H2. One thus expects 

dH 
dt 

(1. 2) 

where C is a constant of order one in natural units. Consequently, the 

*Although this is the most widely accepted value, its derivation is not 
free from assumptions. An alternative theory yielding a different value 
can be formulated3 . 
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mass will decrease as 

H( t) (1. 3) 

and the natural lifetime of a black hole is proportional to tt3, so 
that black holes of astronomical sizes are extremely stable. 

The average time between two Hawking emissions is of order of the 
black hole size, which is H. If these emissions could be seen as 
transitions from one state into another, these states would be 
resonances off the real axis, so that 

Im(H) Sl! l/H (1. 4) 

s Sl! 1f2 - ir (1. 5) 

with r 0(1) in natural units. 
Is there a lower limiting value for their mass? If so this can only 

be when either quantum field theory or general relativity, or both, 
cease to be valid. The fundamental principles of these theories are 
unobjectionable as long as the gravitational force can be quantized 
perturbatively, and this is the case when all distance scales used are 
considerably larger than 

-33 1.6·10 cm 
(1. 6) 

called the Planck length. At this length scale we have energies of the 
order 

1.22 . 1022 MeV (1. 7) 

the Planck energy. One could expect that the lightest black hole has a 
mass of this order, but at this energy black holes may well become 
indistinguishable from elementary particles. After all, elementary 
particles with such a mass would be surrounded by the same gravitational 
field, so they also can be seen as "collapsed obJects", and it may well 
be that all particles at such energies are unstable, emitting radiation 
much like black holes do while they decay. 

Plausible as this picture may seem (and indeed we will adopt it), 
there are problems with it. It suggests namely that black holes should 
form a discrete spectrum just like elementary particles, to be 
characterized by quantum numbers. Also larger black holes could then, at 
least in priciple, be characterized by discrete quantum numbers, and 
this is not what one gets applying Hawking's techniques. 

Ei ther something is wrong with our conventional picture of what 
matter is like at the Planck scale, or something is missing in the 
theory leading to Hawking radiation (or both). 

To find out what the possible resolution of this dilemma is we will 
study Hawking radiation. Assuming that quantum mechanics in some sense 
will continue to be exactly valid at the Planck scale, we will 
concentrate on the assumptions that went into the derivation of the 
Hawking radiation, and ask ourselves how one can improve the procedure 
so that no contradiction arises. According to the standard treatment of 
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black holes they "have no hair", that is, surface details are 
fundamentally unobservable. Our present picture is that this changes 
dramatically in a complete quantum description: there is lots of hair, 
one follicle (Boolian yes or no) per Planckian unit of its surface area. 
In the classical limit this hair becomes unobservable. 

As we will see some very fundamental aspects of the quantum theory 
are at stake; we wi 11 also see that black holes are fairly closely 
related to string theory. Indeed, string theory can perhaps be 
reformulated in terms of black holes, or more precisely: it could be 
that the Veneziano or Koba-Nielsen amplitudes, commonly attributed to an 
underlying theory of strings, may be given an alternative explanation in 
terms of dynamical features of a horizon. 

2. THE BLACK HOLE 

A black hole is a solution of the classical Einstein equations for 
the space-time metric, and the equation of state for matter, such that 
space-time can be seen to be divided in two regions, "region I" and 
"region III" (called that way for no particularly good reason), which 
are defined as follows: 

i) All points in I can be connected to the outside world by a 
timelike geodesic directed into the future, and 
ii) None of the points in III can be connected that way to the 
outside world. 

We have to explain what is meant by "outside world". This concept only 
means something if we have a non-compact asymptotically flat region 
surrounding the "black hole" solution at t -7 co • In contrast, region 
III can at all times be enclosed inside a closed surface with an area 
never exceeding a certain number ~. For a black hole with an infinite 
lifetime the question whether or not a signal will be able to escape 
from region III will be unambiguous. The (lightlike) surface dividing 
the two regions is called the future event horizon, or horizon for 
shortt. Within the horizon, in region III, all light cones are directed 
inwards, so that no information can escape. In the center we usually 
have some sort of singularity. The singularity is essentially a 
divergence, where presumably our known laws of physics break down. 
Remarkably however, the singularity will not playa significant role in 
our discussion. This is because it is well shielded from the observable 
world; we don't see it, so its precise nature is irrelevant. In these 
lectures we'll mainly focus on the horizon. 

As can be seen from Figure 1, a black hole is expected to rapidly 
settle for a stable, stationary configuration. In a particular coord
inate frame the space-time metric can then be written as 

(2.1) 

where H is the mass of the black hole in natural units. This we refer 

t The well-informed reader, knowing that we expect black holes to have 
only a finite lifetime, might wonder how this affects our definition of 
the horizon. Indeed, it makes the horizon somewhat "fuzzy". However, the 
uncertainty this induces to the location of the horizon will be far less 
than other fluctuations that we will discuss. 
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to as the Schwarzschild solution.~ 
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()\\"'7'" .... X\" / // ................ 

!I 
imploding matter 

Fig. 1. The black hole. 

In this representation there may seem to be a singularity at 
r = 2M, but this is a coordinate artefact. There is a better set of 
coordinates, called "Kruskal coordinates", in which we see that (2.1) in 
fact describes part of a larger space-time4• Replace rand t by x 
and y, defined by 

with 

xy 

x/y = 

(1- r/2M) 

t/2H 
- e 

r/2H 
e 

Then in terms of x, y, of} and 

ds2 = 

dQ2 

A(x,y) 

-2A(x,y)dxdy + 

as in eq. (2.1) 

16M3 -r/2H --e 
r 

r 2dQ2 

and 

(2.2) 

qJ we have 

(2.3) 

(2.4) 

which is not singular at r = 2M . Notice now that for every r and t 
we have in general two solutions for x and y, differing from each 
other by a sigh. This inplies that our universe is smoothly connected to 
another, equal, universe, and we obtain regions II and IV, see 
Figure 2. 

~or simplicity we limit ourselves to the non-rotating chargeless 
Schwarzschild solution. The more general Kerr-Newman solution (having 
charge and angular momentum) has a different structure at r=O and a 
somewhat different horizon structure4 • Since we are mainly concerned 
about the horizon our arguments can be extended to this more general 
case. 
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III 

Fig. 2. The Kruskal coordinates. 

If the Kruskal coordinates are used to describe the black hole of 
Fig. 1 then the regions II and IV in there are unphysical. This is 
because the infall ing matter that created the black hole was ignored. 
Region IV would be at the infinite past only if the bJack hole is 
"eternal": it existed already before the universe was there. Region II 
can only be reached by travelling faster than the speed of light. In 
realistic black holes (the ones formed by a collapsing object) regions 
II and IV are replaced by flat space. On the y-axis (x=O) one then 
has the imploding material which gives a right-hand side to Einstein's 
equations such that this hybrid configuration (regions I and III 
glued onto flat space) is a solution. 

3. FIELD THEORY IN RINDLER SPACE 

Let us now concentrate on the region r ~ 2M . Write 

r/2M -1 = r.2 t/4M = T (3.1) 

We look at a small angular re~ion so that 
two transverse coordinates xl = (Xl ,Yl) 
( r=2M ) we have the coordinate mapping 

~ and ~ can be replaced by 
Then close to the horizon 

Zl = r. cosh T (3.2) 

We call Xl' Zl and tl the locally regular coordinates. < and 
T are the Rindler coordinates5 • We see that they are directly related 

to the Schwarzschi ld coordinates rand t. In terms of the regular 
coordinates space-time is not at all singular near the horizon. 

Note now that a shift in the T parameter (or equivalently in the 
Schwarzschild time t) corresponds to a Lorentz boost in Xl space. All 
equations of physics are invariant under such boosts and therefore 
invariant under shifts in Rindler (or Schwarzschild) time. 

A field theory - any local field theory - can be defined by giving 
the Hamiltonian as the integral of a Hamilton density over 3-space. In 
ordinary flat coordinates this is 

(3.3) 

The Hamiltonian is the operator that generates shifts in time tl . Now 
at T=O an infinitesimal shift aT in T corresponds to a shift 

'More about "eternal" black holes in sect. 7. 
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(3.4) 

in t 1 , as one can easily see from (3.2). Thus, the generator for an 
infinitesimal translation in T is 

HRin = jU(x)zd3x (3.5) 

with 

j H(x)zd3x j H(x) Izld3x (3.6) 
z>o z<o 

We recognise (3.5) as the generator of a Lorentz transformation. 
In most field theories it is not difficult to check that 

(3.7) 

because the integrands in (3.6) vanish at z=O.~ Indeed, one expects 
(3.7) because no signal can be transmitted between regions I and II. 

To describe physical processes at the visible part of a black hole 
one needs only HI. Would particles described by HI alone "bounce" 
against the horizon? To see what happens it is instructive to consider a 
field theory first in its Lagrange form. The simplest Lagrangian is 

(3.8) 

and if we write < e U then this becomes in the Rindler coordinates 

(3.9) 

We see that at a given transverse momentum k all wavelike solutions 
will satisfy 

at U ~ -co , (3. 10) 

(3.11) 

This means that the boundary U = -co is open! An infinite world of 
particles, on their way in or out, exists in the region < ~ 0 

One would conclude from this that black holes are in a fundamental 
way different from other soliton like configurations in gauge theories 
such as magnetic monopoles: even if we would enclose them in a finite 
space surrounding the black hole, particles near the black hole will 
form a continuous spectrum because they occupy a non-compact space. 

~The only contribution to (3.7) could come from the origin. Now the 
commutator [U(x),U(y)] contains at most one derivative of a Dirac 
de I tafunct ion, whereas there are two factors z in eq. (3.7). This is 
why, after partial integration, one gets zero. 
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It should be clear however that particles near IT ~ -.., probe the 
infinitely small distance regime. Therefore, since quantum gravity is 
non-renormalizable, there will be values for IT beyond which the above 
analysis fails. Can gravitational forces turn the spectrum into a 
discrete one? The author believes this to be the case6 ). But first we 
will explain what Hawking's result implies for this boundary. 

4. TIlE HA1IKING EFFECT 

In this chapter we briefly review the derivation of the Hawking 
effect2. Everything can be understood as a feature of the central region 
in Kruskal space, and indeed all we need is the Rindler coordinate 
transformation (3.2). Only non-rotating, non-interacting particles are 
considered; other cases are more complicated but yield the same results. 

A scalar field in the regular coordinates rl can be written as 

J d 3 k (a(k)eikrl-ikOtl + at(k)e -ikrl+ ikOtl) , 

/2kO(k)V ' 

~(rl,tl) = J d 3 k (lkO ) (_a(k)eikrl-ikOtl + at(k)e-ikrl+ikOtl). 

/2kO(k)V 

Here, V = (2n)3, and we have 

and 

(4.1) 

(4.2) 

(4.3) 

etc. We see that at(k) and a(k) are not only the Fourier components 
of the observable field ~(r,t) but also play the role of creation and 
annihilation operators. They create or annihilate objects with momentum 
k and energy k O • That they serve these two purposes at once is no 
coincidence. It is easy to see that, Just because they are the Fourier 
components of the fields, they may act on any state I~) with momentum 
kl and energy k?l to give a state a(k,kO)I~) that has momentum kCk 
and energy k?ckO 

We now turn to Rindler space, which can be seen to represent any 
small section of the region in the immediate neighborhood of a black 
hole horizon (see (3.1) and (3.2». The trick is now to construct the 
Fourier components of the fields ~ in the two regions I and II 
with respect to Rindler time T. Let us use the light cone coordinates 

In Rindler time these evolve as 

T 
V ~ ve -T 

U ~ ue 

(4.4) 

(4.5) 
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For the Fourier transform with respect to T we need the following 
function, 

<Xl 

J dx iw -ixa-i~/x -x e 
x 

° 
(4.6) 

which will relate a(k, kO) to the Rindler annihi lation operators 
ar(k, w) and aIICk, w) ,where k is the transverse component of the 
momentum. One finds that, in region I, 

<Xl 

J dwJ d2k e ikr/1_e-2n:w ' [KC-W,P.U,p.V) arCk,w) 
v4n:V 

° * t ~ ] +K C-w,p.u,p.v) ar C-k,w) • 

where ar and art are normalized such that 

~ t~ 2~~ 
[arCk,w),ar Ck',w')] = 0 Ck-k')O(w-w') . 

C4.7) 

C4.8) 

In a similar way we have operators all and ar/, commut ing with 
ar and art, describing the fields ~ in re~ion II. 

We now observe that both ar,II and a r,II depend linearly on 
both aCk,kO) and atCk.kO) . Transformations that mix creation and 
annihilation operators are called Bogolyubov transformations. It turns 
out that Jl 

ar, II(W) 

atr,IICW) 

oc 

oc 

aCk) + e-n:watCk) 

a(k) + en:WatCk) 
C4.9) 

Inversely. a(k) is the sum of operators proportional to 

arC w) - e -n:w a tIl C w) and a II C w) - e -n:wa tIC w) 

Since 3{ in region I depends only on ~ in region I, which 
only depends on aI, it is not surprising to see that HI only depends 
on ar and HII on all 

<Xl 

HI Sdw Sd2k W a/aI + C 

° (4.10) 
<Xl 

HII = Sdw Sd2k W alIt all + C , 

° 
where C is a common. irrelevant constant coming from the ordering 
process. It cancels in HR. eq. (3.5). 

In the previous chapter we stated that an observer in region I 
only works with HI' Therefore he has only aI to his disposal, not 

flrhe exponent can be seen to be directly related to a rotation over 180 0 

in Euclidean space7 ) 
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a" . Now suppose that in terms of the regular coordinates rl' tl an 
observer would see a vacuum in the region around the origin. This would 
be a state In) in Hilbert space defined by 

(4. 11) 

Now let us choose a new basis of states for the Hilbert space which 
for each k, W have given values for the quanta 

(4.12) 

Let us call these basis elements In"n,,). Clearly, 

~n 10,0) '" In). (4.13) 
k,w 

To express In) in our Rindler basis we use, from eqs (4.9) and 
their inverse, 

~ -xw t ~ 
a,(k,w) In) - e all (-k,W) In) 0 

(4.14) 

so that, when acting on In), we have 

t -ltlu t t -xw t t t 
a, a, = e a, all = e all a, = all all (4.15) 

Consequently, In) consists only of states with n, n" 

In) (4.16) 
n 

We find fn from eq. (4.14): 

(4.17) 
n n 

(4.18) 

Concl usion: 

In) ; r----;:;2:=x--w .... • 00 -nnw n 1-e L e In,n)±k,w 
k,w n=O 

(4.19) 

where the square root is a normalization factor. Notice that eq. (4.16) 
implies 

o , (4.20) 
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which Just means that 10) is Lorentz-invariant. 
If Di l is the Hilbert space in region I and Dill 

then we see that 10) is a superposition of states in 
expectation value of any operator 0 in Oil is 

(0) 

This one could write as 

(0) = Tr p 0 

where p is a density matrix: 

p n Pn,n' 
k,w 

in region II 
Di l ® Dill • The 

(4.21) 

(4.22) 

(4.23) 

This is the density matrix for a thermal system at temperature given by 

k8T = 1/2n . (4.24) 

Thus, assuming that the most energetic particles near the point < = 0 
are absent when measured by a freely falling observer, the Rindler 
observer who uses • as his time parameter sees particles emerging from 
his horizon corresponding to radiation with this temperature. Noticing 
the relation (3.1) between • and Schwarzschild time t, one derives 
that in proper units the temperature with which the black hole radiates 
is given by 

k8T = 1/8nH , (4.25) 

the Hawking temperature~. In our way of dealing with Rindler space one 
sees that this result corresponds to information concerning the boundary 
condition at q=-oo, or r=2H. 

It is important to try to understand this boundary condition. The 
physics generated by the Lagrangian (3.9) is not altered. So one still 
seems to have a continuous spectrum. All we get is the statement that 
particles come back from the horizon at random, with weight factors 
equal to the Boltzmann factor corresponding to the Hawking temper
ature. This random behavior is different from what one would get if 
there were some given scattering matrix reflecting particles against the 
horizon. How different? 

~See footnote of Sect. 1. 
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S. THE BLACK-HOLE SPECTRUM AND THERMODYNAMICS 

The existence of an infinite spectrum of plane waves to and from 
the horizon, described by eq. (3.11), suggests that the spectrum of 
black holes is continuous. Yet, a more compelling reason exists to 
suggest that the spectrum should be discrete. A continuous spectrum 
would imply that an infinite number of mutually orthogonal states exists 
that can be stored within the volume defined by the horizon, with 
energies E between H and H+dH, where H is the black hole mass. A 
small region of space would allow an infinite amount of information to 
be stored in there, at the cost of virtually no energy. This, we think, 
sounds unlikely. 

Suppose for a moment that the density of black holes at mass H 
(and charge Q and angular momentum L), is given by some finite 
number p(H) (or p(H,Q,L) ). Let us now compare the absorption process 
of an object with energy I:J.E by a black hole with mass H, with the 
Hawking emission process for the same object by a hole with mass H+I:J.E 

(H) + (I:J.E) _ (H+I:J.E) • (5.1) 

The absorption process has a cross section ~ given approximately by 

where R is the black hole radius, R=2H. The emission probability W 
is approximately 

(5.3) 

where f3H is the inverse Hawking temperature, f3H = anH (putting the 
gravitational constant K and Boltzmann's constant k8 equal to one). 
Pl (I:J.E) is the density of states for the objects radiated out with 
energy I:J.E. 

If there were a quantum mechanical theory for the black hole, the 
same quantities could be expressed in terms of transition amplitudes, 
using the "golden rule"; 

~ = I (H+I:J.EI:1IH,I:J.E) 12 p(H+I:J.E) (5.4) 

where :1 Is the transition matrix, and 

(5.5) 

By virtue of PCT invariance, the matrix elements in (5.4) and 
(5.5) would be each other's conjugates, and therefore we find 

p(H+I:J.E)/p(H) (5.6) 

this should hold for a range of values for I:J.E as long as I:J.E« H 
and with f3H = anH we find 

(5.7) 
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where the universal constant C is the only unknown. Note that the 
exponent is one quarter of the area of the horizon, this is what one 
also finds in more general cases. 

C could be finite, in which case we indeed have a finite spectrum 
density, or C is infinite, but in this case equations (5.4) and (5.5) 
could be considered at the lower end of the continuum. Let IM+AE) be in 
the continuum but 1M) one of the discrete states directly underneath. 
Either IM+AE) would be an absolutely stable thing ( w=o ), in which case 
virtual pair creation of these things would give infinite contributions 
to graviton self-energy diagrams, or the cross section ~ for 
collisions against 1M) would tend to infinity. Neither of these latter 
options sound physically very attractive, which is why we suspect C to 
be finite. We must realize however that very large numbers are 
indigenous in quantum gravity. It could be that C is of the order of 
1040 or 10-40• 

It is unlikely that C is exactly constant. There may well be 
subdominant corrections either in the exponent, or in the form of powers 
in front of the exponent. 

There is a different way to derive the same expression (5.7) for 
p(M) . This is by applying thermodynamics to the black holeS. The free 
energy F is defined by 

H+oH 
e-~F = S p(M)dM e-~~ ~ 

H 

p(M) -8nH<! 
e (5.8) 

where the integral could be suppressed g because the leading term is 
given by the exponent anyhow. We inserted Hawking's value for the 
temperature and used natural units for the mass (the unit is the Planck 
mass, 21. 7 Ilg). 

The expectation value for the energy M is 

(M) 

~F = 

a 
a~(f3F) 

and we conclude that 

p 

{3/8n 

4nH<! 

(5.9) 

(5.10) 

(5.11) 

The philosophy used is that black holes behave just like little 
containers with some gas or liquid inside. If these communicate 
thermally with the outside world, one can deduce information concerning 
the total number of states from these reactions. The only thing slightly 
unusual about the thermal black holes is their negative specific heat: 

a 
c = aT (M) (5.12) 

gIn this argument it was necessary to introduce bounds M and M+oM 
for the integral, where oM is some small number. The reason for this 
is the fundamental instability of the black hole caused by its negative 
specific heat, eq. (5.12). 
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This implies that black holes cannot be completely in equilibrium with 
their environment. Martinez and York9 speculate that this may have deep 
implications for the probabilistic interpretation of quantum mechanical 
expressions concerning black holes. 

If indeed pen) is finite then this has also consequences for the 
symmetry aspects of a quantum gravity theory: we cannot have any 
absolute global conservation laws such as baryon number conservation!10 
The reason for this is that one could imagine dropping an unlimited 
amount of baryons into the hole, waiting each time for an equal amount 
of energy to reemerge in the form of Hawking radiation. Our derivation 
implies that equal numbers of baryons and anti-baryons should come out, 
on the average. So one could increase the hole's baryon number 
indefinitely. If p is finite there is however only a finite number of 
black hole states so that baryon number sooner or later becomes an ill
specified quantum number. Any preference of the hole to emit baryons 
rather than antibaryons would contradict our derivations of sect. 4. 

Now this remark implies that applying quantum field theory alone to 
the black hole horizon will not yield us further details concerning 
these spectral states. We could have global symmetries in this quantum 
field theory, and they will be standing in the way! something 
fundamental is missing. 

Our preliminary standpoint will be the following: our present 
understanding of the laws of physics is imprecise11 ; applying them gives 
us only statistical information about the black hole states. Remember 
that for large black holes (5.11) is an enormous number. Each of these 
states could be described by a slightly different Hamiltonian. Since our 
statistical answer was a consequence of our applying quantum mechanics, 
this may well mean that the usual statistical interpretation of quantum 
mechanics may be a consequence of an incomplete description. 

Imagine just a slight "uncertainty" in the Hamiltonian, 

H 7 H + oH , (5.13 ) 

where I;H has some probabilistic distribution. In that case the 
solutions to the Schrodinger equation, 

-iHI/J (5.14) 

will have a "thermal" contribution, to be described by a density matrix, 
just as what one gets as Hawking radiation, eq. (4.23). 

It is an important observation that our seemingly innocent 
application of the quantum mechanical rules gives us a Hamiltonian for 
the black hole with a built in uncertainty. Only one Hamiltonian in this 
distribution will correctly describe our world. The methods of Sect. 4 
will not tell us which. It seems that quantum mechanics here is 
incomplete, and that the missing information concerning our Hamiltonian 
could only be provided by some sort of hidden variables. A similar 
situation occurs when one tries to incorporate wormholes in quantum 
gravity: these give rise to uncomputable renormalizations of the 
physical coupl ing constants12). 
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6. THE HORIZON'S DISPLACEMENTS 

Our problem can be traced back to the plane wave solutions (3.11) 
o~ eqs. (3.10): there will be mutually independent states o~ ingoing and 
outgoing particles. In reality we expect that the outgoing radiation 
will be determined by what comes in via an S-matrix. The ~irst thing to 
suspect is that it was wrong to neglect gravitational interactions 
between ingoing and outgoing radiation. What will these interactions be 
like? Fortunately, they can be computed rather precisely. 

Consider again Rindler space, described by the coordinates X, l: 
and ~ . We ignore matter that ~ell in long ago. At time ~=~1 a light 
particle is dropped in. See Figure 3. 

Now a translation in ~ corresponds to a Lorentz boost in the 
regular coordinates. There~ore, at Rindler time ~=~2' ~~~1' the 
i~allen particle appears to be boosted to an enormous energy. Sooner or 
later the gravitational ~ields due to this energy become important. 

~. Ifuture .......... event horizon 

..••..•.••. X 

.. >"/'Y X l:=l:2; ~=~2 
....... . .....•. 

...... . ..... infall ing 
horizon ... / ....... particle 

........... ...- ·······X l:=l: 1 ; ~=~ 1 

past event 
horizon 

Fig. 3. The horizon displacement. 

To describe its gravitational ~ield the particle may be considered 
massless, moving with light velocity. The field is easily ~oundl3 by 
~irst taking a light particle at rest and then boosting it together with 
its Schwarzschild field. The result is a field that takes the form of a 
"shock wave" (called "inpulsive wave" in the literature,) not unlike the 
sonic boom of an airplane moving with the speed of sound. Both in front 
o~ the particle and behind it we have ~lat space-time, and at the 
space-time points x that satisfy 

PI • (X-Xl(t» = 0 (6.1) 

where PI is the particle's 4-momentum and Xl(t) its trajectory, the 
two flat spaces are seamed together, shifted by an ainount isx that 
depends on the transverse distance x: 

(6.2) 

which, because of its nonlinear x dependence produces a del ta
distributed curvature. 

Now (6.1) and (6.2) hold ~or a particle in a flat space-time 
background. How do they generalise when the particle moves in(to) a 
black hole? This turns out to be straight~orward14, i~ at ~inite ~1 
the particle had little energy. The situation at late ~2 is sketched 
in Figure 3, which must now be seen as representing a black hole in its 
Kruskal coordinates. Two regular Schwarzschild solutions, described in 
their Kruskal coordinates, are glued together at the line x=O, shi~ted 
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by an amount ay in the y direction, where ay now depends on the 
angles n = (of},rp) The functional dependence of ay on of} and rp is 
determined by the equation 

(l-An ) ay(n) 41l1CPin a 2 (n, ( 1 ) (6.3) 

where An is the angular Laplacian and n1 Is the set of angles at 

which the particle dropped in. The solution of eq. (6.3) can be written 
as 

(6.4) 

where f(n,n1 ) is a Green function approaching the logarithm of eq. 
(6.2) for large black holes. It is uniquely determined by (6.3) because 
l-An has a unique inverse. 

Eq. (6.3) is found by writing the space-time metric obtained from 
glueing the two Schwarzschild solutions together as an Ansatz and then 
imposing Einstein's equations. The Green function f can be given in an 
integral form but this is not very illuminating. One finds that 
f(n, ( 1 ) > 0 for all n, n1 ,and f diverges logari thmically when 
n ~ n1 • 

A consequence of these observations is that if we drop a particle 
into the black hole, the position of the horizon at times T before the 
particle fell in, changes, as drawn in Fig. 3. This change is barely 
perceptible at times T;ST1' but at times T~Tl the change is large. 
An observer there sees Hawking radiation that now originated in a 
different region of space-time than it would have if the particle had 
not been thrown in. 

Is this consequence of any importance? What does it matter if the 
Hawking radiation originated somewhere else? It will certainly look the 
same as before. 

We will argue in the next section that only in a quantum theory 
that is detailed enough to give us a scattering matrix instead of a 
density matrix, shifting horizons will be relevant. Indeed, important 
constraints on the scattering matrix will be found. 

7. THE SCATTERING MATRIX: BLACK HOLE - WHITE HOLE DUALITY 

Suppose a scattering matrix exists. This means that if we have 
completely specified the state {Pl' P2' ...} of all particles that 
ever went into the black hole, the outgoing matter should be in one 
well-specified state II/I)out . A basis for II/I)out is the set of states 
where all outgoing particles have well-specified momenta at a certain 
time T=TO. Now at T=Tl>TO we drop a light particle into the hole, 
with momentum Pin (in regular coordinates) at solid angle n1 • The 
change this induces for the outgoing wave is now determined primarily by 
the horizon shift (if other, non-gravitational interactions may be 
ignored). Thus, the new state will now be 

1.1,) -iSPout(n)ay(n)dao 1.1,) 
'Pout~ e 'Pout, (7.1} 

where pout(n) is the operator that generates a shift in the 
configurations at the solid angle n. It is, of course, also the total 
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momentum emerging at solid angle Q. In here, we can now substitute eq. 
(6.4) for fly. 

Now this means that if we know II/I)out at one stage, then II/I)out 
can, in principle, be determined after allowing any number of particles 
to fall in. If we may ignore non-gravitational interactions, we see that 
all states II/I)out ever to be produced by the black hole are generated 
by the operator PoutW) from one single state. Therefore, II/I)out 
must be generated by the algebra of these operators. Similarly, the 
ingoing particles are only distinguished by the total momentum P1Wl) 
at each solid angle Ql' 

We find the following important result 15 • For the incoming wave 
functions one may diagonalize the operators Pin(Ql)" Pin(Ql) , and for 
the outgoing states we diagonalize Pout(Q) . Eq. (7.1) then tells us 
how a change in Pin affects the outgoing state. Up to a 
proportionality factor, the complete transformation rule for ingoing 
states into outgoing states should be generated by this equation. This 
rule is not difficult to find: 

(7.2) 

where N is a normalization factor~. 
Eq. (7.2) is the S-matrix we wanted. If an S-matrix exists, and if 

we may ignore other than the longitudinal gravitational forces, it must 
be this one. It is here that we see a strikingly close resemblance to 
string theory22. As in string theory, eq. (7.2) should be universal. The 
ampli tude is nearly the same as the one used as a start ing point in 
string theory; only the string coupling constant comes out being 
imaginarylS,23>. If we replace the usual string amplitudes (for which 
after all no direct physical motivation can be found) by (7.2) or 
possible refinements17) of (7.2), then the spectrum of massless states 
at the zero-slope limit will remain the same. Thus we imagine that the 
qualitative successes of string phenomenology can also be attributed to 
this amplitude. 

However, our amplitudes were directly motivated by consistency 
requirements for black holes, and in our implementation of these 
requirements a number of approximations were made. And it is not hard to 
argue that (7.2) cannot be exactly correct. 

The problem with it is the algebra that generated the basis in 
which it is defined. We have the following commutation rules 

(7.3) 

(7.4) 

and we have the relation 

(7.5) 

~If other properties of the in- and outgoing particles are taken into 
account besides their momenta, (e.g. electric charge) then N becomes a 
unitary matrix. In the case of electric charge this matrix represents 
the contribution of a fifth, compactified, dimension17. 
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This implies 

ifW, n') (7.6) 

so that we have also 

- J d2g1 f W, n') Pout W' ) (7.7) 

The operators xin and Yout could be interpreted as coordinates 
of "particles", but then there should be exactly one particle at every 
value of n. This is where this Hilbert space differs from ordinary 
Fock space, where we may have any number of particles (mostly this will 
be zero) at every mode. This is also why it will be difficult to 
interpret our S-matrix directly as a matrix describing scattering of 
familiar particles. 

But in spite of the unusual way in which the dynamical variables 
are represented we do believe that this description of the Hilbert space 
surrounding the black hole can be defended. Imagine a lattice-like cut
off on the horizon, where the lattice length is of the order of the 
Planck length. At every lattice site n there is exactly one particle. 
This leaves us more than enough particles to reconstruct ordinary 
Hilbert space. Ordinary particle physics is at the low-energy limit, 
where we never need to know what happens when two or more particles sit 
at exactly the same site n. 

Thus, on the one hand we have ordinary particles, but alternat
ively, xin and Yout can be seen as the position operators for the 
past and the future horizon. We then recognise an important consequence 
of our description of Hilbert space: past and future horizons cannot 
both be localized accurately; these obey an uncertainty relation. 
Indeed, they are each other's dual conjungates, much in the same way as 
coordinates are dual to momenta. 

We claim that this also does away with a question considered often 
in the literature: does the time-reversed black hole (called "white 
hole") exist? Does the "eternal black hole" (one with a past white hole 
that was already there before the universe began) exist? The questions 
are not appropriate if our S-matrix exists: white hole coordinates are 
ill-specified once a black hole was localised. 

The difficult but perhaps exciting picture that emerges is that the 
exact shape of either the past or the future horizon may completely 
determine the particle content of the black hole's vicinity. It should 
be possible to refine this picture by incorporating gravitational forces 
in the transverse direction, and non-gravitational forces. It is not 
hard to take the electromagnetic force into account. Here, the electric 
charge density operator pW) and the gauge phase operator 4>(n) are 
each other's duals. Electromagnetic shock waves (Cerenkov radiation) 
surrounding charged massless particles are very similar to gravitational 
shock waves16• 

As will be explained in the next section, we expect a cut-off in n 
space. Probably the transverse forces are responsible for that. Surely, 
if coordinates in the transverse direction would be specified with 
accuracies better than the Planck length (implying on::5 I1pz/11 , where 
11 is the black hole mass), then momenta in the transverse direct ion 
exceed the Planck energy so that also shifts in the transverse direction 
will arise that are bigger than on. The simplest cut-off would be a 
lattice in n space, but reality will probably be more complicated. 
What we expact actually to happen is that the Hilbert space algebra 
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itself will produce a cut-off. A glimpse of a possible idea will be 
given in Sect. 9. 

8. DISCRETE PHYSICS 

Imagine a volume V = L3 in three-dimensional space. Suppose that 
one could define a quantum (field) theory of all phenomena (particles, 
black holes) inside this volume, in terms of a Hilbert space. We ask: 
how many dimensions (basis elements) ~ does this Hilbert space have as 
V grows? In ordinary field theories the answer is strictly infinite. 
Even a single particle can occupy infinitely many states, so surely a 
second-quantized theory will have an infinite-dimensional Hilbert space. 
Only if we would introduce a rigid latt ice cut-off, and accept only 
fundamental fermions in our theory, the total dimensionality would be 
finite. It would grow like 

where A is the inverse lattice size. 
But this changes if the gravitational force is taken into account. 

In that case we cannot allow the total energy to exceed a certain value 
depending on V: 

Etot :s L 12K (8.2) 

because otherwise a black hole would form with a horizon that stretches 
beyond the edges of V. 

Most quantum field theories have only 

(8.3) 

basis elements with energy less than that (C is some constant)*i. If we 
allow black holes we expect more states. Suppose there are N black 
holes with labels i=1, ... ,N. Each black hole has a density of states 
of the order of 

471:11·2 e 1 

(leaving again I1Pl 2 K = 1), and the total system has 

whereas the total energy is 

(8.4) 

(8.5) 

(8.6) 

*iEq . (8.3) holds for a theory with free massless particles. It can be 
derived most easily by counting methods familiar in statistical physics. 
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Therefore, allowing black holes we find 

'D :s L2n 
e (8.7) 

which, surprisingly, grows exponentially with the surface area L2 
rather than the volume L3. 

We claim that in any "complete" quantum theory of the world the 
total dimensionality of Hilbert space inside a volume L3 must be 
finite and approximately given by eq. (8.7). Theories where this 
dimensionality does not grow exponentially with the volume but with the 
surface area are not easy to construct. It could mean that there is some 
sort of additional constraint to be imposed on all states in the 
"physical part" of Hilbert space, whose solutions would have the 
dimensionality given by (8.7). 

There is an interesting class of finite-dimensional theories. These 
are the so-called cellular automata. A cellular automaton is a system 
containing a definite number of completely discrete and limited 
variables located at "cells". The contents of each cell are continuously 
updated according to a given arithmetic rule depending on the previous 
values and the values inside neighboring cells. They are ideal for 
computer simulations. 

A cellular automaton may either be completely deterministic or 
quantum mechanical. In a quantum mechanical cellular automaton the 
updating is prescribed by some unitary operator U defined in Hilbert 
space. At each tick of the clock we have 

1I/I(t+ll) U II/I(t) (8.8) 

This equation is the direct discrete analogon of the Schrodinger 
equation. The model is deterministic if a basis exists in terms of which 
the operator U happens to be also a permutation operator: 

(8.9) 

If ever we find the operator U describing the real world it might not 
be easy to establish whether or not it can be seen to be a deterministic 
one, because the search for the corresponding basis may be difficult. It 
is very tempting to suspect that U should be deterministic18. It then 
remains to be seen how we can understand that nevertheless features 
typical for quantum mechanics govern the macroscopic world. Experiences 
with computer simulat ions with ce 11 ular automata show that they often 
behave chaotically. This means that there is no simple way to describe 
the macroscopic world in terms of deterministic laws in spite of local 
determinism. Perhaps the only way to describe the macroscopic world is 
via the Schrodinger equation (8.8) or in other words: perhaps our world 
is a cellular automaton but it allows only a statistical description. 
The mathematics of this statistics may happen to be that of conventional 
quantum mechanics19 . 

There are numerous difficulties with such a picture but we think it 
cannot be ruled out. It would be a neat way to resolve the philosphical 
difficulties usually caused by quantum mechanics. In particular we will 
have to face the Einstein Podolski Rosen paradox20 and the question how 
one can understand the violation of Bell's inequali ties21 by quantum 
mechanical interference effects. We stress however that strictly 
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speaking there is no logical contradiction here at all because the 
vacuum state I~) will have to be a superposition of all basis elements, 
in particular if we use the deterministic evolution operator P ·of eq. 
(8.9). Since all our experimental set-ups are always surrounded by a 
vacuum we should not be surprised to find "interference effects". To be 
more precise: we expect that what is referred to as the 'vacuum state' 
is neither a single deterministically described state nor a completely 
random statistical mixture of all states, but a very special statistical 
mixture with many long-distance correlations. These correlations occur 
also between spacelike seperated points, yet cannot transmit any 
information. 

In one attempt to improve our calculation of the S matrix elements 
(7.2) we found that the horizon can probably not be kept topologically 
as simple as an S2 sphere. Indeed at the point !I' in Fig. 1 the 
topology must be very involved. One might speculate that the topological 
structures at !I' are denumerable and this could be a starting point for 
a completely discrete theory for the black hole horizon. But we did not 
see how to continue along this line. The following section shows a more 
promising approach. 

9. CONFORMAL OPERATOR ALGEBRA FOR THE BLACK HOLE HORIZON 

Our theory describes states in Hilbert space by giving the 
coordinates in space and time for the horizon intersection surface 
xP(~l'~2) . We can identify, following the equations of Section 7, 

x (-o,cp); 
(9.1) 

For simplicity we limit ourselves to~ large black holes so that the 
horizon is approximately flat and x can be treated as two flat 
coordinates. However, let us rewrite the equations of Section 7 in such 
a way that they become covariant under general two dimensional 
coordinate transformations. Equation (7.6) can be seen to be in the 
special gauge 

(9.2) 

We have 

(9.3) 

with 

2 ~ ~ 
-4TrKi5 (u-~/). (9.4) 

Now this is probably only an approximation that holds when 

(9.5) 

so (9.3) can be rewritten covariantly as 
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(9.6) 

where g is the determinant of the induced metric in ~ space: 

(9.7) 

The first part of eq. (9.6) and eq. (9.7) is entirely covariant under 
general coordinate transformations in ~ space and special coordinate 
transformations in x space** 

Let us now make the transition to a conformal gauge, 

(9.9) 

and try to construct an algebra that should form the basis of a 
fundamental conformal theory for black holes. The resulting theory will 
be characterized by the fact that the ~ do not commute (when x is 
large the commutators become negligible, so we are dealing with a 
small-distance effect here. 

Writing 

K - A -8 t x (o-l 82x (0-) (9.10) 

/g(~)' 

one derives 

(9.11) 

We derived this commutator equation only for the case that the 
surface ~(~) deviates only infinitesimally from a flat surface. It is 
tempting to assume (9.11) to have a more general validity in any set of 
conformal coordinates. We can then solve the differential e~uation to 
find the commutators for ~«(T) , by Fourier transforming in (T space: 

AIlV(k+p) 

(k'p) 
(9. 12) 

and Fourier transforming back: 

**Indeed we 
g that 

Ilv 
to general 

(9. 13) 

described effects close to the horizon in a space-time metric 
is locally normalized to stay close to 0 . The transition 

Ilv 
g (x) may well be as in string theories. 

Ilv 
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where ~ stands for a priciple value integration over the poles in ~, 
space (which form a circle through ~ and ~'). 

Unfortunately, this algebra becomes very complicated because of the 
highly non-linear form (9.10) of AIlV. The Hilbert space structure of 
our surfaces would become easier to fathom if we had linear commutation 
rules. Clearly, (9.13) suggests that we should look at the composite 
fields 

ab 
C (9.14) 

From (9.13) it is not possible to derive simple commutation rules 
for the W fields. But we could start again from the beginning. For 
approximately flat surfaces in the transverse direction, and in the 
gauge (9.2), we have (if Il and v are 3 or 4): 

The commutation rule (9.11) can then be rewritten in the form 

E [~Il(~),~v(~')l 
A 

(9.15) 

(9. 16) 

which again is written in such a way that it remains true in all 
coordinate frames. T is a constant ('string constant') of order one in 
Planck units. In stead of (9.13) we can take this to be the equation 
that generalizes to arbitrary surfaces. It has the advantage of being 
linear (the factor vg cancels out). 

The algebra (9.16) is not complete, because the left hand side 
still contains a summation. What we could do about this is the 

following*t. Let ~V be i times the self dual part of wIlv : 

(9.17) 

It has three independent components: 

(9.18) 

Now from (9.16) we derive that these obey a complete commutator algebra, 

(9.19) 

Apart from a complication to be mentioned shortly, this is a local 
and complete algebra of the kind we were looking for. At first sight it 

*tThis part of these notes was written early October 1989, enabling us to 
add an argument here that was not yet known when the lectures were 
given. 
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seems to generate an infinite dimensional Hilbert space because we have 
these operators at every ;;:.. But then we s~OUld remember that the 
operators K, like the W, are distributions* . Let us introduce test 
functions f(~) ,g(~) and define operators 

L (f') 
a 

then these satisfy commutation rules: 

i r (fg) 
Cab.,...c 

(9.20) 

(9.21) 

Let us now restrict to tern functions f(;;:') that can only take the 
values 0 or 1 . Then La f satisfy the commutation rules of ordinary 
angular momentum operators. Note that for such an f the integral 
(9.20) is nothing but a boundary integral: 

etc. , (9.22) 

where of stands for the boundary of the support of f. We conclude 
that for every closed curve of on ;;:. space we have three 'angular 
momentum' operators La(f) that satisfy the usual commutation rules and 
addition rules for angular momenta. Given such a bunch of closed curves 
fi we can characterize the contribution of that part of the horizon to 
Hilbert space by the usual quantum numbers 1; and m;. These are 
discrete and so, in some sense, we seem to come close to our aim of 
realizing a discrete Hilbert space for black holes. As anticipated in 
Sect 8, there is a set of quantum numbers whose number and values are 
limited per unit of surface area (see eq. 9.22). 

Unfortunately, there is a snag. The operators La are not 
Hermitean. From the definition (9.14) we see that Wij are Hermitean 
and W;4 anti-Hermitean. Therefore, Lat correspond to the anti-self 
dual parts of JjLv. The commutation rules bet ween La and La t are 
non-local (they may perhaps follow from (9.13)). The operators L2 are 
Hermitean, but not necessarily positive (they are only nonnegative for 
time-like surface elements). If we may assume the smallest surface 
elements to be timelike we can still build our surface using quantum 
numbers 1; and m; but the states we get are not properly normalized 
(i t is for finding the norms of the states that we need Hermi tean 
conjugation). If 

are the basis elements constructed using the self dual operators L i , 

and 

the basis elements generated by the anti-self dual Lit, then we have 

*~ JjLv is actually the two-form JjLv 
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(9.23) 

but the t/J themselves, or the if> themselves, are not orthonormal. 
Therefore it is far from clear whether or not we actually obtained a 
complete representation of our Hilbert space. 
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AN INTRODUCTION TO GENERAL TOPOLOGY AND QUANTUM TOPOLOGY 

C.J. Isham 
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§1 INTRODUCTION 

The aim of this course is to give a short introduction to the classical theory of general 
topology and to consider some ways in which one might attempt to formulate a genuine 
theory of 'quantum topology'. These days, it is hardly necessary to motivate speaking 
to theoretical physicists about topology - the title of this summer school speaks for 
itself! However, much of the topology used in theoretical physics is in fact differential 

geometry. For example, the spacetime of classical general relativity is modelled by a 
smooth four-dimensional manifold, and infinite-dimensional manifolds of maps between 
various finite-dimensional manifolds play an important role in a number of branches 
of modern non-linear field theory (the non-linear a-model, Yang-Mills theory, string 
and membrane theory, ... ). 

Notwithstanding the current popularity of differential geometry, my strong belief 
is that its days are numbered, at least so far as the subject of quantum gravity is 
concerned. Smooth manifolds and local differential equations belong primarily to the 
world of classical physics and I do not believe that these are appropriate tools with 
which to probe the structure of spacetime (in so far as this is a meaningful concept 
at all) near the Planck length. At best, they are likely to be applicable in the semi
classical limit of the quantum theory of gravity (whatever that might be) and a lot 
more thought needs to be given to the question of which mathematical structures are 
really relevant for discussing the concepts of space and/or time in the "deep" quantum 
region. In particular, I shall be concerned in this course with the idea that the topology 
of space or spacetime is itself subject to the laws of quantum theory, and that this 

necessitates moving outside the realm of smooth manifolds. 

Many problems arise when trying to identify the most appropriate mathematical 

framework in which to discuss the ideas of quantum topology. These include severe 
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conceptual difficulties, not least in regard to the applicability of the concepts of 'space' 
and 'time' and the overarching question of whether any idea of quantum topology can 
be made compatible with conventional quantum theory in which normally: 

(i) the topology of space or spacetime is assumed to be that of a differentiable 
manifold; 

(ii) this manifold is part of the fixed, classical background structure. Thus dif
ferent topological structures for space would be expected to generate only different 
superselection sectors; in which case the problem reduces to seeing what effect these 
various background topologies have on systems that are otherwise to be quantized in 
a conventional way. 

However, within the context of quantum gravity, the concept of 'quantum topol
ogy' contains two ideas that are considerably more radical. The first is that the topo
logical structure of space and/or spacetime should be regarded as a quantum variable 
rather than as part of the fixed background within which the theory is to be fOrDlU
lated; the second is that the quantum variables describing the topology of space may 
change in time via some sort of quantum (tunelling·?) process. But what does this 
really mean? In particular, how literally can the word "topology" be taken? In prac
tice, most discussions do not involve general topological spaces at all but are locked 
firmly into the framework of differential geometry. For example, in the "Euclidean" 
approach to quantum gravity, the basic entity of interest is the transition probability 
amplitude K (gb I:l ; g2, I:2) for going from a metric g1 on a three-manifold I:1 to a 
metric g2 on a three-manifold I:2. This is expressed as the functional integral 

K(gb I:1 ; g2, I:2) = L. J e-S(g) dg 
M 

(1.1) 

in which 8(g) is the classical action, the sum is over every four-manifold M whose 
boundary is the disjoint union of I:1 and I:2, and the integral is over all Riemannian 
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four-metrics on M which induce the given three-metrics gl and g2 on El and E2 
respectively (Hawking, 1979). 

To appreciate the significance of (1.1) we must first review Very briefly some of 

the central ideas in the canonical quantization of gravity. This starts with an ar
bitrary decomposition of the (Lorentzian) spacetime manifold M of classical general 
relativity into a one-parameter family of spacelike three-manifolds. The spacetime 

metric of M has ten independent components lI".,(x, t), IJ, II = o ... 3 but the com
ponents 110., are purely "gauge" degrees of freedom and are concerned only with how 

the spatial coordinates are related from one spacelike slice to another and how the 

spacelike slices are situated within the four-manifold (for a comprehensive review see 
Kuchar {1981}}. Thus an initial canonical analysis apparently yields a collection of 
six canonical variables gij(X), i,j = 1 ... 3 (the metric on the three-manifold) with an 
associated set pkl (x) of conjugate variables. However, it transpires that not all the 

Einstein equations G".,(lI) = 0 relate to dynamical evolution. More precisely, once 
the time derivative of 11 has been replaced with the appropriate combination of g and 
p, the four equations Go., = 0 become constmints on the canonical variables. These 
constraints play a fundamental role in the theory. In fact, they essentially determine 
the dynamical evolution in the sense that any four-metric on M with the property that 

the constraints are satisfied on all spacelike slices necessarily satisfies the remaining 

dynamical equations Gij = O. 

A naive analysis of the canonical commutation relations 

(1.2) 

suggests a "SchrOdinger representation" 1 in which states are functionals "'II(g) with 

(9ij(X)"'II)(g) = gij(X)"'II(g) and (Pkl(y)"'II)(g) = -i1iC~glr~(lf)"'II)(g). The constraints are 
first-class and, following the usual Dirac procedure, are imposed as constraints on 
the state vector. Furthermore, because of the relation between the constraints and 

the dynamics mentioned above, these quantum constraint equations are deemed to 
constitute the entire content of the canonical quantization of gravity - there is no 
additional time-dependent SchrOdinger equation. Three of this set of four constraints 
merely affirm that "'II depends only on the intrinsic geometry of the spacelike surface 
(that is, the state vector is invariant under spatial diffeomorphisms) and hence that 
"'II{g) is a function of 6 - 3 = 3 degrees of freedom per spatial point. However, the 
final equation (the famous Wheeler-DeWitt equation) has the highly non-trivial form 

(1£(9, i)"'II)(g) = 0 where 

1 1 'k '1 1 
1£(g,p) = 2(detg)-1(gijgkl + gi/gkj - gikgjl)P' 1" - (detg)lR(g) (1.3) 

1 Representations of this type can be very useful in conventional quantum field 

theory. This has been especially emphasised by Ja.ckiw in the context of Yang-Mills 

theory and is developed by him in his article in this volume. 
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in which R(g) is the curvature scalar of the three-metric g. 

Of the many difficult questions that can be asked about this fonnalism one of the 
most subtle concerns the status of 'time'. There is no external time label attached to 
iP(g). 1 Instead, one must try to identify time as some function of the metric variables 
themselves (e.g. the volume of the three-space) and then reinterpret the Wheeler
DeWitt equation as describing the evolution of the remaining physical variables (two 
degrees of freedom per spatial point) with respect to this "internal time" (Kuchar, 
1981). However, in practice it does not seem possible to make a precise identification 
of this type and the evidence suggests strongly that our conventional notion of time 
can be sustained at best in the semi-classical limit of the quantum theory - in the 
"deep" quantum region the concept of time breaks down entirely. This has many 
important implications for the quantum gravity programme and we will return to it 
later in the context of quantum topology. 

After this discursion into conventional canonical quantum gravity let us return 
to (1.1) and to the meaning which can be attached to K (g1. 1:1 j g2, 1:2). Although 
this was computed using an integral over Riemannian metrics it can nevertheless be 
shown that, if g1 is fixed, it satisfies the Wheeler-DeWitt equation in g2 appropriate 
for a Lorentzian signature spacetime. In particular, if the 1:2 manifold is absent 
(so that the manifold M has a single, connected, three-boundary 1:1) we get the 
remarkable "creation ex nihilo" theory of Hartle and Hawking (1983). This affords a 
most elegant way of relating the spatial (canonical) picture to an underlying spacetime 
structure (albeit Riemannian) but of course it poses many questions in its own right. 
One particularly contentious issue is the use of Riemannian rather than Lorentzian 
metrics for this purpose. However, from the viewpoint of quantum topology, the most 
relevant feature of (1.1) is undoubtedly the sum over M which, if taken literally, implies 
that the ideas of quantum topology are to be developed purely within the category 
of differential geometry. In particular, the initial and final spaces 1:1 and 1:2 are 
differentiable manifolds and the topology change is implemented with the aid of the 
interpolating four-manifolds M. 

But it is very debatable whether this picture is at all reliable. The well-known 
failure of (1.1) at the level of perturbative renormalizability means we have to work 
hard if the theory is to be retained in this form. Some of the more obvious options 

are: 

1. 'Thy and "patch" the classical action with the addition of terms to the La
grangian which will cancel the infinities. Supergravity was a much-studied theory of 

1 I am assuming here that the spatial three-manifold is compact. In the non
compact case the possibility arises of selecting a time variable using the fixed back
ground geometry at spatial infinity. In this case there is an additional time-dependent 
SchrOdinger equation. 
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this type, but not many people now believe that the problem of quantum. gravity ca.n 
be resolved in this way. 

2. Accept the fact that general relativity provides a phenomenological descrip
tion of the gravitational field that is valid only at low energies. The "true" theory of 
quantum. gravity is something quite different (for example, superstrings?) from which 
the classical theory (including perhaps space and time themselves) emerges only in 
some suitable limit. But it then seems most unlikely that (1.1) will have any fun
damental meaning. In particular, if the semi-classical computation of (1.1) breaks 
down at the Planck length then any picture of topology changes at this scale must be 
equally suspect. Thus the elegant picture of quantum. topology mediated by interpo
lating manifolds is only likely to be correct if the theory contains a scale at which such 
effects could occur which is significantly larger than the Planck length itself. 

3. Continue to hope that there may exist some new, non-perturbative, way of 
evaluating the functional integral (1.1) which will give well-defined, finite answers. One 
of the most promising approaches of this sort is the work of Rovelli and Smolin (1988, 
1989) which exploits the considerable simplification obtained for the expression for 'H. 
using Ashteka.r's new variables (Ashteka.r, 1988). Note that even if it is position 2. that 
turns out ultimately to be the correct one, it is still possible that a non-perturbative 
picture of this type will provide a more reliable guide to what the complete theory looks 
like in the "intermediate" quantum. regions than is afforded by the older methods. 

4. Argue that the problem of reconciling general relativity and quantum. theory 
is so acute that the structure of quantum. theory itself must be radically revised. 

Many workers in quantum. gravity have entertained ideas of this final type and, 
at the very deepest level, this may well be the correct way to proceed. (Penrose is 
an especially articulate advocate of this view; see his (1987) paper for a review of 
his current position). However, I have always been intrigued by the question of how 
far conventional quantum. theory can be pushed and, in particular, of the extent to 
which the geometrical and topological ideas in classical general relativity can still be 
maintained in the quantum regime (or, if not, with what they should be replaced). H 
the question of quantum topology is pursued from the viewpoint of this third option, 
it becomes natural to ask whether the objects summed over in (1.1) can really be just 
differentiable manifolds. One of the important properties of the functional integral 
measures that arise in conventional quantum. field theory is their tendency to be sup
ported on spaces of distributions rather than smooth functions. This ''roughening up" 
process is typical of quantum. theory in general 1 and suggests that the sum in (1.1) 
might have to be extended to include topological spaces that are more singular than 

1 In the context of the canonical SchrOdinger approach to quantum. field theory, 
this roughening is reflected in the feature that the domain of the state vectors q;(<p) is 
typically forced to be a space of distributional fields <p rather than smooth functions. 
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differentiable manifolds. The critical issue then becomes the selection of the appro
priate mathematical concepts with which to model spacetime structure in this deep 
quantum regime. 

As remarked already, I support this view in the strong sense of doubting the 
validity at the Planck length of the entire framework of differential geometry. This 
iconoclastic urge forms part of the motivation for the present course of lectures in 
which I wish to extend the ideas of quantum topology from differential geometry to 
more general types of topological space. In particular, I wish to consider the possibility 
of state vectors that are functions t/J( r) of arbitrary topologies r, with differentiable 
manifolds appearing only in the semi-classical limit in which conventional canonical 
quantum gravity is presumably valid. 

Many difficult questions arise a priori when contemplating such a programme. 
For example 

1. Can we talk about "all" topologies in a meaningful way? 

2. If so, do they form a "nice" space which can be considered as the "configuration 
space" of a system that is to be quantized? How is this quantization to be performed? 
Can it be done without introducing some background manifold? 

3. What is the status of 'time' in such a theory? Is the attachment of a contin
uous time label t to a state vector t/J( r) compatible with our depreciation of differen
tial geometry, or should one develop a purely topological version of the differentiable 
cobordism picture afforded by (1. I)? In the latter case, the interpretation of the state 
vectors t/J( r) would presumably have to include some sort of "internal time" , at least 
in a semi-classical limit, just as in conventional quantum gravity an internal time is 
extracted from part of the three-metric g appearing in the state vector t/J(g). 

4. A topology on a set X is a specific type of structure with a precise mathe
matical definition. But what is special about "topology" rather than any of the other 
related mathematical structures? That is, what is the most appropriate quantum 
generalization of the idea of a smooth manifold? 

5. What is the ontological status of the points in the set X? In particular, what 
is the cardinality of· X (i.e. "how many" points are there) and should this number 
itself be subject to quantum fluctuations? 

Some of these issues will be addressed in what follows. However, one of the 
aims of this course is to give a simple introduction to the classical theory of general 
topology as well as to the more exotic quantum ideas, and much of the material is 
intended for this purpose. Thus section 2 contains an introduction to the theory of 
metric spaces. These provide a natural generalization of differentiable manifolds in 
which the topological properties are still defined in terms of real numbers via the use 
of distance functions. In so far as quantum theory ascribes fundamental significance 
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to the real or complex numbers, it could be argued that it is metric topologies which 
are likely to be most compatible with quantum ideas. The theory of quantum metric 
topology is not much developed but some preliminary ideas are contained in section 
3. The remaining sections deal with more general topological spaces and start with 
a discussion of partia.lly ordered sets and lattices. This is in line with my general 
aim of presenting the ideas of topology in a fairly algebraic way on the grounds that 
this is likely to be particularly appropriate when one's ultimate aims are quantum 
mechanical. Section 5 deals with the general idea of a 'topology' via the intermediate 
concept of a 'neighbourhood space'. I have deliberately taken this detour (rather than 
plunging immediately into the axioms for open sets etc.) as I feel it is helpful when 
debating the central question of which particular set of axioms for topologica.l-like 
systems is most relevant in the construction of a mathematical model for spacetime. 
In section 6 we will consider a theory of quantum topology involving wave-functions 
tJ1(r), eigenstates of topology, etc., and the paper concludes with a discussion of some 
of the open issues and possible directions for future research. 

Some set theory notation 

V 
3 

<===> 
a :=fJ 
{x I P(x)} 

xEX 

ACB 
AnB 
AuB 
IXI 

"for a.ll" 
"there exists" 
"if and only if" 
The entity a is defined to be the entity fJ. 
The set of a.ll x such that the proposition P( x) is true. 

x belongs to the set X 
A is a subset of B (this includes the possibility that A = B). 
The intersection of A and B := {x E X I x E A and x E B }. 
The 'Union of A and B := { x E X I x E A or x E B} 

The cardinal number of the set X. 

The set of a.ll functions/maps from the set X to the set Y. 
All continuO'ILs mapa between the topologica.l spaces X and Y. 

:F(X,Y) 
C(X,Y) 
COO(X,Y) 

R 
All infinitely differentiable functions between the manifolds X and Y. 

The set of real numbers. 
C The set of complex numbers. 

§2 METRlC SPACES 

§2.1 Main Ideas 

A key idea in any topological-type structure on a set X is the sense in which a point 

x E X can be said to be "near" to another point 11 E Xi without such a concept, the 
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points in X are totally disconnected from each other. In particular, we would like to 
say that a sequence {Xn} of points in X converges to a point x E X if the elements of 
the sequence get arbitrarily near to x in an appropriate way. We will use the idea of 
the convergence of sequences to develop the theory of metric spaces and, in §6, general 
topological spaces. 

In the case of complex numbers, the "nearness" of Zl to Z2 is measured by the 
value of the modulus IZI - z21, and to say that the sequence {zn} converges to Z means 
that 

'VE > 0, 3no such that n > no implies IZn - zi < E 

. 
I Z2 

I 

Thus the disks B,(z) := { z' E c liz - z'l < E} 'trap' the sequence. That is 

'VE >0, 3no such that n > no implies Zn E B«z) 

or, in terms of the tails Tn: = {Zk I k > n} of the sequences, 

'VE > 0, 3no such that Tno C B«z) 

(2.1.1) 

(2.1.2) 

(2.1.3) 

This notion of convergence can be generalised at once to the space IRn of all 
n-tuples of real numbers with the aid of the distance function 

d(x, y) := .j(x - y) . (x - y) (2.1.4) 
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and the associated balls 

BE(X) := {y E R" I d(x,y) < e} (2.1.5) 

Then a sequence of points x" E R" is said to converge to x E R" (denoted x" - x) 
if 

Ve > 0, 3no such that n > no implies x" E B£(x) (2.1.6) 

The concept of a distance function can be generalized to an arbitrary set X by 
extracting the crucial properties (vis a vis convergence) of the Euclidean distance 
d(x,y) defined in (2.1.4). Thus a metric on a set X is a map d: X x X -114 (the 
positive real numbers) satisfying the three conditions 

d(x,y) = d(y, x) 

d(x, y) ~ 0 and = 0 {:::::} x = Y 

d(x, y) ~ d(x, z) + d(z, y) 

(2.1.7) 

(2.1.8) 

(2.1.9) 

for all X,y,z EX. If (2.1.8) is replaced by the weaker condition d(x,y) ~ 0 (i.e., there 
may be x =f:. y such that d(x, y) = 0) then X is said to be a pseudo-metric. Once again, 
convergence of a sequence can be defined in terms of the tails of the sequence being 
trapped by the balls surrounding a point. That is, x" - x means 

Ve > 0, 3no such that T"o C B£( x) (2.1.10). 

where B£(x) := {y E X I d(x, y) < e}. Note that any given sequence of points may 
not converge at all but, if it does, it converges to only one point (exercise!). In a more 
general type of topological space a sequence can converge to more than one point -
see later. 

It is important to know when two metrics can be regarded as being equivalent. 
For example, metrics £i{l)(X, y) and £i{2)(X, y) are said to be isometric if there exists a 

bijection i : X - X such that, for all x, y E X 

ti<l)(X, y) = ti<2)(i(x), i(y») (2.1.11) 

However, of greater interest to us is when two metrics lead to the same set of convergent 
sequences (and with each sequence converging to the same point in both metrics). This 
motivates the definition that ti,C.2) is stronger than ti,C.l) (or ti,C.l) is weaker than ti,C.2» if 

Vx E X, Ve > 0, 3l > 0 such that B~~)(x) C BP)(x) (2.1.12) 

(as we shall see later, this means that the topology associated with £i{2) is stronger 
than that associated with ti,C.l». A pair of metrics is said to be equivalent if each is 
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stronger than the other. Note that (i) a ct<2Lconvergent sequence is automatically ct<lL 

convergent, and (ii) equivalent metries admit the same set of convergent sequences. 
A result of considerable importance is the converse to (ii). That is, it can be shown 

that if two metries induce the same set of convergent sequences (with the same limits) 
then they are necessarily equivalent. Some of the material needed to prove this will 
be introduced later. 

§2.2 Examples of Metric Spaces 

1. If a differentiable manifold E is equipped with a Riemannian metric g, the distance 

between a pair of points x, y E E is defined to be 

(2.2.1) 

where the infimum is over all piece-wise differentiable curves t 1-+ "Y(t) in E which pass 
through the points x and y. 

2. A metric can be defined on any set X by 

{ I if x..L Yi 
d(x, y):= 0', T-if x = y. 

3. On R", some equivalent metries are 

d(x,y) :=V(x - y). (x - y) 

d(x,y):=.max IXi -Yil 
1=1 ..... 

1 

d(x,y):= (t IXi - Yil") ii 
1=1 

(2.2.2) 

(2.2.3) 

(2.2.4) 

(2.2.5) 

4. Let C([a, b), R) denote the space of all real-valued, continuous, functions defined 
on the closed interval [a,b] := {r E R I a ~ r ~ b}. A metric can be defined on 

C([a, b), R) by 

d(f,g):= lb If(t) - g(t)ldt (2.2.6) 

An inequivalent metric is 

d(f,g):= sup If(t) - g(t)1 
tela,b) 

(2.2.7) 
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Yet another inequivalent metric is 

1 

d(f,g):= {lb If(t) _ g(tWdt} 2 (2.2.8) 

5. On any set X let £2(X) denote the set of all real-valued functions f on X such that 

(i) f(x) = 0 for all but a countable set of x E X 

(ii) E.,ex (J(X))2 converges. 

Then a distance function can be defined on £2(X) by 

d(f,g) := L If(x) - g(X)12 (2.2.9) 

§2.3 Operations on Metrics 

There a number of ways in which metrics on a set X may be combined to form a new 
metric. Operations of this type are of potential interest in any quantization scheme 
as the algebraic structure they reflect may become encoded in the structure of the 
quantum operators. Some specific examples of operations on metrics are as follows. 

1. IT di , i = 1 ... n is a finite set of metrics on X then 

n 

d(x,y):= Laidi(X,y) (2.3.1) 
i=1 

defines a metric on X if ai is any set of real numbers, greater than or equal to zero 

and with at least one of them non-zero. 
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2. If dl and d2 are a pair of metrics on X then a new metric, called the join of 
dl and d2 , can be defined by 

Another metric, called the meet of dl and d2 , is defined by 

r 

dl Ad2(x,y):= inf ~)nin(dl(xk-loXk),d2(Xk-t.Xk»). 
Z=Zl···lI=Z" 

k=2 

(2.3.2) 

(2.3.3) 

where the infimum is taken over all finite subsets {x = Xl, X2 ... Xr = y} of X. It is 
interesting to note (Birkhoff, 1967) that the set of all metrics on X forms a lattice 
under these two operations (see §4 for a short introduction to lattices). 

3. If d is any metric on X, define db(X, y) := min(1, d(x, y». Then db is a bounded 

metric which can be shown to be equivalent to d. Thus if we are only interested in 
metrics up to equivalence, nothing is lost by requiring them to be bounded functions 

onX xX. 

§2.4 Some Topological Concepts in Metric Spaces 

In the present context, by 'topological' concepts I mean those dealing with the rela

tions of points and sets (the word ''topological'' comes from the Greek TlYIrOf; meaning 
"place"). In particular, if A is a subset of the metric space X, every point in X belongs 
to just one of three categories in respect of its relation to A eX. 

X 

1. x is an interior point of A if there exists a ball B£(x) such that B£(x) C A. 

2. y is an exterior point of A if there exists a ball B£(y) such that B£(y) n A = 0. 

3. z is a boundary point of A if every ball B£( z) intersects both A and its complement 

AC:= {x E X I x ~ A} 
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In addition a point x E X is said to be a limit point of A if B£(x)nA:# 0 for all E > o. 
Thus a limit point is either an interior point or a boundary point of A. 

Comments 

(a) The interior, exterior, boundary of A are defined respectively to be the set of 
all interior, exterior and boundary points of A and are denoted Int(A), Ext(A) and 
Bnd(A). It is easy to see that 

Int(A) = Ext(AC) 

Ext(A) = Int(AC) 

Bnd(A) = Bnd(AC) 

Int(A) C A 

AnExt(A) = 0 

(b) A set A is said to be open if it contains none of its boundary points. It is closed 
if it contains all its boundary points. Note that 

A is open {:=:} A = Int(A) 

A is open {:=:} A C is closed 

In the example of the real line R with its metric d(x, y) := Ix - 111, the interval 
{x E R I a < x < b} (for any a < b) is an open set; similarly {x E R I a 5 x 5 b} is 
an example of a closed set. On the other hand, {x E R I a 5 x < b} is neither open 
nor closed. 

(c) The collection of all open sets in any metric space is called the topology associated 
with the space and possesses the following very important set of properties (exercise!): 

1. The union of an arbitrary family of open sets is open. 

2. The intersection of any finite family of open sets is open. 

3. The empty set 0 and X itself are open. 

The analogous properties for closed sets are: 

1. The intersection of an arbitrary family of closed sets is closed. 

2. The union of any finite family of closed sets is closed. 

3. The empty set 0 and X itself are closed. 

(d) The topology associated with a metric space is determined equally by either the 
collection of all open sets or the collection of all closed sets. In the latter context it is 
therefore significant that 
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1. A C X is closed if and only if it contains all its limit points. 

2. A point :1: E X is a limit point of a subset A if and only if there exists a sequence 
{:1: .. } in A which converges to :1:. 

Thus a subset A is closed if and only if the limit of every convergent sequence :1: .. of 
points in A itseH lies in A. That is, the closed sets (and hence the topology) associated 
with a metric are uniquely determined by its collection of convergent sequences. This 
is the key to proving the result mentioned earlier that two metrics with the same set 
of convergent sequences are equivalent. 

(e) We will see later the precise sense in which a metric space is a special case of a 
general topological space. Thus the topological differences between, for example, a 
2-sphere, a 2-torus and a 1264-sphere are entirely coded into their respective distance 
functions, which could all be considered to be defined on some common abstract set 
X with the cardinality of the continuum. 

§3 QUANTUM THEORY OF METRlC FUNCTIONS 

§3.1 Riemannian-Geometry Driven Quantum Topology 

One way of constructing a theory of quantum topology might be to consider the set 
Metric(X) of all distance functions on a set X and try to quantize it by looking for a 
collection of hermitian operators d(:1:, y), :1:, Y E X, which are compatible in some way 
with the fundamental classical relations (2.1. 7-9). A striking property of these relations 
is that two of them are inequalities, the triangle inequality (2.1.9) being particularly 
important. It is always a non-trivial problem to quantize a system defined in terms 
of inequalities - for example, there is no analogue of the Dirac bracket that allows, 
at least formally, a quantization of a system specified by a collection of equalities -
and in the present case we are looking for a sort of "two-point" scalar quantum field 
theory on X which is consistent with these relations. 

Ideas of quantizing the distance go back to the early work of Wheeler (1964,1967) 
who conceived the possibility of quantum fluctuations in the topology being induced 
by large fluctuations in the canonically-quantized metric of three-space. Thus the 
starting point for this "Riemannian-geometry driven" quantum topology is the classical 
expression (2.2.1) for a distance function on a given three-manifold E 

d(:1:, y} := ¥ f (9at,{-y(t}}-ya(t}-yb(t}) ~ dt (3.1.1) 

where we note that since 9ab(:1:} becomes an operator in the canonical quantization of 
general relativity, so does d(:1:, y}. An expectation value < !/J,d(:1:, y}!/J > is a symmetric 
function of:1: and y and will satisfy (2.1.7) and (2.1.9) provided that 

9ab(-r(t}}-ya(t}-yb(t} (3.1.2) 
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is a well-defined positive operator so that the square root can be taken. 

An important result in classical differential geometry is the demonstration that, 
for all choices of the Riemannian metric 9, the distance function defined by (3.1.1) 
generates the same set of convergent sequences. In fact, the associated topology is 
automatically equivalent to the original manifold topology on E (Helgason, 1962). 
However, the singular nature of quantum field theory suggests that an operator version 
of (3.1.1) may lead to a distance function that no longer satisfies the strong form of 
(2.1.8) because of the existence of states 11/J > for which < 1/J, d(x, y)1/J > is only a 
pseudo-metric, that is, it may vanish for certain x i= y. This is one sense in which the 
topology imparted to the set E by the quantized d(x, y) may become state dependent. 
Thus we obtain Riemannian-metric driven quantum fluctuations of topology around 
the background manifold E. 

Unfortunately, many problems arise in attempting to implement this idea. For 

example: 

1. The conventional canonical commutation relations 1 

(3.1.3) 

are not compatible with the positivity condition on (3.1.2). This is analogous to 
the problem which arises when trying to construct a quantum theory for a system 
whose configuration space is the positive real numbers 14: the commutation relation 
[x, fi] = iii implies that 

(3.1.4) 

and hence that the (generalised) eigenvectors of x have eigenvalues which can be any 
real number. One way of resolving this difficulty is to employ the affine commutation 

relations (Klauder, 1970a,b; Isham, 1984) [x, 1r] = ilix. In a non-trivial irreducible 
representation of this algebra, the eigenvalue spectrum of x is either strictly positive or 
strictly negative and a consistent quantum theory on 1R+ can therefore be constructed 
by using only representations of the former type. The analogous affine commutation 
relations for general relativity are 

(3.1.5) 

and 

[1rb(x), 1rd(Y)] = ili(6d1rb(X) - 6b1rd(x»6(x, y). (3.1.6) 

1 The components gab(X) of the metric are taken with respect to a globally-defined 
basis for the tangent spaces of E. Such a frame always exists for a compact three
manifold and avoids the problems that can arise if the (only locally-defined) coordinate 

components 9ij(X) are employed. 
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2. More seriously, even if (formal) positivity of (3.1.2) has been achieved by 
using (3.1.5-6), (3.1.1) involves smearing the operator 9ab(X) with a tensor field that 
is concentrated on a one-dimensional curve. It is likely that the resulting operator is 
still very singular, in which case taking the square root becomes problematical. 1 

3. This also raises the question of whether we should not be looking for some 
smeared version d(f,g) of d(x, y)? If so, we must confront the difficult question of the 
precise vector space to which the test functions f and 9 should belong. In conventional 
quantum field theory the functions employed for this purpose are usually required to 
be continuous, but this notion is only meaningful if a topology is present on the space 

on which the functions are defined. So it looks as if a smearing operation might require 

the introduction of some background topological structure. This applies in principle 

to all attempts to quantize the distance functions on a set and presumably produces 
a theory of quantum fluctuations of topology around this background. In any event, 

even at the c1assicallevel it is interesting to ask what (if any) type of "generalized 
topology" can be associated with a distributional distance function. 

These difficulties (especially 2.) have proved intractable and no one has yet man
aged to produce a theory of quantum topology based just on the canonical quantization 
of general relativity augmented with an operator version of (3.1.1). Thus other ways 

must be sought for tackling the quantization of distance functions. One possibility is 
to "invert" (3.1.1) by using d(x, y) as a canonical variable instead of the metric tensor 
gab( x). The idea would be to find a complete set of canonical variables involving d( x, y) 
plus some suitable conjugates which are canonically equivalent at the c1assicallevel to 
the original pair (gab,pcd) but which are (by construction) adapted to the problem in 
hand and which can be quantized without reference to the traditional commutation 
relations. The idea of using d(x, y) as "half" of the set of canonical variables seems 
plausible but it has not yet been developed. Therefore, for the rest of this section I will 
consider a more ambitious approach in which all references to background manifolds 
and differential geometry are dropped and an attempt is made to quantize directly a 
system whose "configuration space" is the set Metric( X) of all metric functions on a 
given set X. 

§3.2 Quantization On Metric(X) 

The idea here would be to try to construct directly operators d( x, y) which commute 

with each other 

(3.2.1) 

1 But note that Colombeau has recently developed an approach to generalized func

tions in which there exists such an exotic entity as the square root of the Dirac delta
function (Phil Parker, private communication). It would be interesting to see if this 

novel approach has any application in the context of quantum gravity/topology. 
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and then to find a collection of conjugate variables which can maintain consistency 
with the defining conditions (2.1.7-9) for a classical distance function. By far the most 
significant of these is the "triangle inequality" (2.1.9) which is a non-local analogue of 
the situation in Riemannian geometry whereby, for each x EX, the Riemannian metric 
gab( x) is required to be a positive-definite matrix. It is this condition that is guaranteed 
(at least formally) by replacing the canonical commutation relations with the affine 
relations (3.1.5-6). The heart of the group-theoretical quantization scheme employed 
in the construction of (3.1.5-6) lies in the existence of a vector space W in which the 
configuration space Q of the system can be embedded as an orbit of a group G which 
acts linearly on this vector space (Isham, 1985). The general theory then shows that 
a suitable canonical group is the semi-direct product of G with the dual of W. In the 
case of Riem(E) , the vector space can be chosen to be the set of all covariant rank-2 
symmetric tensor fields on E and the appropriate group is the set COO(E, GL(3, JR» of 
GL(3, JR)-valued differentiable functions on E - this is the group whose (non-abelian) 
algebra is represented by (3.1.6). The action of A E COO(E, GL(3, JR» on a tensor field 

tab is 
(3.2.2) 

In the case of the space Metric(X), a natural choice for the vector space would be the 
set :F(X x X,JR) of all JR-valued functions on X x X. 1 The challenge then is to find 
a Lie group that acts on the space :F(X x X,JR) such that the subspace Metric(X) 
appears as one of the orbits. The generators of such a group could then be used 
as the canonical conjugates to the variables d( x, y) and would preserve the classical 
conditions on a distance function in the same sense that the affine relations (3.1.5-6) 
are compatible with the restrictions on a metric tensor. However, I do not know of 
any direct way of constructing such a group and therefore a different approach must 
be found. 

One possibility is to consider some fixed Banach space B and to use the set of all 
injections p : X - B to generate distance functions according to the formula 

dp(x,y):= N(p(x) - p(y») (3.2.3) 

where N is the (fixed) norm on B. The idea now would be to quantize the vector space 
of maps p so that the quantum distance function becomes 

d(x,y):= N(p(x) - P(y»). (3.2.4) 

It can be shown (Isham, 1988) that there exists a B such that every bounded metric 
can be obtained in this way (which entails no real loss of generality since every metric is 

1 A better choice might be the subspace of all such functions that are bounded. 

This has the advantage of possessing a natural Banach space structure obtained from 
the sup-norm. This space can be employed if we restrict our attention to bounded 

metrics. 
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equivalent to one that is bounded). The main difficulty with this approach is the extra 
"gauge" degrees of freedom which arise from the fact that many different embeddings 
of X in 8 yield the same distance function via (3.2.3). It is possible to fix this gauge 
in some simple model situations in which X is a finite set, but it is not clear how to 
proceed in general. 

Another approach, "dual" to the above, is to choose a vector space 8 and a fixed 
embedding Po of X in 8, and then to quantize the set of all norms on B. Thus the 
quantized operator d(x, y) is now obtained from (3.2.3) in the form 

d(x,y):= .IV (Po (x) - Po(y») (3.2.5) 

and the problem reduces to finding a vector space 8 such that all distance functions 
can be obtained in this way and then to construct the quantum theory of norms on 
such a space. In the latter context, we recall that a norm is a real-valued function N 
on 8 such that 

N(rv) = IrIN(v), Vv E B, Vr E R 

N(v) 2= 0 and = 0 <=> v = 0 

N(u+v) ~ N(u)+N(v), Vu,v E 8 

(3.2.6) 

(3.2.7) 

(3.2.8) 

Of course, the problem of constructing a quantum operator .IV which is compatible 
with these conditions is similar in many respects to the general metric problem we are 
trying to solve. However, (3.2.6-8) are simpler than (2.1.7-9) in several significant ways 
and the subject of "quantum norm theory" should be more tractable than ta.ckling 
the metrics on X directly. A concrete attempt in this direction is contained in a 
forthcoming paper with Renteln and Kubyshin (1989). 

The idea of quantizing the set of all distance functions on a set X is attractive 
because it bears at least some resemblance to a more conventional quantum field theory 
with d(x, y) regarded as a two-point quantum field. However, in practice this idea has 
not been taken very far and I will turn now to the most ambitious programme of all: 

the quantization of the collection of all topologies on a set X, not just those that can 
be obtained from a distance function. 

§4 PARTIALLY ORDERED SETS AND LATTICES 

§4.1 Partially Ordered Sets 

In developing the general theory of topology it is useful to emphasise certain algebraic 
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properties that arise naturally in this context and which are also central to the quantum 
programme to be discussed later. The relevant concepts are 'partially ordered sets' and 
'lattices' which play an important role in many branches of mathematics. The classic 
reference for the latter is Birkhoff (1967); another useful source is Gratzer (1978). 

Definitions 

1. A relation R on a set X is a subset of X xX, and x E X is said to be R

related to y E X (denoted xRy) if the pair (x,y) ERe X x X. Note that a function 
f: X -+ X defines a relation {(x,f(x) I x E X} but there are many relations that are 
not derived from functions. 

2. A partially ordered set (or poset) is a set X and a relation ~ on X which is: 

(PI) Reflexive: for all x E X, x ~ x 
(P2) Antisymmetric: 

(P3) Tronsitive: 
for all x,y E X, x ~ y and y ~ x implies x = y 
for all x,y,z E X, x ~ y and y ~ z implies x ~ z. 

The notation x -< y will be used if it is necessary to emphasise that x ~ y but 
x #- y. Note that any particular pair of elements x, y E X may not be related either 
way. However, if it is true that for any x, y E X either x ~ y or y ~ x then X is said 
to be totally ordered. 

3. An element y in a poset X covers another element x if x -< y and there is no z E 
X such that x -< z -< y. This is denoted diagramatically by 

A finite partially ordered set is determined uniquely by its diagram of covering ele
ments. 

4. For our later use we recall also the definition of an equivalence relation on a 
set X. This is a relation R that is: 

(El) Reflexive: 
(E2) Symmetric: 

(E3) Tronsitive: 

for all x E X, xRx 
for all x, y EX, xRy implies yRx 

for all x, y, z EX, xRy and yRz implies xRz. 

It should be noted that any equivalence relation R on a set X partitions X into 
disjoint equivalence classes in which all the elements in any class are equivalent to each 
other. The set of all such equivalence classes is denoted X/R. An important example 
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in theoretical physics is the set of gauge orbits of the action of a gauge group on the 
space of connections in a Yang-Mills theory. 

Examples 

1. The real numbers It are totally ordered with respect to the usual ordering 
~. Note than no r E It possesses a cover since given any pair of real numbers there 
always exists a third one which lies between them. 

2. The set Metric(X) of all metric functions on a set X can be partially ordered 
by saying that tf!..1) ~ tf!..2) if the open balls for the two metrics satisfy (2.1.12). This 
means that the topology associated with tf!..2) is stronger than that associated with 
tf!..1) and, as we shall see later, topologies can be partially ordered by the relation of 
one being stronger than the other. However, this relation is not a partial ordering on 
Metric(X) since del) ~ tf!..2) and tf!..2) ~ tf!..1) does not imply that tf!..1} = tf!..2) but only 

that the two metrics are equivalent (that is, they admit the same set of convergent 

sequences). 

3. IT X is any set, the set of all subsets of X is denoted P(X) and is sometimes 
known as the power aet of X. Thus, A eX<==> A E P(X). In the general theory 
of topological convergence (to be developed later) the central idea is to associate with 
each x E X a collection N(x) of subsets of X (the "neighbourhoods" of the point x) 
which detemline whether or not a sequence converges to x. Thus N(x) c P(X) or, 
equivalently, N(x) E P(P(X». Similarly, the collection N:= {N(x) I x E X} can be 
regarded as a subset of P(P(X» or as an element of P(P(P(X))). 

The set P(X) has a natural partial ordering defined by 

A~BmeansACB (4.1.1) 

where A, B eX. Note that the notation A c B includes the possibility that A = B. 
The covers of a subset A are all subsets of X obtained by adding a single point to A. 

The simplest non-trivial example is the partial ordering diagram for the two

element set X = {a,b} : 

{a,b} 

/' "" {a} {b} 

~0~ 
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while the diagram for X = {a, b, c} is 

4. Partially ordered sets play an important role in classical general relativity. Let 
M be a spacetime manifold equipped with a Lorentzian metric. Then if q,p E M, 
define q :) p if p lies in the causal future (Kronheimer and Penrose, 1967) of q. This is 
a partial ordering and, rather remarkably, it can be shown that the entire metric (up to 

an overall conformal factor) can be recovered from this ordering (Hawking et al, 1976; 
Malament, 1977). This feature has been exploited in a variety of suggestions that 

spacetime should be regarded as a discrete set but still with a causal structure/partial 

ordering (for example: Finkelstein, 1969; t'Hooft, 1979; Bombelli et al, 1987a,b). 

§4.2 Lattices 

Definitions 

1. In any poset P, a join (or least upper bound) of a,b E P is an element avb E P 
such that: 

(i) a V b is an upper bound of a and b. That is, a :) a V b and b :) a V b. 

(ii) If there exists c E P such that a :) c and b:) c then a vb:) c. 

2. A meet ( or greatest lower bound) of a, b E P is an element a AbE P such that: 

(i) a A b is a lower bound of a and b. That is, a A b :) a and a A b :) b. 

(ii) If there exists c E P such that c :) a and c :) b then c :) a A b. 

Note that, if it exists, a join or meet is necessarily unique (exercise!). 

3. A lattice is a poset C in which every pair of elements possesses a join and a 

meet. 

A unit element 1 is such that, for all a E C, a :) 1. 

A null element 0 is such that, for all a E C, 0 :) a. 
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4. The lattice is said to be complete if a greatest lower bound and a least upper 
bound exist for every subset S of C (all that is guaranteed by the definition of a lattice 
is that these bounds will exist for all finite subsets of C). These bounds will be denoted 
1\ S and V S respectively. 

5. A lattice is distributive if, for all a, b, c E C 

afo. (bv c) = (afo. b) V (a fo.c) (4.2.1) 

This is equivalent to 
a V (b fo. c) = (a V b) fo. (a V c). (4.2.2) 

6. In any lattice one always has (exercise!) 

av(bfo.c):5 (aVb)fo.c (4.2.3) 

for all a, b, c E C such that a :5 c. If equality holds for all such a, b, c then the lattice 
is said to be modular. Every distributive lattice is modular but there exist modular 
lattices that are not distributive. 

7. A lattice is complemented if it contains both a unit element and a null element 
and if to each a E C there exists a' E C (not necessarily unique) such that 

a Va' = 1 

a fo. a' = 0 

8. A Boolean algebra is a complemented, distributive lattice. 

Comments 

(4.2.4) 

(4.2.5) 

1. All the lattices we will be considering will have both a unit element and a null 
element. 

2. a :5 b {::::::} a fo. b = a {::::::} a V b = b (4.2.6) 

3. For all a E C, 1 fo.a = a. Thus C is a semigroup with respect to the I\-operation 
with 1 as the unit element; it is not a group since no element other than 1 has an 

inverse. Similarly, 0 V a = a and hence C is also a semigroup with respect to the 
V-operation with 0 as the unit element. In addition we have, for all a E C, 

1 Va = 1, and 01\ a = O. (4.2.7) 

Thus 1 and 0 are absorptive elements for the v-semigroup and the I\-semigroup re
spectively. 
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4. If L, is distributive then any complement a' of an element a E L, is unique. 

Examples 

1. An example of a Boolean algebra. a A b = 0 and a V b = 1. 

o 

2. Two non-distributive lattices with 5 elements. 

1 1 

c 

o 

3. The set P(X) of all subsets of X is a Boolean algebra with 

AAB:=AnB 

A,vB:=AuB 

and A ~ B if and only if A c B. The unit and null elements are 

1=X 

0=0 

(4.2.8) 

c 

(4.2.9) 

(4.2.10) 

(4.2.11) 

The lattice theory complement A' of A C X is the set-theoretic complement AC • 

Clearly this lattice is complete. 

4. The set of all metrics on a set X can be partially ordered by ([t.l) ~ ([t2) if, 
for all x.y E X. d\l)(x.y) ~ ([t2)(x,y). It becomes a lattice under the join and meet 

operations defined in (2.3.2-3). Note however that there is no null or unit element since, 
given any metric d(x, y), a larger (resp. smaller) metric can always be constructed by 

multiplying d(x, y) by a positive real number that is greater than (resp. less than) 1. 

151 



5. H V is a vector space, the set of all linear subspaces of V is a lattice with 

(4.2.12) 

and with Wl V W2 defined to be the smallest subspace containing the pair of subspaces 
Wl and W2 • 

Note that if V is a Hilbert space, the lattice of linear subspaces is complemented 
with the complement of a subspace W being defined as its orthogonal complement 
with respect to the Hilbert space inner product <, >: 

W' := W J. = { v E V I Vw E W, < v, w >= 0 } (4.2.13) 

Correspondingly, the set of all hermitian projection operators on V also forms a com
plemented lattice. This particular lattice has been used extensively in investigations 
into the axiomatic foundations of general quantum theory (Jauch, 1973; Varadarajan, 
1968). It differs strikingly from the analogous lattice of propositions in classical me

chanics. The basic type of yes-no question that can be asked there is whether the 
point in phase space representing the state of the system does, or does not, lie in 
any particular subspace of the phase space. Thus the propositional lattice of classical 
physics is essentially the lattice of subsets of phase space. This distinction between the 
quantum and classical lattices has given rise to the interesting subject of "quantum 
logic". 

A lattice satisfies several very important algebraic relations: 

(L1) Idempotency: 
(L2) Commutativity: 
(L3) Associativity: 

a V a = a, a /\ a = a 
a V b = b V a, a /\ b = b /\ a 
(aVb)vc=aV(bVc) 
(a/\b)/\c=a/\(b/\c) 

In addition, any lattice satisfies the absorptive laws: 

(L4) a /\ (a V b) = a, av(a/\b)=a 

Conversely, there is the important theorem: 

Theorem. 

A non-empty set £, equipped with binary operations (Ll)-(L4) can be given a 
partial ordering by defining 

The resulting structure is a lattice in which the meet and join operations are a /\ b and 
a V b respectively. 
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§5 TOPOLOGICAL SPACES 

§5.1 Examples of non-metric convergence 

The general theory of topology may be approached in a number of different ways 
which are reflected in the variety of styles to be found in the many textbooks that are 
available on the subject. We will study the theory of general topological spaces in terms 
of the convergence of sequences and generalizations thereof. A selection of particularly 
useful references in this context is Bourbaki (1966), Csazar (1978), Dugundji (1966) 
and Kelly (1955). 

In a non-metric space X, it is no longer possible to define "nearness" using a real 
number. Instead we attempt to "trap" the tails of a sequence with subsets of X which 
are defined as far as possible to be analogues of the balls B~( x) in a metric space. A 
generalized structure of this type will consist of a suitable collection N = {N(x) I 
x E X} of families N(x) (''neighbourhoods'' of x) of subsets of X and convergence is 
defined purely in terms of these subsets. Specifically, a sequence {xn } in X is defined 

to converge to x with respect to N(x) (denoted Xn -"!!4 x) if 

VN E N(x), 3 no such that n > no implies Xn EN (5.1.1) 

(note that this does not rule out the possibility that a sequence may converge to many 
different points at once). 

In order that the sequence Xn := x for all n should always converge to x (which 
seems a minimal requirement for the concept of 'convergence' to be useful) it is nec
essary that each neighbourhood of x should contain the point x. We could start to 
consider other a priori requirements on these neighbourhoods but let us first give 
some simple examples of convergence which are not associated with any metric or 
pseudo-metric. 

1. In C U {oo}, if Zn E C C C U {(x)} we define Zn -+ 00 to mean that, for all 
E > 0, there exists some no such that n > no implies IZnl > E. A relevant family of 
neighbourhoods of the symbol 00 is therefore the collection of sets 

N~( (0) := {(x)} U { Z E C Ilzl > E} (5.1.2) 

where E is any positive real number. (Strictly speaking, this can be derived from a 
metric topology on the Riemann sphere.) 

2. Let F([a, b], R) denote the set of all real-valued functions on the closed interval 
[a, b] eRA sequence of functions In is said to converge pointwise to a function I if, 
for all t E [a, b], the sequence ofreal numbers In(t) converges to the real number I(t) 
in the usual way. That is 

\;It E [a, b], VE > 0, 3no(E, t) such that n > no implies I/n(t) - l(t)1 < E. (5.1.3) 
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A suitable family of neighbourhoods of I E F([a, b], R) is clearly all sets of the form 

NtAf) := {g E F([a, b], R) Ilg(t) - l(t)1 < E} (5.1.4) 

where t in any real number in the closed interval [a, b] and E is any positive number. 

I -;-

", "-

'" " / 

'" .-

a t b 

§5.2 Neighbourhood Spaces 

Two crucial questions are 

1. What properties must be possessed by the collections N(x) of subsets of X in 
order to give a "useful" notion of convergence? 

2. When do two different families of neighbourhoods lead to the same sets of 
convergent sequences? 

It turns out to be more useful to start with the second question, in which case the first 
important concept is the following: 

Definition 

IT Ot, f3 C P(X), the collection f3 of subsets of X is said to be finer that the 
collection Ot if, for each A E Ot, there exists a subset B E f3 such that B C A. This will 
be denoted by Ot I- f3. 

Comments 

1. IT Ot C f3 then it is trivial that f3 is finer than Ot. 

2. The definition (5.1.1) of convergence with respect to N(x) is equivalent to the 
statement that the set T := {Tn} of tails of the sequence is finer than the family N( x). 

3. IT Ot I- f3 and f3 I- "Y then Ot I- "Y. In particular, if N(2)(x) is finer than 
,N(l)(X) then any sequence {xn } that converges to x with respect to N(2) (x) necessarily 
converges with respect to N(l)(X). 
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The families.N'(2)(x) and .N'(l) (x) are defined to be equivalent (denoted.N'(2)(x) e! 

.N'(I)(X» if each is finer than the other. This implies that both sets of neighbourhoods 
of x E X produce the same collection of sequences that converge to x. This defines an 
equivalence relation on subsets of P(X). That is 

.N'(x) e! .N'(x) 

.N'(l)(x) e! ,N"(2)(X) implies ,N"(2)(x) e! ,N"(1)(X) 

,N"(1)(X) ~ ,N"(2)(x) and ,N"(2)(x) ~ ,N"(3)(x) implies ,N"<l)(X) ~ ,N"(3)(x) 

(5.2.1) 

(5.2.2) 

(5.2.3) 

As far as convergence is concerned, we are only interested in neighbourhoods up to 
equivalence. However, the situation is not totally dissimilar to that in a gauge theory 
and, in the present context, it is useful to find a natural "gauge choice"; that is, a 
set of conditions on the elements of .N'(x) that select a unique representative from the 
class of equivalent collections of neighbourhoods .. We will achieve this as follows. 

Firstly, given any family of subsets .N'(x), define .N"(x) to be the union of .N'(x) 
with the collection of all finite intersections of sets belonging to .N'(x). Clearly.N"(x) 
is finer than .N'(x) (since .N'(x) c .N"(x» and hence if Xn converges to x with respect 
to .N"(x) it also converges with respect to .N'(x). 

Conversely, if Xn ~ x then, for any finite collection Ab A2 ... Am E .N'(x), there 
exists nl, n2 ... nm such that 

n > nl implies x,. E Al 

n > n2 implies x,. E A2 

n > nm implies x,. E Am. 

Thus n > max( nb n2 ... nm) implies that Xn E Al () A2 () ... () Am and so x,. ~) x. 
Hence there is no loss of generality in choosing .N'(x) to be closed under the formation 
of finite intersections of its members. Thus .N'(x) can be taken to be a subsemigroup 
of the A-semigroup structure on the lattice P(X) (with the unit X if this is included 
in .N'(x». 

It is clear that the convergence properties of the family of neighbourhoods .N'(x) 
is not affected if we add to .N'(x) any subset of X that is a superset of an element 
of this family. In any lattice C, a subset U of C is said to be an upper set if a E U 
implies that b E U for all bEe satisfying a ~ b. If A is any subset of C, the upper set 
generated by A is defined to be 

r(A) := {b E C 13a E A with a ~ b} (5.2.4) 
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In particular, if a E C, 

Ha) :=H{a}) = {b E C I a:5 b} (5.2.5) 

and, for the lattice P(X), if 01 C P(X), 

HOI) = {B eX 13A E 01 with A c B}. (5.2.6) 

Note that 

a) In P(X), 01 9!!t (01) 

b) If 01 I- {3, and {3 is upper, then 01 c {3. Therefore, if 01 and {3 are both upper it 
follows that 01 9!! {3 if and only if 01 = (3. Thus each equivalence class contains precisely 
one upper family and hence there is no loss in generality in requiring the families N (x) 
to be 

(i) closed under finite intersections; 

(ii) upper families. 

These two conditions constitute our "gauge choice" for the elements in N(x) and 
it is interesting to note that they are characteristic of an important type of algebraic 
object in a general lattice: 

Deiinitions 

1. An ideal in a lattice C is a subset ICC such that 

(i) a, bEl implies a V bEl 

(ii) a E I and b :5 a implies bEl. 

2. A dual ideal in a lattice C is a subset DeC such that 

(i) a, bED implies a AbE D 

(ii) a E D and a :5 b implies bED. 

3. An ideal I is proper if 1 ¢ I, that is, I -::f. c. 

A dual ideal D is proper if 0 ¢ D, that is, D -::f. C. 

Comments 

1. t (a) := {b E C I a :5 b} is a dual ideal (exercise!) called the principal dual 
ideal generated by a. 

t (a) := {b E C I b :5 a} is an ideal (exercise!) called the principal ideal 
generated by a. 
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2. If II and 12 are ideals then so is II n 12. Then if S is any subset of C, 
Is := n{ I I SCI} is an ideal called the ideal generated by S. There is a similar 
construction for dual ideals. 

Now we apply these concepts to the lattice P(X). In particular, a filter :F on X 
is defined to be a proper dual ideal in the lattice P(X). Thus:F is a family of subsets 
of X such that 

(i) 0 ~ :F 

(ii) :F is closed under finite intersections 

(iii) :F is an upper family. 

Note that a principal filter is therefore the set of all supersets of some A C X. 

It follows from the above that our final form of the idea of convergence can be 
cast in terms of filters on X: 

Definition 

1. A neighbourhood structure N on a set X is an assignment to each x E X of 
a filter N(x) on X all of whose elements contain the point x. The pair (X,N) (or 
simply X if N is understood) is called a neighbourhood space (Csaszar, 1978). 

2. A sequence {xn } converges to x with respect to N if 

'<IN E N(x), 3no such that n > no implies Xn EN. (5.2.7) 

This is about the most general notion of convergence of sequences that one could 
conceive and forms the foundation for a variety of special structures in which the 
filters N(x) are restricted in some way. As we shall see shortly, a 'topology' is one 
such example. 

3. A filter base B is a family of non-empty subsets of X such that if A, B E B 
then there exists C E B such that C cAn B. 

It is easy to show that 

1. Every filter is a filter base. 

2. If B is a filter base then t (B) = {B I 3A E B such that A C B} is a filter 
equal to the filter generated by B. B is said to be a base for this filter. In practice, it is 
often very convenient to deal with filter bases rather than the (frequently much larger!) 

filters which they generate. Nothing is lost in so doing since a sequence converges with 
respect to a filter if and only if it converges with respect to any associated filter base 
(convergence with respect to a filter base is defined in the obvious way). 
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3. If B is a filter base and if a C P(X) is such that a e! B, then a is also a filter 
base. 

4. A non-empty collection B of subsets of X is a base for a specific filter :F on X 
if and only if 

(i) B C:F 

(ii) If A E :F, there exists B E B such that B C A 

5. The collection T of tails of a sequence {xn } form a filter base and the condition 
for convergence can be rewritten as Xn converges to x with respect to N if and only if 
T is finer than N( x). The significance of this version is that it admits a very important 
generalization to an arbitrary filter base B: 

Definition 

A filter base B converges to x E X if B is finer than N(x). 

Note that this is true if and only if B is finer than any filter base B(x) for N(x). This 
is frequently useful in practice. Note also that collections of neighbourhoods ,N(1) and 
,N(2) that are equivalent admit the same set of convergent filters. 

Examples 

1. In a metric space, the set of balls BE(x), E > 0, form a filter base B(x) for the 
filter N(x) of all neighbourhoods of x. 

2. In C U {oo}, the sets NE(oo), E > 0, form a filter base for the filter of all 
neighbourhoods of 00. 

3. On the space of functions :F ([a, bJ, R), we defined a collection of neighbour
hoods of f as Nt,E(f) := {g Ilg(t) - f(t)1 < E}. These form what is known as a filter 
subbase. That is, the set of all finite intersections of sets of this type forms a filter 
base. 

Many of the topological concepts introduced in the context of metric spaces pos
sess precise analogues in a neighbourhood space. For example, an interior point of a 
set A C X is any point x such that there exists N E N(x) with N c A. The definitions 
of exterior point, boundary point and limit point generalize in a similar way and the 
definitions of open and closed sets are as before. It is important to note that none of 
these concepts change if the filter N(x) is replaced by any filter base equivalent to it. 

As in the case of metric spaces, A is open if and only if AC is closed and if and 
only if A = Int(A). Similarly, (i)" and X are open and closed; (ii) the collection of all 
open sets is closed under finite intersections and arbitrary unions; (iii) the collection 
of all closed sets is closed under arbitrary intersections and finite unions. It is also the 
case that A is closed if and only if it contains all its limit points. 
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§5.3 Topological Spaces 

The concept of a neighbourhood space is a considerable generalization of that of a 
metric space and, as we have seen, it allows meaningful, set-theoretic based, ideas of 
'nearness' and 'convergence'. However, the collective experience of the mathematical 
community is that it needs to be supplemented with an additional requirement in 
order to yield a really useful tool. The problem with a general neighbourhood space 
is the absence of any a priori relation between the filters N(x) at different points x 
in X. The crucial extra requirement which has emerged over the years is that any 
neighbourhood of a point x should also be a neighbourhood of all points "sufficiently 
near" to x. It is fascinating to ponder whether or not this is also relevant for the 
mathematical model which is to describe physical spacetime. This is certainly what is 
assumed in, for example, classical general relativity but it is by no means obvious that 
it should also hold sway in the quantum realm. In any event, the precise mathematical 
definition is as follows: 

Definition 

A topological space is a neighbourhood space (X,N) in which, for all x E X, it 
is true that, for all N E N(x) there exists Nl E N(x) such that, for all y E Nt, 
N eN(y). 

X 

The following theorem (exercise!) is of considerable importance: 

Theorem 

A neighbourhood space (X, N) is a topological space if and only if each filter 

N(x) has a filter base consisting of open sets. 

Thus, in a topological space, the neighbourhoods are essentially determined by the 

open sets alone; this would not be true in a more general neighbourhood space. 
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Examples 

1. Every metric or pseudo-metric space is a topological space since the balls 
B~(x) := {y E X I d(x,y) < f} are open (exercise!) and also form a basis for the 

neighbourhoods of x. These spaces have many important properties. For example, 
every metric space is first countable, that is, there exists a countable basis for the 
neighbourhoods of each point (simply choose the set of all balls with rational radii). 

Note however that finite metric spaces are rather uninteresting: any such space auto
matically possesses the discrete topology (see below) defined as the topology in which, 

for each x E X, N(x) is the set of all subsets of X containing the point x (exercise!). 

2. The neighbourhoods of a point x E C U { oo} are generated by the usual open 

discs if x E C C C U {oo} and by the sets N.( 00) if x = 00. These sets are open, and 
hence C U { oo} is a topological space. 

3. In the neighbourhood structure associated with pointwise convergence on the 
space of functions .F([a,b],R), the sets Nt,.(f) are open (exercise!) and therefore so 

are their finite intersections. But these form a filter base for N(f) and hence this 
function space is a topological space. 

4. The number of topologies that can be placed on a set X is much smaller 

than the number of neighbourhood structures. For example, on a finite set X with 

IXI = n there are 2n2 - n different neighbourhood structures (exercise!) but the number 
of topologies is less. Thus on X = {a, b, e} there are 64 such structures whereas (see 
later) there are only 29 topologies. An example of a neighbourhood structure that is 
not a topology is N(a) = {{a,b},X}, N(b) = {{b, e},X} and N(e) = {{a,e},X}j the 
only open sets are 0 and X, so they cannot form a basis for the neighbourhoods. 

We have seen that the collection of all open sets in a neighbourhood space satisfies 
the three conditions: 

o and X are open 

An arbitrary union of open sets is open 

Any finite intersections of open sets is open 

and one of the central properties of a topological space (closely related to the theorem 
mentioned above) is that the converse is true: 

Theorem 
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Let T be any family of subsets of a set X satisfying the three conditions: 

(r1) 0 and X belong to r 
(r2) An arbitrary union of elements of r belongs to r 

(r3) Any finite intersection of elements of r belongs to r 



Then r is the family of open sets of a topology on X with a neighbourhood base 
B( x) := { 0 E r I x EO} for all x EX. 

Comments 

1. Let N(X) and reX) denote respectively the set of all neighbourhood structures 
on X and the set of all topologies on X. Then reX) C N(X); that is, there is an 
injection i : reX) -+ N(X). Now the open sets of an arbitrary neighbourhood structure 
N on X obey the conditions in the theorem above and therefore generate a topological 

space associated with N. This defines a map k : N(X) -+ reX) and, in the diagram 

reX) ~ N(X) ~ reX), (5.3.1) 

it can be shown that, for any topology r, k 0 i(r) = r. Thus the axioms (r1) - (r3) 
constitute a complete, alternative, way of defining what is meant by a 'topology' on a 
set X. In fact, many introductions to general topology start at this point by defining a 
topology on a space X to be a collection r of subsets of X which satisfies the conditions 
(r1) - (r3). For this reason, we will denote a topological space by (X, r) rather than 
(X,N). 

2. The set reX) of all topologies on a set X is a partially ordered set with rl ~ r2 
defined to mean that every rl-open set is automatically r2-open (that is, r2 has ''more'' 
open sets than rl). We say that rl is weaker or coarser than r2 and that r2 is stronger 

or finer than rl. The strongest topology is P(X) (that is, every subset of X is open) 
and is called the discrete topology. The weakest topology (the indiscrete topology) is 
just {0,X}. This notation is compatible with the use in §2.1 of the words "stronger" 
and "weaker" in relation to metrics. We will make considerable use of this ordering 
when discussing the quantization of general topologies. 

3. As in the case of neighbourhood structures, it is convenient to introduce the 
notion of a base, or subbase, for a topology. Thus a collection B of subsets of X is said 
to be a base for a topology r if every r-open set can be written as a union of members 
of B. A collection is said to be a subbase if the set of all finite intersections of elements 
of the collection forms a base for the topology. 

4. In practice, topologies are almost always defined in terms of their open sets or 
of a base or subbase for the open sets. For example, an interesting topology on any 
infinite set X is the cQjinite topology defined to be the one whose open sets are 0 and 
the complements of all finite subsets of X. 

5. Partially ordered sets possess several natural topologies related to their ordering 
structure. One of the simplest is the collection of all upper sets which is clearly a 
topology since it is closed under arbitrary unions and intersections. The collection of 
all lower sets yields another example. 

6. An equivalent way of defining a topological structure on a set X is as a 

collection C of subsets of X that (i) include 0 and X; (ii) are closed under arbitrary 
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intersections; and (iii) are closed under finite unions. The complements of the elements 
in this family then form the collection of open sets for a unique topology on X in which 
the original collection C is the family of closed sets. Thus a topology is also determined 
by its collection of closed sets, that is, sets which contain all their limit points. In this 
context it is important to note that if Xn is a sequence in A C X that converges to 
x then x is a limit point of A. However, unlike the situation for metric spaces, the 
converse may not be true. That is, a subset A of a general topological space may 
have a limit point to which no sequence of elements in A converges. But what is 
true is that there will always be a filter on A that converges to the limit point. Thus 
a general topological structure is determined by its collection of convergent filters. 
A necessary and sufficient condition for a topology to be determined by the set of 
convergent sequences alone is that it be first countable. 

It is worth remarking that generalised convergence can also be discussed using 
what are called nets. First we must define a directed set. This is any partially ordered 
set D with the additional property that if 0', f3 E D then there exists '"Y E D such that 
0' ~ '"Y and f3 ~ '"Y. A net on a set X is any function f : D -+ X for some directed set D 

and we say that the net converges to a point x E X with respect to a neighbourhood 
structure N on X if 

'fiN E N(x), 30' E D such that '"Y t 0' implies f('Y) EN. (5.3.2) 

The set of all positive integers is a special example of a directed set and so it is clear 
that (5.3.2) is a far-reaching generalization of the definition (5.2.7) of a convergent 
sequence. One can prove that there is a one-to-one correspondence between filters and 
nets, and therefore there is no loss in using the latter. Many authors prefer this (for 
example, Kelly 1955) because of the intuitive similarity between nets and sequences. 
I have elected to concentrate on filters because their definition as dual ideals in the 
lattice P(X) is in line with my desire to emphasise the algebraic aspects of general 
topology. 

7. A most important concept in topology is that of a "compact" space which 
means a space that is, in some sense, of "finite size". The classic examples of compact 
spaces are spheres, tori, or any other subspaces of euclidean space m.n that are closed 
and bounded (a subspace A is bounded if sup{ d( x, y) I x, y EX} < (0). One 
characteristic feature of such a set is that any infinite subset of points must necessarily 
cluster together in some way. More precisely, it can be shown that every sequence 

{xn } in a closed and bounded subset of m.n necessarily has at least one accumulation 
point. That is, a point x such that any neighbourhood of x is visited infinitely many 

times by the sequence: 

'fiN E N(x), 'fin, 3n' > n such that X n ' EN 

or, in terms of the tails Tn of the sequence, 
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One might try and reverse this result and define a general compact space to be 
any topological space in which (5.3.4) is true. However, it turns out that this is too 
broad and the most useful definition is to strengthen (5.3.4) by including all filter 
bases, not just the ta.i1s of sequences. More precisely, a topological space X is said 
to be compact if every filter base B on X has an accumulation point. That is, there 
exists x E X such that 

VNEN(x), VAEB, NnA;l:0 (5.3.5) 

§5.4 Morphisms in Topology 

The concept of a 'morphism' appears in many branches of mathematics as a structure
preserving map between two sets equipped with the same type of mathematical struc

ture. The first relevant question in the present context is whether a map f : X - Y 
between a pair of sets X and Y induces any maps between P( X) and P(Y) that respect 
the lattice structure. From a purely set-theoretic perspective, there are two natural 
maps, one from P(X) to P(Y) and the other from P(Y) to P(X): 

1. The induced map from P(X) to P(Y) is defined on a subset A C X by 

f(A):= {f(x) E Y I x E A} c Y (5.4.1) 

Then 

(i) f(A U B) = f(A) U feB) (5.4.2) 

and 

(ll) f(A n B) c f(A) n feB). (5.4.3) 

Note that the equality may not hold in (5.4.3) and hence the induced map from P(X) 
to P(Y) does not preserve the lattice structure. 

2. The second induced map is from P(Y) to P(X) and is defined on A C Y by 
the inverse set map 

f-l(A):= {x E X I f(x) E A} (5.4.4) 

which, it should be noted, is well-defined even if f : X - Y is not one-to-one. This 
induced map satisfies 

(i) f-l(A U B) = f-l(A) U f-l(B) 

(ll) f-l(A n B) = f-l(A} n f-l(B} 

(5.4.5) 

(5.4.6) 

with generalizations to arbitrary families. Hence it does preserve the lattice operations. 

This result motivates (and renders consistent) the definition of a continuous map 

in the following way. 
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Definition 

A map f: (X,T) --+ (Y,T') is said to be continuous if, for all 0 E T', f-1(0) E T. 

Comments 

1. It follows from (5.4.5-6) that a continuous map induces a homomorphism from 
the lattice T' into the lattice T. It is in this sense that a continuous function is a 
morphism in general topology when the theory is viewed from the perspective of the 
lattice of open sets. The significance of this will be touched on later in the context of 
the theory of frames and locales. 

2. A more intuitive idea of continuity is that a small variation in x produces only 
a small variation in the value f(x) of the function. In the absence of a metric, the 
concept of "small" must be defined in terms of the neighbourhoods of the points x and 
f(x), and in fact it can be shown that a function f : (X, T) --+ (Y, T') is continuous if 
and only if 

'<Ix E X, '<1M E N(J(x»),3N E N(x) such that feN) eM (5.4.7) 

or, equivalently, that N(J(x») I- f(N(x»). Note that in the case where X = Y = nt, 
this reduces to the familiar definition 

'<Ix E nt, '<If> 0, 36> 0 such that Ix - yl < 6 implies If(x) - f(y)1 < f. (5.4.8) 

3. The "small" variation is often phrased in terms of sequences, and indeed it is 
true that if a function f is continuous and if Xn --+ x then f(xn ) --+ f(x). If X is a 
metric space, the converse also holds. That is, if f : X --+ Y is such that, for all points 
x E X and for any convergent sequence Xn --+ x, f(xn ) converges to f(x), then f is 
continuous. For more general spaces this is false, but what is true is that a function 
f: (X, T) --+ (Y, T') is continuous if and only if for all x E X and for any filter base B 
on X which converges to x it is true that feB) converges to f(x). (Exercise: show that 
if B is a filter base on X and f is any map from X to Y, then feB) := {f(A) I A E B} 
is a filter base on Y). 

4. One of the important practical problems in the theory of topology is to find ways 
of actually constructing topologies on a given set. Two of the most useful techniques 
involve placing a topology on a set X with the aid of maps to or from X and some 
other topological space Y. For example, if T is a topology on Y and f is a map from 
X to Y, the induced topology on X is defined to be 

(5.4.9) 

This is the coarsest topology on X such that f is continuous. A special case is when 
X is a subset of Y with an injection i : X <-+ Y. The induced topology on X is then 
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called the subspace topology and consists of all sets of the fonn X nOwhere 0 is open 
in the topology r on Y. Note that the results (5.4.5-6) are crucial for this construction. 

Another important example arises when (Y, r) is a topological space and there is 
a surjective map p : Y -+ X. The identification topology on X is defined as 

p(r) := {A C X I p-l(A) E r}. (5.4.10) 

This is the finest topology on X such that p is continuous. Topologies of this type 

frequently occur when some equivalence relation R is defined on Y with X being 
the space Y / R of equivalence classes and the map p being the canonical map of an 

element of Y onto its equivalence class. In fact, this example is universal since if p is 
any surjective map from a space Y onto a set X we can define an equivalence relation 

on Y by saying that two points Yl and Y2 are equivalent if p(yt) = P(Y2). It is then 
easy to see that a bijection can be established between X and Y / R by mapping the 

point p(y) E X to the equivalence class of yin Y. Note that the points in Y which 
are mapped into the same point in Y / R are precisely those that are equivalent to each 
other. Hence one says that Y / R is obtained by "identifying equivalent points", which 
explains the origin of the name 'identification topology'. 

Another crucial question is when two topological spaces can be regarded as being 
essentially equivalent. Thus we are looking for the appropriate meaning of an "iso
morphism" in the topological case. Generally speaking, an isomorphism between two 
structures of the same type involves a bijective map between the underlying sets with 
the property that both it and its inverse are morphisms. In the context of topology, 
working from the idea of a continuous map as a morphism, we have 

Definition 

A map I : (X, r) -+ (Y, r') is a homeomorphism (an isomorphism in the context 
of general topology) if 

(i) I is a bijection 

(ii) I and I-I are continuous. 

We shall write this as (X, r) ~ (Y, r'). Note that the symbol I-I refers here to the 

map from Y to X that is the actual inverse of the map I from X to Y. It should not 
be confused with the inverse set map defined in (5.4.4). When I is invertible the two 

maps are related by {J-l(y)} = rl{y} for all y E Y. 

Comments 

1. I is a homeomorphism if and only if (i) for all 0 E r, 1(0) is r'-openj and 
(ii) for all 0 E r', rl(O) is r-open. Thus I induces a bijective map between the two 

collections of open sets which preserves the algebraic operations of forming unions and 
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intersections; that is, an isomorphism of the lattice structures 88SOciated with the two 
topologies. 

2. The set Perm(X) of all bijections (''permutations'') of X onto itself is a group. 
1fT is a topology on X and tP E Perm(X), tP(T) is defined to be the topology whose open 

sets are {tP(O) I 0 E T}. By construction, T ~ tP(T) (that is, they are homeomorphic) 
and conversely, if Tl and T2 are a pair of topologies on the same set X that are 

homeomorphic, then there exists tP E Perm(X) such that T2 = tP(Tl). Thus the set 
T(X) of all topologies on X decomposes under the action of Perm( X) as a disjoint union 
of orbits which are the homeomorphism classes of topology. This will be an important 

ingredient in our later discussions of the quantum theory of general topologies. 

§5.5 Separation Axioms 

An important question in any topological space X is the extent to which points can 

be separated or distinguished from each other by listing the collection of open sets to 
which each belongs. From the viewpoint of conventional physics it is important to note 

that if X is the manifold of three-space then any real "object" needs an open subset 
in which to exist. More precisely, it cannot exist as a subset of a closed subset unless 
this has a non-trivial interior. 1 In the context of quantum field theory this is related 
to the Bohr and Rosenfeld analysis (1933,1950) of the need to smear quantum fields 
with test functions which are non-vanishing on an open set. It thus seems plausible to 
argue that it is meaningless to distinguish physically between two points in X if the 
collections of open sets to which they belong are identical. The relevant mathematical 

definitions for handling this type of consideration are as follows. 

Definition 

1. A topological space X is To if, given any pair of points x, y EX, at least one of 
them is contained in an open set that excludes the other. This is equivalent to saying 
that, for all x,y E X, .N(x) #.N(y). 

2. The space is Tl if, given any pair of points x, y each one is contained in an 
open set that excludes the other. 

3. The space is T2 or Hausdorff if for any pair of points x, y E X there exist open 

sets 0 1 and O2 such that x E Ob Y E O2 and 0 1 n O2 = 0. 

Comments 

1. The closure :II of any subset A of a topological space X is defined to be the 

lOne could say that all open sets are ":fat" whereas closed sets come in both thin 
and fat varieties. For example, a segment of a line in the plane is thin whereas a closed 

disc is fat. 
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smallest closed set containing A (it can be constructed as the intersection of all closed 
sets containing A). It is easy to see that N(x) = N(y) if and only if {x} = {y}. 

2. H X is To, a partial ordering can be defined by 

(5.5.1) 

3. From the remarks made above it could be asserted that a topological space 
must be at least To if all its points are to have "physical meaning" in the sense of 
being distinguishable by objects located in open sets. It is important therefore to note 
that to any topological space X there is a canonically associated To space. This is 
constructed by defining the equivalence relation R on X 

xRy ~ N(x) = N(y) (5.5.2) 

and then equipping XI R with the identification topology of (5.4.10). The resulting 
space is To and can be regarded as what is obtained from the original space X once 
points that cannot be "physically separated" have been identified. It is interesting to 
note that if this procedure is applied to a space with a pseudo-metric p, the resulting 
space is in fact T2 with a metric topology induced by the distance function d([x], [y]) := 
p(x, y) where [x] denotes the equivalence class ofthe point x. This is clearly relevant 
to our discussion in §3 of possible quantum topology effects arising from a quantized 
distance function whose expectation value in certain states becomes a pseudo-metric. 

4. A space is Tl if and only if, for every point x EX, the subset {x} of X is 
closed. Note that there exist topological spaces that are To but not T1• An example 
on the set X = {a,b} is the topology {0,X, {a}, {a,bH. Indeed, it is easy to see that 
the only topology on a finite set that is Tl is the discrete topology P(X). 

5. An example of a topology that is Tl but not T2 is afforded by the cofinite 
topology on any infinite set X. Note also that every metric space is Hausdorff but the 
only Hausdorff topology on a finite set is the discrete topology. 

6. A subspace of a Ti topology, i = 0,1,2 is also a Ti topology. 

7. There exist more refined notions of separation which involve, for example, 
the extension of the Hausdorff axiom to include the ability to distinguish between 
arbitrary closed sets (not merely single points) with the aid of non-intersecting open 
sets which contain them. However, the ideas introduced above will suffice for our 
present purposes. 

8. The question of the uniqueness of the limits of sequences (or, more generally, 
filters) in a topological space has a precise answer in terms of the separation properties 
of the space. Specifically, it can be shown that a necessary and sufficient condition for 
a topological space X to be Hausdorff is that every filter on X converges to at most 
one point in X. 
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§5.6 Frames and Locales 

Because our ultimate interest in topology lies in quantization, it is useful to discuss 
briefly certain algebraic structures which are associated with any topological space and 
from which the topology can be largely reconstructed. One well known example is that 
the topology of a compact Hausdorff space X is uniquely specified by the ring structure 
of its set of real-valued continuous functions. However, of more relevance to our present 

investigation is the fact that the collection of subsets of X which constitutes a topology 

forms a sublattice of P(X). The interesting question is then the extent to which this 
lattice structure determines the topology. In particular, given the lattice, can we 

reconstruct the topological space (up to homeomorphisms)? From the discussion in 

§5.5 it seems unlikely that the topology can be reproduced completely if X contains 
points which cannot be separated by specifying the open sets to which they belong; 

that is, if the topology is not To. For example, the topologies 71 := {0, X, {a}} and 
72 := {0,X, {b,c}} on the set X = {a,b,c} have isomorphic lattices of open sets but 
71 is not homeomorphic to 72. 

The basic step is to try to reconstruct the points of X from the lattice associated 
with a topology T on X. Since the only question we can ask of a point is whether 
or not it belongs to any particular open set, we are lead to consider the collection of 

mappings hx : 7 -+ {O, I} defined on open sets 0 by 

h (0) = {I, if x E C!; 
x 0, otherwise. (5.6.1) 

We see at once that each hx is a homomorphism from the lattice 7 onto the lattice 
{O, I} of two points. This inspires an attempt to define a "generalized point" associated 
with the lattice as any homomorphism from the lattice into {O, I}. A topology can 
be constructed on the set pte 7) of all such homomorphisms by defining the open sets 
to be all subsets of the form {h E pte 7) I h( 0) = I} where 0 in any 7-open subset 
of X. The natural map h : X -+ pt(7), defined by x ...... hx, is clearly continuous with 
respect to this topology. A number of important statements can be made concerning 
this construction (Johnstone, 1986): 

1. The topology on pte 7) is To. 

2. x and y determine the same homomorphism if and only if N(x) = N(y). Thus 
the map h : X -+ pt(7), is one-to-one if and only if the topology 7 on X is To. If a 

relation R is defined on X as in (5.5.2) it is clear that the map [xl t-+ hx is a continuous 

injection of XjR into pt(7). 

3. The map x ...... hx may not be surjective; that is, there may exist homomor

phisms that are not of the form hx for any x EX. Spaces for which this map is both 
one-to-one and onto (it is then necessarily a homeomorphism) are called sober-they 

are the spaces whose topology is completely captured by the lattice structure of their 
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open sets. For example, all Hausdorff spaces are sober; the cofinite topology on an 
infinite set X is not. 

At this point it is important to observe that there is no reason why the construc
tions above cannot be applied to lattices that are not a priori lattices of open sets 
in any topology! To see what type of lattice is appropriate for such a treatment we 
note that the lattice of open sets associated with a topology is closed under arbitrary 

unions (the join operation) and, if the meet of an arbitrary family of open sets is de
fined to be the interior of their intersection, it becomes a complete sublattice of P(X). 
Furthermore, it obeys the infinite distributive law 

(5.6.2) 

where S is any collection of open sets. It is this collection of properties which is 
"axiomatised" to construct a purely algebraic definition of a topology-like structure. 

More precisely, a frame or locale 1 is defined to be any complete lattice which satisfies 
the infinite distributive law. 2 Many of the ideas in topology generalise to this situation 

and this has given rise to the interesting subject of "pointless" topology (Johnstone, 
1982, 1983). In particular, the "points" associated with any frame f are defined to be 

the homomorphisms from f into {O, 1} and are given the topology in which the open 

sets are all subsets of pt( f) of the form {h E pt( f) I h( a) = 1} for some a E f. 

If locales/frames are to replace pointset topology there has to be some analogue 
of the important idea of a continuous map f : (X, Tl) ~ (Y, T2) from one topological 

space to another. The key step here is the result mentioned in §5.4 that such a map 
induces a homomorphism from the lattice T2 into the lattice Tl. Thus homomorphisms 
between locales replace the idea of continuous maps. In this context it is relevant to 

note that 

1. If f is a one-to-one map, the associated lattice map is surjective; the converse 

holds if Tl is a To topology. 

2. If f is surjective, the associated lattice map is injective. 

It is clear from these results how one might set about constructing the appropriate 

generalizations to frames/locales of the ideas of subspace and quotient space. 

This algebraic generalization of topology is rather fascinating and it is attractive 
to speculate that structures of this type might one day form an important ingredient 
in a proper understanding of the quantum theory of space and time. I will return to 

this possibility in the concluding section of these notes. 

1 There is a technical difference between these two concepts which comes into play 

only when morphisms are being considered. See the literature for more details. 
2 See Vickers, 1989, for an interesting discussion of how such lattices arise naturally 

in computer science. 
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§6 QUANTUM TOPOLOGY ON r(X) 

§6.1 The Main Problem 

Our aim is to construct a quantum theory for a system whose "configuration space" 
is the class of all topologies. The family of all topologies would consist of all such 
collections r on all possible sets X. However, this family is so big that it is a "class" 
(in the technical sense), not a set. We will avoid this logical problem by restricting 
our attention to the family r( X) of all topologies on a fixed set X, which is a proper 
set. Note that if we do not wish to distinguish between homeomorphic topologies a 
more appropriate configuration space is the quotient space r(X)/Perm(X) of homeo
morphism classes of topology. We will return to this possibility later. 

The problem with which we are faced is non-trivial. The set of neighbourhood 
structures on a set X is equal to the set of all functions from X into the space of filters
a "non-linear a-model" type situation which, conceivably, might even be quantized as 
such. However, the requirements on a neighbourhood structure to be a topology are 
complex and it is not at all clear how to proceed once this condition has been imposed. 
The main problem is the absence of any unique a priori way of quantizing a system 
with a given configuration space Q, not even if it is a differentiable manifold (which 
r(X) certainly is not). It is tempting perhaps to postulate that quantum states can 
be represented by complex-valued functions on Q (or cross-sections of a. vector bundle 
over Q) whose Hilbert space structure is defined by integrating with respect to some 
measure Jl. on Q. However, one implication of such a. scheme is that any suitably 
bounded continuous function f : Q -+ C can be made into a self-adjoint operator by 
defining 

(j,p)(q): = f(q)¢(q) (6.1.1) 

and even when Q is simply a vector space E we know that this does not always work. 
For example, in quantum field theory it is usually impossible to define an operator 
version of (4J( x ) )2: we must instead restrict our attention to polynomials (or suitable 
limits of polynomials) in the smeared fields ifJ(f) where the test-function f belongs to 
E. 

This is related to a very important result which can be derived from the spectral 
theory of the abelian algebra generated by these smeared fields. This shows that the 
Hilbert space on which the fields are defined is always isomorphic to one of the form 
L 2(E',dJl.) for some probability measure Jl. on the topological dual E' of E, with the 
operator fields ~(f) acting as 

(~(f)¢) (X) =< x, f > ¢(X) (6.1.2) 

Thus the domain space of the quantum states is not the configuration space E itself 
but rather the distributional dual E' of E. This is the "canonical" version of the 
functional-integral problem alluded to in §1. 
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As yet we have said nothing about how to construct a quantum theory on r(X). 
However, the analogue of conventional quantum field theory suggests that the following 
questions are of considerable interest: 

l. Is there a preferred minimal abelian algebra of functions on r(X) which can 
play a role analogous to that of the smeared fields cpU) in quantum field theory? 

2. Is it necessary to use a space r(X)' of distributional topologies? If so: 

What is a "distributional" version of a topology? 

Is there an appropriate topology on r(X)'? 

3. Is there a spectral theorem for the minimal algebra which justifies choosing the 
Hilbert space to be L2(r(X),df.&) [or L2(r(X)',df.&)]? 

4. What are the variables conjugate to the functions on Q = r(X) selected in 
I.? When Q is a manifold, the conjugate variables are associated with generators of 
diffeomorphisms of Q and are essentially vector fields which act on wave functions on 
Q as partial differential operators. However, this does not provide much guidance in 
handling a space like r(X) which is not a manifold; we certainly do not expect to be 
able to write literally a ''momentum" operator as -iot/J(r)/or! 

It is clear that at the heart of the quantization programme lies the problem of 
finding a suitable preferred algebra of observables on Q = r(X). The q-variables 
normally arise as generators of transformations along the p-directions on the classical 
phase space T*Q while,the p-variables are associated with transformations of Q. In 
our case, since Q is not a manifold, there is no cotangent bundle. However, it is 
still reasonable to ask if there are any "natural" transformations of r(X) which might 
provide a foundation for a quantization scheme. 

One possibility which suggests itself is that, given a particular topology r, one 
might try to increase or decrease the number of open sets it contains. For example, if 
a subset A of X does not already belong to the collection of subsets which constitutes 
r, can a new topology be formed by appending it to this collection? In general, the 
answer is ''no" since the ensuing collection will not be closed under finite intersections 
or arbitrary unions. However, as we shall see shortly, it is possible to add the ''missing 
sets" in a minimal way so that we do obtain a genuine topology and thus generate a 
transformation of the set r(X). Our intention is to base the quantization of r(X) on 
operations of this type plus the analogous technique for removing open sets. What is 

involved technically is a natural lattice structure possessed by r(X) and the first step 
is to spell this out in detail. 
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§6.2 Lattice Structure on reX) 

The first step in placing a lattice structure on reX) is to recall from §5.3 that 
topologies can be partially ordered by the relation 

(6.2.1) 

The use in the quantum theory of such an ordering can be motivated in part by 

considering the Riemannian-geometry driven situation discussed in §3. If d(x, y) is 

a quantized metric we anticipate that for certain states 1'1/' > the expectation value 
< 'I/',d(x,y)'I/' > may be a pseudo-metric. The existence of points with vanishing 
distance implies the loss of certain sets that were open in the original manifold topology 
and hence, potentially, to a topology that is coarser than the original one. In order 
to be finer than the original topology, the expectation value must be discontinuous 
(although the converse is not true-the two topologies might not be related at all). 

However, a more potent motivation is the existence on reX) of the algebraic 
structure of a lattice. Lattice operations on reX) can be defined by 

rl 1\ r2: = rl n r2 = {A C X I A is open in both rl and r2} 

rl V r2: = coarsest topology containing {Al n A2 I Al E rl, A2 E r2} (6.2.2) 

and are compatible with the partial ordering in the sense of (4.2.6). The null and 
unit element are respectively the weakest topology {0, X} and the strongest topology 

P(X). 

It is instructive to study a few simple examples where X is a finite set. The 
number of topologies that can be placed on a given set X has been calculated for the 
cases IXI = 1 - 7 and is equal to 1,4,29,355,6942,209527 and 9535241 respectively. In 
general, if IXI is a finite integer n it is known that 2n $ Ir(X)1 $ 2n (n-l). When X 
is infinite it can be shown (Frohlich, 1964) that the cardinality of reX) is two orders 

of infinity higher than that of X (that is, Ir(X)1 = 221x1 == IP(P(X»I). The simplest 
case is when X has one element, {a} say, for which there is just the single topology 
{0, {a n. If X = {a, b} there are four topologies arranged in a lattice isomorphic to 

that in (4.2.8): 

1 = {0,{a,b},{a},{b}} 

~ 
{0,{a,b},{a}} {0,{a,b},{b}} 

~ 
0= {0, {a, bn 

172 



The first really interesting example is when X is a set {a, b, c} of cardinality 3. The 
lattice diagram for this case is shown below using a notation which has been chosen 
for maximum typographical simplicity. For example, ab(ab)(ac) means the topology 
whose open sets other than 0 and X are the subsets {a}, {b}, {a,b} and {a,c}. 

The lattice of all topologies on X possesses many interesting properties (Larson 
and Andima, 1975). For example, it is complete and atomic. Thus for each A C X, 
TA = {0, X, A} is an atom (that is, TA covers the trivial topology 0) and every topology 
T is determined by these atoms in the sense that 

(6.2.3) 

In the example X = {a,b,c}, the atoms are the six topologies b,(ab),a,(ac),c and (be). 
Note that the action referred to earlier of "adding" a subset A to a topology T in a 
minimal way consists offorming the join TA VT. However, contrary to what one might 
expect, T A V T does not necessarily cover T. 

The lattice T(X) is also anti-atomic. That is, there exist topologies TA with 
the properties that (i) the maximal topology 1 covers TA, and (ii) every topology is 
uniquely determined by the anti-atoms that lie above it. Note that the minimal way of 
''weakening'' a topology T is to form TAAT for some anti-atom TA. In the example X = 
{a, b, c}, the anti-atoms are the topologies be(be)(ac), be(ab)(be), ab(ab)(be), ab(ab)(ac) , 
ac(ab)(ac) and ac(ac)(be). In general, the anti-atoms are topologies of the form 

T(z.)J) := {A C X I x ¢ A or A E U} (6.2.4) 
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where U is any ultra-filter (a maximal element with respect to the natural partial 
ordering of filters) not equal to the principal ultra-filter of all subsets of X containing 
the point x E X. 

The lattice structure also has important properties in relation to the action of 
the group Perm(X). The induced maps on reX) preserve all the lattice operations 
and are therefore lattice automorphisms. Furthermore, Hartmanis (1958) and Frohlich 
(1964) showed that if IXI = 00, the group of automorphisms Aut(r(X» is actually 
equal to Perm(X) - that is, the topological properties of an element of reX) are 
determined solely by its position in the lattice. (For finite X there is an additional 
automorphism induced by the transformation on the atoms rA -+ rAe where AC is 
the set-theoretic complement of the subset A of X.) This equality of Aut(r(X» with 
Perm(X) reinforces the idea that Perm(X) is the natural "gauge group" of the theory 
and therefore has important implications for the quantum theory. 

We come now to the critical question of selecting a set of functions on reX) to 
use as a basis for a quantization scheme. One natural family of functions associated 
with the lattice structure is 

In particular, 

RT(r'): = {I, if r ~ ~' 
0, otherwlse. 

(6.2.5) 

RT (r') = {1, if A is ?pen in r' (ie rA ~ r') (6.2.6) 
A 0, otherwlse. 

and since reX) is atomic, this set of variables is clearly large enough to distinguish 
between the different topologies. 

We recall that we are looking for an algebra of functions on Q = reX), and 
therefore it is important that 

RTl (r')R...2 (r') = 1 if rl ~ r' and r2 ~ r' 

= 0 otherwise. 

However, rt, r2 ~ r' if and only if rl V r2 ~ r' and hence 

(6.2.7) 

(6.2.8) 

Thus we do indeed have closure, with the set of functions generating a representation 
of the v-semigroup operation in the lattice. One consequence of (6.2.8) is 

(RT)2 = R... for all r E reX) (6.2.9) 

and hence, in the quantum theory, {R.,. IrE reX)} can be expected to be a family of 
hermitian projection operators satisfying 

(6.2.10) 
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Note that quantizing a system in terms of families of projection operators played a 
central role in Mackey's (1963) axiomatization of quantum theory. 

When Ir(X)1 is finite, it is easy to produce representations of this algebra by 
defining states to be vectors 1/1( r) with 

(R,.1/I)(r'): = {1/I(r')' if r :::S r.' 
0, otherw:tSe. 

(6.2.11) 

However, when Ir(X)1 is infinite, account must be taken of the afore-mentioned pos
sibility that the domain of the state vectors is a space of "distributional" topologies. 
In the analogous case in quantum field theory an important property of the space of 
distributions E' is that any distribution can be approximated arbitrarily closely by 
a smooth function from E. Topologically speaking, E is dense in E': that is, any 
neighbourhood of any element of E' always contains an element of E. Therefore we 
might expect/hope that whatever the space of "distributional" topologies might be, it 
will carry a topology such that r(X) is embedded as a dense subset. 

The key to finding such a space lies in the the spectral theory of the abelian algebra 
generated by the operators {R,. 1 r E r(X)}. The equation (R,.)2 = R.,. implies that 
the eigenvalues of R.,. are 0 or 1. Also, (6.2.10) gives 

[R.,.1' R.,.,] = 0 (6.2.12) 

and hence there should be a complete set of simultaneous eigenvectors Ih> such that 

R.,.lh>= h(r)lh> (6.2.13) 

where h(r) = 0 or 1. The maps h : r(X) -+ {O, I} C 1R are of considerable interest 
since they form the domain space of the state vectors - in Dirac notation, 1/1 ( h) = 
< h 11/1 >. Equation (6.2.10) implies that 

(6.2.14) 

so that h is a V-homomorphism (or semi-character) from r(X) into {O, I} c:II4. 

Now define 1,.:= {r I h(r) = I}. Then 

(a) r1l r2 E I,. implies rl V r2 E I,. 

(b) H r' :::S r, then r' V r = r and hence (6.2.14) implies that h(r')h(r) = h(r). 
Then if rEI,., h(r') = 1 and so r' E I,.. 

These are precisely the properties for I,. to be an ideal in the lattice r(X). Conversely, 
if I is an ideal, define hI : r(X) -+ 1R by 

{ I, if TEl 
hI(r): = 0 th . , 0 erwlse 

(6.2.15) 
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But the definition of an ideal is equivalent to the statement that T1, T2 E I if and only 
if T1 V T2 E I (exercise!). Hence hI satisfies (6.2.14). Furthermore, hI,.(T) = h(T) so 
that h -+ h is a bijection and therefore the domain space of the quantum states is the 
set I(T(X» of all ideals in the lattice. 

The important conclusion of this analysis is that the space of quantum states is 
expected to be equivalent to a Hilbert space of the form L2(I(T(X», dp.) for some 
measure p. on I(T(X». It is useful to emphasise this analogy of the space of ideals 
with the vector space of distributions by writing hI(T) as < I,T >. Thus the basic 
eigenvalue equation (6.2.13) becomes R..II >=< I, T > II> which translates into the 
action on '¢ E L2(I(T(X», dp.) 

CR.,.'¢)(I) =<I,T> '¢(I) (6.2.16) 

and which should be compared with the quantum field theoretic analogue (6.1.2). Note 
that the classical function R.,. in (6.2.5) can be written simply as R.,.(T') =<!(T'), T>. 

Comments 

1. The set of ideals in any lattice is itself a lattice in which the meet operation is 
just set intersection n (exercise!) 

2. The rigorous version of the discussion above on the simultaneous eigenvectors 
of the operators {R.. IT E T(X)} employs the the Gel'fand spectral theorem (Rudin, 
1973). An integral part of this theory is the construction of a natural topology on 
I(T(X» in which a subbasis for the open sets is all subsets of I(T(X» ofthe form 

Q.,.: = {I E I(T(X» IT E I} (6.2.17) 

plus their set-theoretic complements. This topology has the property that I(r(X» is 
both compact and Hausdorff. 

3. The automorphism of the lattice r( X) induced by a bijection of X passes to 
an automorphism of the lattice I(r(X» which can be shown to be a homeomorphism 

with respect to the spectral topology on I(r(X». 

4. reX) can be embedded as a subset of I(T(X») via the injection 

reX) -+ I(r(X», r t-t!(r): = {r' E reX) I r' ~ r} (6.2.18) 

which maps each topology r into the principal ideal which it generates. This map is 
8urjective if reX) is finite since then every ideal is principal: 

(6.2.19) 

Thus, for finite X, our expectation that state vectors can be written as functions on 
reX) is justified and (6.2.16) reproduces (6.2.11). In a general infinite lattice, ideals 
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exist which are not principal but, in the present case, it can be shown that r(X) is a 
dense subset of J(r(X», analogous to the situation in quantum field theory where the 
smooth functions are dense in the space of distributions. 

5. A key step in building a quantum theory is the construction of an inner product 
on the space of states which, in our case, means studying the existence of suitable 
measures on the space J(r(X». In this context it is fortunate that the spectral theory 
of the algebra generated by the operators {k,. IrE r( X)} can be extended well beyond 
the Gel'fand results. In particular, there is a precise analogue for semi-groups of the 
well-known theory for abelian groups which expresses all representations in terms of 
characters. First, if J.l. is any regular measure on the compact Hausdorff space l(r(X» 
then (6.2.16) defines a cyclic representation of the algebra with cyclic vector n(I): = 1 
and in which 

lI:(r):=< n,k,.n >= f < l,r > dJ.l.(I) 
JI{ .. {X» 

(6.2.20) 

is a positive semi-definite function on r(X). That is 

n 

E Cjckll:{rj V rk) 2= 0 (6.2.21) 
j,k=l 

for all finite sets Cl ... cn E C. 

The crucial result is the converse statement drawn from the general spectral theory 
of semigroups (Berg et a11984) which affirms that to each such positive semi-definite 
function 11:, there exists a regular measure on l(r(X» such that (6.2.20) is true. The 
analogous statement in conventional quantum field theory is that any such function 
on the topological vector space E of smooth test functions generates a unitary repre
sentation f 1-+ ei¢(f) of E with 11:(1) =< n, e i 4>{f)n > and with this expectation value 
being expressible as a "Fourier transform" over E'. Thus, at least in principle, these 
spectral-theorem results on the algebra of operators {R .. IrE r(X)} provide a way of 
placing the lattice-based theory of quantum topology on a respectable footing. 

§6.3 The Complementary Variables 

We must consider now the vital question of the construction of complementary "mo
mentum" variables. In a conventional quantum theory of a system whose configuration 
space Q is a manifold, these variables are usually identified with the self-adjoint gen
erators of a unitary representation of a Lie group of transformations of Q. However, a 
more relevant case for our present purposes is when Q is a discrete space. For example, 
if Q is equal to the integers, we can define 

(T,p)(n) =,p(n + 1) 

(Tt,p)(n) =,p(n - 1). (6.3.1) 
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Thus rj is unitary with respect to the usual 12 scalar product, but there is no corre
sponding generator. Instead, there are the hermitian operators 

,r: = (rj - rjt)/2i (6.3.2) 

so that 
(,r,p)(n) = (,p(n + 1) - ,pen -1»)/2i (6.3.3) 

which is the nearest we get to "differentiation" in this case. Note that q is not an 
independent observable since rjtrj = rjrjt = 1 implies that 

(6.3.4) 

In the case of interest with Q = r( X) we note that the operation 

ma : reX) -+ reX) 

rl-+aAr (6.3.5) 

is continu0'IL8 with respect to the spectral topology on reX), as is its extension to 
I(r(X» defined by ma(I): =!(a) nI. Having already obtained a representation of the 
V-operation (from the R,.-operators) it seems natural to complement this by choosing 
for the analogue of a group action on Q = reX), the action of the semi-group reX) 
with rE'-spect to the A-operation. Thus, on the Hilbert space L2(I(r(X», dIL), we define 

This gives an algebra 

(kI.r,p)(I): = ,p(!(r) nI). 

RrR,., = Rrvr, 

MrMr, = Mrl\r' 

MrR,., =<!(r),r' > R,.,Mr 

(6.3.6) 

(6.3.7) 

which is reminiscent of the canonical commutation relations in conventional quantum 
theory. We will "axiomatise" (6.3.7) as being the basic algebra for quantum topology 

on the lattice reX). 

Note that Mr is not unitary but is instead more like a creation or annihilation 
operator. The associated hermitian operators are 

A At A At 
,rr: = (Mr - Mr )/i, qr: = (Mr + Mr) (6.3.8) 

which, by virtue of the relation (Mr)2 = Mr, satisfy the constraint 

(6.3.9) 
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so that q.,. a.nd i.,. are not independent variables. 

Example 

Let us consider the example of a finite set X. The quantum states lie in the vector 
space L2(7"(X),dp.) ~ CI.,.(X)1 in which the inner product between a pair of vectors is 
the finite sum 

(6.3.10) 
.,. 

The eigcnstates of the operators R.,. ca.n be written as 1 7'" >, so that 

R.,. 17"'>= {17"'>, if 1" ~ '," 
0, othel'Wlse. 

(6.3.11) 

The adjoint operator !VI! acts to weaken the topology: 

(6.3.12) 

whilst the "creation" operator !VI.,. acts to strengthen the topology as 

!VI.,.I1"'>= { J/S~"") L{al.,.Aa=.,.'} Jp.(a)la>, if 1" ~ 7'" 

0, otherwise. 
(6.3.13) 

where the sum over the set m;:-l(7"') = {a E 1"(X) I 1" A a = 1"'} will typically con
tain more tha.n one element. This contrasts sharply with the more familiar examples 
of a.nnihilation a.nd creation operators a.nd has its origin in the fact that the map 
m.,. : 7"(X) - 1"(X) is many-to-one. Thus !VI.,. not only strengthens a topology, it 
also broadens the state in the sense that a.n eigenstate of topology becomes a linear 
superposition of eigenstates. 

§6.4 The ROle of Perm(X) 

We turn now to the important question of what role the permutation group Perm( X) is 
to play in the quantum theory. IT we do not wish to distinguish between homeomorphic 
topologies then it is necessary to think of Perm(X) as a sort of gauge-group of the 
theory a.nd to regard the quotient space 7"(X)/Perm(X) as the true "configuration 
space". However it should be noted that the action of Perm(X) on 1"(X) is not free 
a.nd many topologies have a non-vanishing "little group". Indeed, the little group of a 
topology 7" is just the group of all homeomorphisms of (X, 1") with itself. 

As far as the quantum theory is concerned, there appear to be three different ways 
in which one might proceed: 

1. Quantize on 1"( X) a.nd then impose constraints on ''physical'' state vectors 

a.nd/or observables in the well-known manner advocated by Dirac. 
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2. Fix a gauge for Penn( X) and then quantize the remaining "physical" degrees 
of freedom. 

3. Try and quantize directly on the space T(X)/Penn(X) of homeomorphism 
classes of topology. 

For most gauge theories, the second "brute-force" method is often employed as a 
consistency check on the other, more elegant, approaches. However, in our case it 
is not clear how to set about specifying a gauge for the group Penn(X) and we are 
obliged to consider one of the other two schemes. In many ways the third is perhaps 
the most attractive but it is not obvious how to proceed in this direction either since 
although each ¢ E Penn(X) induces an automorphism of the lattice structure on 
T(X), T(X)/Penn(X) does not inherit any lattice structure from T(X) - that is, 
if Tl ~ T{ and T2 ~ T~ it is not necessarily the case that Tl A T2 (resp. Tl V T2) is 
homeomorphic to T1 AT~ (resp. T1 V T~). For example, when X = {a, b, c} the topology 
b(ac) is homeomorphic to c(ab) via the pennutation that exchanges the points band 
c. However, b(ac) A a(ab) = 0 whereas c(ab) A a(ab) = (ab). 

On the other hand, T(X)/Penn(X) does possess a natural partial ordering which 
might be of use. This is the ordering defined between a pair of homeomorphism classes 

of topology a and f3 as 

(6.4.1) 

For example, the ordering diagram for the case X = {a, b, c} is given below where [T] 
denotes the equivalence class (orbit of Penn(X» containing the topology T. 

[P(X)] 

I 
[ab(ab) (ac)] 

[a(ab)(~ [lb(ab)] ~ 
~I ~ 

[a(ab)] [b(ac)] 

I "': ---::' .. --~ ;-

[(a b)] [a] 

I~ 
[0] 

Note that T1~ T2 implies [T1] ~ [T21 but the converse is not true in general and 
there may exist "extra" links between a pair of equivalence classes [Tl] and [T21. This 
occurs when 
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and 

(ii) there exist topologies 7i and 7~ such that ri ~ 7~ with 71 ~ ri and 72 ~ r~. 

For example, in the case above, we have (ab) ~ a(ab) and hence [Cab)] ~ [a(ab)]. 
However we also have 

(a b) ~ c(ab) (6.4.2) 

and c(ab) ~ b(ac) - that is [c(ab)] = [b(ac)] - via the pennutation of X = {a,b,c} 
which exchanges the points b and c. This induces the additional ordering relation 

[Cab)] ~ [b(ac)] (6.4.3) 

as shown by the dotted line in the diagram. Of course, which links are deemed to be 

"extra" depends on the choices that are made for a representative topology in each 
equivalence class of topologies. In an intrinsic sense, all links have equal status and 
there is no real distinction between them. 

The non-lattice nature of this partially-ordered set is illustrated by the sub-block 

[a(ab)] [b(ac)] 

I X/~:/ 
[(ab)( [a] 

which shows, for example, that the "join" of the pair of equivalence classes [Cab)] and 
[a] would have to be both [a(ab)] and [b(ac)]. We shall see below how this partial 
ordering can be used in the quantum theory. 

Let us consider now the imposition of Dirac-style constraints on the Hilbert space 
L2 (I(7(X»,dJL) associated with the quantum theory on reX). If the measure JL is 
quasi-invariant under the action of Penn(X) (that is, if the transfonned measure JLA 
and the original measure JL have the same sets of measure zero), a unitary representa
tion of this group can be obtained in the usual way by defining 

(6.4.4) 

where dJLA(I)/dJL is the Jacobian (Radon-Nikodym derivative) of ILA with respect to 

IL· 

A simple calculation shows that 

(6.4.5) 
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so that the RT-variables transform covariantly with respect to Perm(X). The sa,me is 
not automatically true of the MT operators unless the Jacobian satisfies an appropriate 
condition. We will assume from now on that such a measure has been found so that 

(6.4.6) 

To illustrate the basic idea let us consider the c~e where I X I is finite. Then from 
(6.4.5-6) it follows that gauge-invariant operators can be constructed by defining 

A ~ A 

Ro:= L..J~' 
TEO 

MO:=LMT (6.4.7) 
TEO 

where 0 is an orbit of Perm( X) on r( X). For example, when X = {a, b, c} we have 

~(Ob») = ~ob) + ~be) + ~oe) 
~b(oe») = Rb(oe) + Ro(be) + ~ob) (6.4.8) 

The crucial question for us is whether or not these new operators satisfy any sort 

of algebra. By explicit calculation we find that, whereas ~ob)~oe) = ~(ob)(oe), the 
new operators satisfy the relation 

(6.4.9) 

so we do indeed get algebraic closure. This is in fact a special case of the more general 
theorem (Isham, 1989a): 

Theorem 

If 0 and 0' are two orbits of Perm(X) on r(X), then there exist positive integers 
nj(O,O') such that 

RoRo' = Lnj(O,O')Ro; 
j 

(6.4.10) 

where the sum is over all orbits OJ that pass through topologies rVr' for some rEO 
and r' EO'. 

A similar result holds for products of MIT). However, the situation is more com
plicated for mixed products. For example, when X = {a, b, c} 

(6.4.11) 

and the right hand side is not of the form RoMo. or sums of such. On the other 
hand, it is of the form L ~MT' where (r, r') belongs to an orbit of Perm( X) on the 
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Cartesian product r(X) x r(X). This suggests strongly that gauge-invariant operators 

should be of the form 

1'0= L RTMT, (6.4.12) 
(T,T')EO 

where 0 is an orbit in r(X) x r(X). Indeed, one can prove the result: 

Theorem 

(6.4.13) 

for some integers ni(O,O') where i labels an orbit of Perm(X) in r(X) x r(X). 

By these means we have succeeded in finding a set of gauge-invariant opera

tors which satisfy a well-defined algebra. This is the outcome of the Dirac-constraint 

method as applied to the observables in the original Q = r(X) theory. A similar 

analysis can be used to study "physical" states, although there a possibility here of 

the analogue of "8-factors" - that is, physical states might only be invariant up to an 

overall phase factor. 

Note that although this approach has been phrased in the context of the first of 

our three a priori ways of handling the gauge-group, it is clear that the procedure can 

be reversed and Perm(X)-invariant quantization defined to be the construction of rep

resentations ofthe algebra (6.4.13), where the numbers ni(O, 0') are determined from 

the partial-ordering diagram for r(X)jPerm(X). This could be regarded as a bona 

fide quantization of the system whose configuration space is the space r(X)/Perm(X) 

of homeomorphism classes of topology. 

§7 Conclusions 

We have presented a short introduction to the general theory of topological spaces in 

which special emphasis has been placed on the more algebraic aspects of the subject. 
In particular: (i) a topology on a set X is a complete sublattice of the lattice P(X) 

with a certain distributive property, and (ii) the set r(X) of all topologies on X is a 
lattice. We have seen how the latter may be exploited to develop a possible structure 

for a quantum theory of topology and we have also emphasised the importance of 

studying a quantum theory of metric topologies. However many difficulties remain, 
both at the technical and at the conceptual levels. 

For example, the ability to handle spaces X that are infinite is based on the 

spectral theory in §6.2 and the introduction of the space of ideals J( r(X». However, as 

it stands, the development in §6.4 ofthe quantum theory on r(X)jPerm(X) only works 

for a finite set X: an extension to the infinite case presumably requires integrating 

over the orbits of Perm(X). One way of doing this would be to exhibit Perm(X) 

as a topological group equipped with something like a Haar measure. This in turn 
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might be achieved by embedding the group as a closed (and therefore compact) orbit 
in the compact Hausdorff space [(reX»~. The minimum needed for this is a point in 
[(r(X» whose isotropy group is trivial-that is, a topology on X with no non-trivial 
homeomorphisms. When X = {l,2 ... n} is finite, an example of such a topology is 

r:= {0,{1},{1,2}, .. . {1,2, ... n -l},X} (7.1) 

since any non-trivial permutation of X must affect at least one of these subsets, thus 
giving rise to a trivial isotropy group. It might be possible to extend this construction 
to the infinite case with the aid of a well-ordering on X. 

One may also wonder about the relation between the metric topology approach 
and that based on the lattice of all topologies. In this respect it is worth noting that 
the set of all Tl topologies forms a complete sublattice of r( X) (Larson and Andima, 
1975). This lattice is only non-trivial when IXI = 00 and has the cofinite topology 
as its null element. The lattice is antiatomic (but not atomic) and shares with reX) 
the property that its group of automorphisms is equal to Perm(X). This lattice might 
form an alternative candidate for quantization; it has the advantage of being related 
to metrics in the sense that every (first countable) Tl topology can be written as the 
lattice product of all finer metric topologies (Raghavan and Reilly, 1986). 

There are a number of other technical issues which could be considered 1 but 
many of the most important problems contain conceptual ingredients as well, especially 
those concerned with what the formalism means physically. In particular, we mUst say 
something about the (i) role of 'time' in these theories, and (ii) the status of the points 
in the set X. 

The treatment of quantum topology presented in these notes is based on canonical
type ideas with the points in X being associated in some way with the points of ''phys
ical space". It might seem natural therefore to attach a time label to the states '!/J(r) 
(or, more generally, functions of ideals) and to consider a SchrOdinger-type evolution 
equation. This involves constructing a suitable Hamiltonian which, one might hope, 
will have some natural expression in terms of the lattice structure of reX). In this 
context it is noteworthy that the states Ir > are actually eigenstates of the operators 

M!.M.,.. (shades of the simple harmonic oscillator!) and therefore a family of model 
"free" Hamiltonians can be constructed by taking linear combinations of such opera

tors. The addition of other, non-diagonal, operators yields Hamiltonians that produce 
genuine quantum-mechanical changes in topology (Isham, 1989). 

However, the use of a continuous (and, indeed, differentiable) time label seems at 
odds with our policy to eschew the concepts of differential geometry-a more natural 

1 For example, it is interesting to consider possible relations between the quantum 
ideas developed here and the work of probability theorists on ''random topology". See 
Frank (1971), Schweizer and Sklar (1983). 
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approach might be to invoke a discrete picture of time, with the SchrOdinger equation 
being replaced with an appropriate difference equation. The idea that time should 
be discretized is one that recurs frequently and has appeared in several of the more 
adventurous approaches to quantum gravity. One example is the work of Noyes and 
McGoveran on "programme universe" and the general research effort of the ANPA 
members (Noyes, 1989). Other good examples are Finkelstein's early work (1969) on 
spacetime code, his more recent ideas on "quantum net dynamics" (1989), and the 
discretization of causal structure in t'Hooft (1979) and in Bombelli et al, (1987a,b) 
and Bombelli and Meyer (1989). 

Yet another possibility is to follow the lead of one of the more conventional schools 
of quantum gravity and construct an object K(Tb T2} which, in analogy with (1.1), 
might be obtained by summing/integrating over all topological spaces which induce 
the topologies T1 and T2 on a subset consisting of the disjoint union of sets X 1 and 
X 2 • This would involve the construction of some sort of action principle, 1 which 
raises the very general question of how classical general relativity is supposed to fit 
into this quantum scheme. This in turn requires an understanding of what is perhaps 
the deepest question of all: what is the status of the set X and its 'points', and how 
do smooth differentiable manifolds enter the picture? 

Several different approaches can be taken to this issue, depending on one's view 
on the nature of space and time. One possibility is to proclaim that the points of 
space are in some sense "real" and that, furthermore, they have the cardinality c 
of the real line; to emphasise this point let us denote the set of points by Xc' It 
is still necessary to make some decision concerning the concept of 'time' (which, as 
suggested already by conventional canonical quantum gravity, may well be valid only in 
some semi-classical limit) but it is clear that, in these circumstances, we are genuinely 
interested in the lattice T(Xc) of all topologies on Xe, which of course contains all 
differentiable manifolds of all possible dimensions. The crucial technical questions 
then are (i) how do these manifolds fit into the lattice T(Xe)?, and (ii) what does the 
the typical neighbourhood of a manifold look like? Armed with this knowledge, one 
could aspire to append some type of topological action to one's favourite action for 
ordinary quantum gravity. Note that similar considerations apply to "Riemannian
metric" driven quantum topology in which quantum fluctuations in topology occur 
about some background manifold. 

A quite different approach (and the one which I favour) is to argue that the 
assignment of cardinality c to the points in space and time is purely a mathematical 
trick (similar perhaps to the way the rationals are completed to the reals) and that, in 
so far as the concept of 'point' has any meaning at all, there is only a finite number of 

1 See p499 in Wheeler (1964) for an early, but most interesting, reflection on this 

possibility. 
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them. 1 Thus the fact that we apparently "see" a continuous spacetime is an illusion 
which arises because our spectacles are too coarse-grained to distinguish the fine detail. 
Thoughts of this type lay behind Penrose's spin network theory (Penrose, 1971) and 
Sorkin's work (1983) on approximating a manifold by a finite covering of open sets. As 
we shall see, the latter idea is particularly relevant to the programme being explored 
here. 

It is clear that, in the classical limit, the topology on our set X must "approxi
mate" that of a manifold E. But what does this really mean? One possibility might 
be to consider the set X as a subset of E and to argue that the topology we apparently 
see on the latter is really a reflection of a topology on X which is a subspace of the 
manifold topology. However, this does not work because the Hausdorff topology on E 
always induces the discrete topology on any finite subset of points. 

From a mathematical point of view, the other natural approach is to consider 
a surjective map from E onto X and argue that it is the associated identification 
topology T on X which should be regarded as an approximation to the manifold. The 
key to understanding the potential physical significance of this construction is the 
observation (§5.6) that such an surjection induces an injection of the lattice T into the 
lattice of open sets on the manifold. This suggests two somewhat different pictures. 

The first scheme would be to use the lattice T(Xc) but argue that the only topolo
gies on Xc which have any physical significance are those that possess a finite number 
of open sets. The collection TF(Xc) of all such finite topologies is closed under meets 
and joins and includes the trivial topology 0 = {0, Xc}. Note that the vector subspace 
spanned by eigenstates IT > of topologies of this type is invariant under the action 
of MT• and (MT.)t with T' E TF(Xc ). Manifolds fit into the scheme as follows. Each 
smooth manifold E belongs to r(Xc), but of course the topology is not finite. However, 
each finite covering of E by a collection of E-open subsets (i) generates a sublattice 
of the topology of E, and (ii) forms a subbase for a finite topology on Xe which is 
coarser than the manifold topology (that is, it lies in the subset HE». The finer the 
covering, the closer the topology on Xc approximates that of the n..anifold E. Thus 
we arrive at a quantization scheme which involves just the finite tOfologies on Xc and 
the subalgebra of (6.3.7) generated by such topologies. 

A somewhat different point of view (or perhaps an extension to the above) is to 
follow Sorkin (1983) and argue that points in Xe which cannot be distinguished by 
elements of a covering of the space should be identified. The resulting set, constructed 

1 If the universe is truly infinite in size it might be necessary to employ a countably 
infinite set when considering genuine cosmological questions. However, to simplify the 
exposition, I will assume in what follows that the universe is finite in size and that, 
correspondingly, any differentiable manifold that serves as a model for physical space 
is compact. 
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as in (5.5.2), is finite and carries the To identification topology. The suggestion then 
is that it is this set X which should be identified with the set of ''real" spatial points. 
The basic idea therefore is that: 

1. There are really only a finite number of points in the universe (neglecting 
cosmological considerations). These can carry a variety of topologies which are subject 
to quantwn laws. Only topologies that are at least To are physically meaningful; Tl 
and T2 topologies have no role in this scheme since the only topology of these types 
on a finite set is the discrete topology. 

2. There exist "classical" states in which the average lattice of open sets on X 
looks like a sublattice of the lattice of open sets on a manifold. This is why we asswne 
(erroneously) that we live in a differentiable manifold. 

Note however that, seen from this viewpoint, there is no reason for the nwnber of 
points in X to be fixed. Indeed, even if we start with a single finite set X, the existence 
of non-To topologies will lead us to pass to the corresponding quotient topology, which 
exists on a space of smaller cardinality. There are several ways in which one might 
attempt to extend the earlier quantwn discussion to include a varying cardinality 
for the set X. However, reflection on the discussion above suggests a more radical 
possibility. It is clear that what is really being asserted is that the most important 

feature of space is not the points which it contains but rather the open subsets and 
the lattice relations between them. But then, since, physically speaking, a "point" is 
a most peculiar concept anyway, why not drop it altogether and deal directly with 

frames/locales? 

Thus the final picture is one in which the fundamental space and/or spacetime 
concept is of a 'region', and the important property is the relation between these 
regions-the way they overlap as coded in the lattice structure. Both the nwnber and 

the interrelations of such regions are subject to quantwn fluctuations which might be 
handled with some extension to frames/locales of the formalism presented in these 
notes. The clllBsicallimit of such a theory will yield a collection of regions that imitate 
some (fairly refined) covering by open sets of a differentiable manifold and hence 
return us safely to the classical world as and when it becomes necessary. There is 
even a possibility of emulating the theory of quantwn groups (much discussed at 
this meeting) by considering deformations of the locale lattices to non-commutative 
algebras and hence to "quantwn topologies" rather than simply a quantization of 
collections of classical topologies. By these means we would truly arrive at a theory of 

"points without points"-a concept of which John Wheeler, the inventor of quantum 

topology, would surely have approved! 
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I. OVERVIEW 

While the evident goal of physics is to explain phenomena in four-dimensional 
space-time, where physical Nature resides, and perhaps even to explain why Nature 
resides in four dimensions, the means that we have come to employ in reaching this 
goal are sufficiently intricate that it has proven useful to make a detour from the direct 
path, and to wander into lower-dimensional worlds, with the hope that in the simpler 
setting we can learn useful things about the agreed upon four-dimensional problem. 
This indeed has happened, initially in two dimensions, where we first encountered 
spontaneous gauge symmetry breaking, anomalies, the soliton phenomenon, to name 
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three important examples. Moreover, when it was appreciated that there exist phys
ical environments - not in particle physics but in condensed matter and statistical 
systems - which are properly described by two-dimensional field theories - e.g. 
linear chains whose time evolution gives rise to two-dimensional dynamics, or planar 
arrays in equilibrium whose static properties are governed by two-dimensional Eu
clidean field theory - a physical application of the pedagogical investigations could 
be made, for example to solitons and fractional charge in polyacetylene or to confor
mally invariant critical phenomena. Additionally, mathematical and speculative uses 
for two-dimensional field theories were found in the string program. 

Thus the foray into two dimensions proved very useful and it was natural to 
seek a repetition of these successes in three dimensions. My research in this area 
began in the early 1980's, when conversations with G. 't Hooft during the 1980 
Schladming school! persuaded me that three-dimensional gauge theories were very 
interesting and little understood. Three-dimensions provided an unexplored terrain 
where discoveries could be made, because most physicists were populating the vast 
expanses in dimensions greater than four. 

In my lectures, I shall describe some of the interesting things that we have found 
in the intervening decade. The subject has become very large, because many higher
and lower-dimensional colleagues have descended/ascended to three dimensions. Here 
there is time only for a selection of topics, drawn from the research by my collabo
rators and by me on geometrical planar models: gauge2 and gravitational3 theories. 
Regrettably I cannot acquaint you with the many interesting results in this area by the 
Princeton group,4 nor with the investigations of the Texas group on non-geometrical 
planar field theories.5 

The reasons for studying planar theories in three-dimensional space-time are 
pretty much the same as those put forward above for studying two-dimensional mod
els. First, there is the pedagogical motive: there is still much to learn about quan
tum field theory whose analysis is more accessible in three dimensions than in four; 
also there are interesting structures to explore that are peculiar to three dimensions 
[more generally to odd dimensions). Second, there are possible physical applications: 
the high-temperature behavior of four-dimensional field theories is governed by their 
three-dimensional analogs; interesting condensed matter phenomena like the quantum 
Hall effect and high-Tc superconductivity appear to involve planar gauge theoretic 
dynamics; motion in the presence of cosmic strings is adequately described by planar 
gravity. Third, there are mathematical and speculative applications: field theoretic 
construction of mathematically interesting three-dimensional characteristics and in
variants; a fresh perspective on conformal two-dimensional field theories; description 
of membranes, which for some represent the next step beyond strings. 

II. PLANAR GAUGE THEORIES 

A. Topologically Massive Gauge Theories 

Gauge theoretic dynamics in any dimension can be governed by the 
Maxwell/Yang-Mills Lagrange density. 

1 
CYM = 2 tr F"" F"" 

F"" = o"A" - o"A" + [A", A,,) 
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Here AI' and Fl'v, the gauge connection and curvature, are anti-Hermitian matrices 
that belong to the Lie algebra of the gauge group, which is generated by matrices Ta 
satisfying 

The Ta are normalized by 

trTaTb = _~8ab 
2 

and provide a basis for expanding AI' and Fl'v in components. 

AI' = A:Ta 

Fl'v = F;vTa 

(2.A.3a) 

(2.A.3b) 

(2.A.4a) 

(2.A.4b) 

Our metric for flat three-dimensional space-time is "lI'V = "lI'V = diag(l, -1, -1). 
However, in three dimensions another structure is available that can supple

ment/replace (2.A.1): the Chern-Simons term. 

ileA) = - 8:2 Eo/3"( tr (80A/3A"( + ~AaA/3A"() (2.A.5) 

For dimensional balance with (2.A.1) the strength", with which the Chern-Simons 
term enters dynamics must have dimensionality of mass [in our units where n, c, 
and the gauge coupling are set to unity]. Thus we are led to consider the Lagrange 
density2a 

C = ~ tr Fl'v Fl'v + 81l'2 ",il(A) = CYM + Ces 

Ces = _"'Eo/3"( tr (8aA/3A"( + ~ AoA/3A"() 

The field equation that follows from (2.A.6) is 

DIlFllv + ~€vo/3 Fo/3 = 0 
2 

(2.A.6a) 

(2.A.6b) 

(2.A.7) 

The covariant derivative Dil acts by differentiation and commutation: DI' == 81l + 
[AI" ]. 

Ces is not gauge invariant, but changes under the gauge transformation g. 

(2.A.8) 

(2.A.9) 

(2.A.10) 

Since the field equation (2.A.7) is gauge covariant, the change in the Lagrange density 
must be a total derivative. This is seen explicitly in the next-to-last term of (2.A.9). 
However, for the last term the identity 

(2.A.1l) 

can be established only locally in group space. For example, for the SU(2) gauge 
group, with 9 parametrized as 9 = eA, where). is in the Lie algebra, one verifies that 

(2.A.12) 
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The Chern-Simons action lcs = f f13x.ccs remains gauge non-invariant: al
though the next-to-Iast term in (2.A.9) integrates to zero [for 9 tending to the identity 
at infinity and for sufficiently well-behaved vector potentials], we recognize that the 
integral of the last term is proportional to the winding number W(g) of g. 

(2.A.13) 

When the gauge group is compact and non-Abelian, and thus has IT3 equal to Z, 
W(g) takes integer values. Hence, gauge invariance of the quantum theory [defined 
by the functional integral of the phase exponential of the action] requires quantizing 
the coupling constant K,.2b 

n 
K,= - , 

411' 
nEZ (2.A.14) 

For a canonical, Hamiltonian description, we work in the Weyl [Ao = 0] gauge, 
where the canonical variables are A, while the canonically conjugate momenta II 
possess a contribution from the Chern-Simons term. 

(2.A.15) 

The Hamiltonian H, when expressed in terms of the electric and magnetic fields, 
E = -A, and B = -ieiiFii respectively, does not see the Chern-Simons coupling. 

(2.A.16) 

This is a consequence of the topological nature of the Chern-Simons term: even in 
curved space-time, the generally covariant generalization of .ccs does not make use 
of the space-time metric tensor g"" - in contrast to .cYM. Therefore, when g"" is 
varied to produce the energy-momentum tensor T"" no contribution arises from the 
Chern-Simons term and T"" as well as the energy density and the Hamiltonian retain 
their Yang-Mills form, when expressed in terms of configuration space variables: A 
and its derivatives. Of course the Chern-Simons term reappears when H is expressed 
in canonical variables A and II from (2.A.15). 

The Hamiltonian equations that follow from (2.A.16) must be supplemented by 
a subsidiary condition which coincides with the time component of the field equation 
(2.A.7) i.e. Gauss' law. 

D ·E- K,B = 0 

In terms of canonical variables this reads 

K, 

D·II+-V'xA=O 
2 

(2.A.17a) 

(2.A.17b) 

In the quantum theory, (2.A.17) is imposed as a condition on states. This is 
most transparent in a Schrodinger representation,2g,h where states are functionals of 
the dynamical variable A(x), 

I 'l1) +----+ 'l1 ( A ) (2.A.18a) 

on which the operator A acts by multiplication, 

(2.A.18b) 
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and the canonical momentum operator, by functional differentiation. 

(2.A.18c) 

[The Schrodinger representation is at fixed time, hence the time argument of all 
operators is omitted.] Then (2.A.17) is realized as a functional differential equation 
that is obeyed by all physical states. 

{ (D. h~r + i~\7 x Aa} iII(A) = 0 (2.A.19) 

Gauss' law expresses gauge invariance in a quantum theory: the quantity that 
must vanish - the left-hand side of (2.A.17) - forms the generatot of fixed-time 
gauge transformations that remain invariances of the theory in the Weyl gauge, and 
the condition (2.A.19) demands that states be annihilated by this generator. Without 
the Chern-Simons term, (2.A.19) translates into the statement that physical states 
are gauge invariant: iII(AY) = iII(A). However, the Chern-Simons term alters the 
result: states in the quantum theory of (2.A.6) and (2.A.16), satisfying (2.A.19), 
respond to a gauge transformation with a l-cocycle.2g 

iII(AY) = e21r;ad A;Y)iII(A) 

l¥1(A;g) = -2: i eii tro;gg-IAi +471'11: i WO(g) 

(2.A.20a) 

(2.A.20b) 

Here WO(g) is given by (2.A.I0) and (2.A.1l); J d'lXWO(g) is globally ill-defined, 
owing to an integer ambiguity: it changes by 471'II:W(g) = 471'II:x (integer) when g 
is taken through a smooth closed loop of group elements depending on the spatial 
two-vector x and on a homotopy parameter. This multivaluedness does not affect 
the exponentiated form in (2.A.20a), provided II: is quantized according to (2.A.14). 
Thus we obtain another perspective on (2.A.14): II: must be quantized so that physical 
states, which necessarily satisfy (2.A.20a), be single-valued. 

Note also from (2.A.9) that -!t271'l¥1 is precisely the change under a gauge trans
formation of our Lagrangian L = Jx £; this examplifies a general relation between a 
l-cocycle in the action of a symmetry transformation on states and the non-invariance 
of the Lagrangian against the symmetry transformation in question.2g 

The Abelian theory can be analyzed completely and it is established that II: 
provides a mass for the excitations. We are dealing with a massive "photon," which 
nevertheless respects gauge·invariance. One may explicitly construct the states of 
this non-interacting, but nevertheless interesting model. For example, the vacuum 
state iIlo, i.e. the lowest eigenstate of 

(2.A.21) 

IS 

iII ° (A) = (exPi~J BAL) (exp-~J A~J-\72+1I:2A~) (2.A.22a) 

where A has been decomposed into its transverse and longitudinal parts. 

(2.A.22b) 
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The first factor in (2.A.22a) gives rise to the [Abelian]l-cocycle after a gauge trans
formation is performed. 

(2.A.23) 

The kernel in the second factor, 

(2.A.24) 

exhibits the massive nature of the excitations. [Higher states are obtained by multi
plying '110 by polynomials in A.] 

The spin ,of the excitation is ±1, the sign being correlated with the sign of K. 

While the non-Abelian theory cannot be similarly solved, its linear approxima
tion coincides of course with the Abelian model discussed above, and there is no 
reason to doubt that here too the excitations are massive. For this reason we call the 
model (2.A.6) a topologically massive gauge theory. 

Let us further examine the Chern-Simons modified Gauss law (2.A.17). Specifi
cally in the Abelian case, and also with matter couplings arising from a charge density 
p, (2.A.17a) reads 

\7. E - KB = P (2.A.25) 

Integrating this over all space gives zero for the integral of \7 . E, because the gauge 
invariant electric field is short-range owing to long-distance damping caused by the 
mass K; the integral of B is the flux of .p through the plane and the integral of p is 
the total charge Q. Hence we get 

1 
.p = --Q 

K 
(2.A.26) 

This means that particles carrying charge Q also carry magnetic flux -Q / K. Since 
B = \7 x A, we further see that the gauge-variant vector potential A is long-range, 
so that J d2 x \7 x A =f:. 0, while the gauge-invariant magnetic field is short-range, so 
that J d2 x B converges. In other words, we are dealing with a vortex-like object. 2a,b 

We conclude this discussion of topologically massive gauge theories with the 
following observations. 

(a) The Chern-Simons term violates P and T, and conserves C and PT. 

(b) When fermions couple to the gauge field, a Chern-Simons term is induced by 
fermion radiative corrections.2b,4a, 6 Fermi fields in three-dimensional space-time 
are described by two-component spinors, and the three "Dirac" matrices can be 
chosen to be the 2 x 2 Pauli matrices. A fermion mass term, constructed from 
these two-component spinors, also violates P and T; indeed it is the supersym
metric partner of the Chern-Simons mass term. 7 Thus it is natural that massive 
fermions radiatively generate the Chern-Simons term. However, also massless 
fermions do so, owing to the mass term that is present in Pauli-Villars regu
larization, which is needed to preserve gauge invariance against "small" gauge 
transformations with vanishing winding number. The technical mechanism that 
induces the Chern-Simons term through fermion loops relies on the trace of three 
Pauli matrices being non-zero, but proportional to the three-index Levi-Civita 
anti-symmetric epsilon tensor. Moreover, in the non-Abelian theory the coeffi
cient of the Chern-Simons term, induced by a minimal set of fermions, is not 
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properly quantized. To preserve gauge invariance against "large" gauge trans
formations with non-zero winding number, while retaining a minimal fermion 
content, it is necessary to include a "bare" Chern-Simons term so that the total 
coefficient is properly quantized. As a consequence there is no gauge invariant, 
parity preserving, non-Abelian gauge theory interacting with a minimal set of 
fermions. This is the "parity anomaly" of three-dimensions - the lower dimen
sional analog of the four-dimensional chiral anomaly. 

(c) It is to be emphasized that there is no topological quantization of K, in the Abelian 
theory: ITa is trivial. This fact may also be established through a gauge invariant 
formulation of the Abelian model.2c Consider the Lagrange density 

(2.A.27) 

leading to the field equation, 

(2.A.28a) 

which also implies transversality of F". 

8"F" = 0 (2.A.28b) 

In three dimensions, a vector is dual to an antisymmetric tensor. 

(2.A.29) 

Substituting (2.A.29) into (2.A.28a) shows that F"" satisfies [the Abelian version 
of] (2.A.7). We recognize that FO/fJ is just the gauge curvature, FP is its dual, 
both are gauge-invariant. In the absence of dynamical charged matter [exter
nal conserved matter currents can be coupled through jpFP], there is no need 
for a gauge-variant vector potential, which, as a consequence of (2.A.28b) and 
(2.A.29), can be introduced in topologically simple spaces, where a transverse 
vector can be written as a curl. 

(2.A.30) 

Of course Ap is gauge-variant. However, the gauge symmetry acts trivially on 
(2.A.27) and does not constrain K,. 

B. Non-Abelian Chern-Simons Gauge Theories 

Because Eq. (2.A.26) encapsulates the physically novel and important conse
quences of the Chern-Simons term, it is natural to consider a truncation where 
(2.A.26) holds locally in space. This is achieved when the kinetic action for the 
gauge field is just the Chern-Simons term, with no Maxwell/Yang-Mills term. Such 
a model can be viewed as the K, --+ 00 limit of (2.A.6) and (2.A.7); it is a physically 
meaningful truncation at low energy, or at large distance, where the lower-derivative 
Chern-Simons term dominates the higher-derivative Maxwell term. 

The Chern-Simons theory [without matter interactions] is governed by the La
grange density8 

(2.B.l) 
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with field equation 
(2.B.2) 

which implies that Fo.p vanishes, and so Ao. must be pure gauge, at least locally. 
Nevertheless, the quantum theory retains non-trivial, interesting features. Of course, 
the gauge properties of the Chern-Simons theory are the same as those of the topo
logically massive model; in particular for non-Abelian gauge groups If, is quantized as 
in (2.A.14). 

The canonical formulation in the Weyl gauge begins with (2.B.l) at Ao = O. 

If, ..• 

Ccs = -f'l A~ A~ 2 '1 
(2.B.3) 

The Hamiltonian vanishes. The Euler-Lagrange equation which follows from (2.B.3) 

(2.B.4) 

coincides with the spatial component of (2.B.2) when Ao = 0, while the time compo
nent - the Chern-Simons Gauss law - is imposed as a constraint. 

If, .• 

GB = --f') Ff'· = 0 - 2 'I 
(2.B.5) 

In the Weyl gauge, the theory is invariant under static gauge transformations, 

(2.B.6) 

which are generated by 

(2.B.7) 

Thus the constraint sets the generator to zero. 
Ccs is first-order in time derivatives, and the quantization of the corresponding 

symplectic structure leads to non-trivial equal-time commutation relations between 
vector potentials.2c 

[Ai(x), A~(y)] = !..fijOab02(x - y) 
If, 

(2.B.8) 

Consequently, the generators follow the group's Lie algebra, 

(2.B.9) 

and there is no apparent obstruction to demanding that the constraint (2.B.5) be 
met by requiring that Ga(x) annihilate physical states. 

(2.B.I0) 

However, we show that (2.B.I0) in fact cannot be satisfied unless If, is quantized. 
The Gauss law is all there is to this theory; since the Hamiltonian vanishes, (2.B.4) 
is trivially satisfied. Equation (2.B.I0) is most readily analyzed on the Schrodinger 
representation. 

In order to give a Schrodinger representation for the canonical algebra (2.B.8), 
we have to decide which operator is realized by multiplication, which by [functional] 
differentiation, and on what function( s) the state functionals depend. This proce
dure of dividing phase space into "coordinates" and "momenta" is called choosing a 
polarization. 
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We choose a Cartesian polarization: the state functionals depend on Ar, which 
we call c.pa, and so A; is realized by functional differentiation with respect to c.pa. 

lilt} ~ 1It(c.p) 

A~(x)llIt} ~ c.pa(x)IIt(c.p) , 

A;(x)llIt} ~ ~ ~( )1It(c.p) 
ZII: oc.pa X 

(2.B.lla) 

(2.B.llb) 

(2.B.llc) 

Other polarizations are available. For example, Ar may be decomposed into lon
gitudinal and transverse parts, which serve as coordinates and momenta. This choice 
has the advantage of being rotationally invariant, unlike the Cartesian polarization, 
and also permits a very simple treatment of the Abelian theory - a fact that we shall 
exploit later. However, non-Abelian gauge transformations are represented very awk
wardly in this polarization, because they do not respect the longitudinal/transverse 
decomposition. 

Another possible choice is a holomorphic polarization that uses the non
Hermitian pair: Aa == ~ (Ar + iA~) and Aa* == ~ (Ar - iA~). This too will be 
briefly described. 

We now show that the action of the gauge group on states is realized with a 
1-cocycle.2d The exponential of the generator G is the unitary operator U(g) that 
implements a finite gauge transformation g, 

U(g) = exp (i L >..aGa) 
(2.B.12) 

9 = e-x 

and according to (2.B.9), the composition law follows that of the group. 

(2.B.13) 

In the Cartesian polarization (2.B.ll), the generator is a functional differential oper
ator, acting on functionals of c.p, 

L >..aGa = - L >..a(x) ( &r ~ ~c.p:(x) + rbCc.pb(x)~ ~c.p:(x») - K. L c.pa(x)8-z,XIJ(x) 

== G", + 211: L tr (c.p~>") . 

(2.B.14) 
G", generates infinitesimal gauge transformations on c.pa = A~; the last term, needed 
to generate the transformation on ~/ill:~c.pa = A~, is responsible for the 1-cocycle. 

U(g)IIt(c.p) = eiGe-iG"IIt(c.pg) 

c.pg == g-lc.pg + g-101g 
(2.B.15) 

The prefactor eiG e-iG" is evaluated by introducing a homotopy parameter T, T E 
[0, I], and solving a differential equation in T. 

-i! (eiTGe-iTG,,) = (eiTGe-iTG .. ) (211: 1 tr (c.pgr~>..») 
(2.B.16) 

gT = eT-X 
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The last factor in (2.B.16) reads 

211: Ix tr (!.pg"'~A) =211: Ix tr (g;lt.pgT~)..) +211: Ix tr (g;181gT~)..) 

=211: Ix tr (t.pgr~)..g;l) + II: Ix tr (g;lOtgT~).. + g;1~gT(1)..) (2.B.17) 

+ II: Ix eij tr (g;18;gr8j)..) 

Since 8rgr = gr).., the first term in the last equality is recognized as the 7 derivative of 
211: I tr (!.p~grg;l), and the second as the 7 derivative of II: Ix tr (g;181grg;1~gT). 
The last term in (2.B.17), after an integration by parts and use of (2.A.I0) and 
(2.A.11), is seen to equal 

II: Ix eij tr (g;18igr8j)..) = -II: Ix tr (g;18ogrg;18;grg;18jgr) 

I>, f OIP-y t (-18 -1 ~ -18 ) = -'3 lx e r gr OIgrgr upgrgr -ygr 

= -871"2 I>, Ix w(gr) 
(2.B.18) 

= -871"2 I>, :7 Ix WO(gr) 

0!1(t.p,g)=-2:1x {tr (2t.p~gg-l+g-181gg-1~g)}+471"I>, Ix wO(g) (2.B.19) 

and (2.B.15) becomes 

(2.B.20) 

The last term in (2.B.19), which appears also in the l-cocycle of topologically massive 
gauge theories [see (2.A.20b)], is multivalued for the same reason. 

The Gauss law constraint (2.B.I0) requires that physical states w(t.p) be left 
unchanged by the action of U(g), since the generator annihilates them. 

U(g)w(t.p) = w(t.p) (2.B.21) 

Therefore in this theory, as in topologically massive gauge theories, functionals de
scribing physical states are not gauge invariant; rather, according to (2.B.20), they 
satisfy 

(2.B.22) 

Only when 471"1>, is an integer can this condition be met with single-valued functionals. 
As indicated earlier, it is generally true that when a symmetric theory is described 

by a Lagrangian that changes by a total time derivative under a finite symmetry 
transformation, L -+ L + -it271"0!, the l-cocycle is just O!, evaluated at fixed time. To 
verify this for the Chern-Simons theory, we must cast the Lagrangian in phase space 
form: the kinetic term should involve pq, i. e. I>,A~ Ar rather than ieij Ai Aj. This is 
achieved by subtracting I>,-it tr (A1A2 ) from (2.B.3). 

(2.B.23) 
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Then from (2.A.8), (2.A.9), (2.A.10) and (2.A.ll) it follows that Les transforms as 

Les --+ Les 

+ ~ K Ix { tr (eij 8ig g-l Aj - 81g g-l A2 - A10zg g-l - g-l8tg g-lOzg) 

+ 81r2WO(g)} 

=Les+ ~K Ix {-tr (2<,oOzgg-1 +g-181gg-10zg) + 81r2wO(g)} , 

(2.B.24) 
in agreement with the general result and with (2.B.19). 

We see that the 1-cocycle for the Chern-Simons theory is essentially the same 
as the one in(2.A.20) for the topologically massive gauge theory, once differences 
in polarization are taken into account: in the former there is a single field variable 
<,oa = Ai, while the latter is described by a pair Ai, i = 1,2. In particular, the 
multi valued contribution to each is the same. 

Next we construct explicitly states that obey (2.B.22), thus solving the Gauss 
law constraint. To this end we write 

(2.B.25) 

and seek a quantity ao (<,0), called a cochain, that satisfies 

(2.B.26) 

Then (2.B.25) solves (2.B.22) with gauge invariant t/;( <,0). 
If Eq. (2.B.26) holds the 1-cocycle al is trivial - it is a coboundary. It is known 

that a1 is non-trivial in local cohomology, but a spatially non-local functional that 
trivializes al can be constructed. It is easy to verify that 

(2.B.27) 

where h is defined by the non-local relation 

(2.B.28) 

solves (2.B.26) and therefore trivialized the cocycle (2.B.19). 
It is to be remembered that the multi valued contribution to the trivializing func

tional (2.B.27) is related to the effective action of chiral fermions coupled to an ex
ternal gauge field in two [Euclidean] dimensions. This connection arises because the 
fermion determinant is not gauge invariant; under a gauge transformation its change 
is related to the Chern-Simons l-cocycle.9 

The gauge invariant functional 1jJ( cp) in (2.B.25) is formed solely from cp = AI. 
It must be constructed from path-ordered exponential integrals of cp along xl at fixed 
x2 ; e.g. closed Wilson loops <I»(Cx l; x2 ) = tr Pexp Ie dx 1cp(X1, x2 ) where P denotes 

,,1 

path ordering. [In two-dimensional, sourceless electrodynamics analogous holonomies 
around closed loops in the single spatial direction are the only surviving degrees of 
freedom in the quantized theory; they give rise to the vacuum angle and probe a 
possible vacuum electric field. 2h] Whether such one-dimensional closed loops, or other 
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gauge invariant constructions, exist depends on the topology of the two-dimensional 
space-like manifold on which the fixed-time canonical formalism is defined. Apart 
from this gauge-invariant functional, physical states of the non-Abelian Chern-Simons 
theory are given by 

(2.B.29) 

where N provides normalization and the other factor is related to the two-dimensional 
chiral fermion determinant - a non-local functional, as is normal for a physical wave 
functional. The necessary quantization of It, (2.A.14), is again evident: from (2.B.25) 
and (2.B.29) we see that ao(t.p) contains the multi-valued term 47rltIx wO(h), which 
with unquantixed It would render W(t.p) in (2.B.25) or (2.B.29) multi-valued. 

Since the Hamiltonian vanishes, the physical states (2.B.25) or (2.B.29) solve the 
Chern-Simons theory for all times. It is instructive to demonstrate explicitly that the 
vector potential Ai acting on the state (2.B.29) is a pure gauge. To exhibit the action 
of A~ = c/iltct.pa on W(t.p) we need cao(t.p)/iltct.pa. This can be found from the defi
nition (2.B.28), which implies 8t (ch h -1) = Mt.ph -t, and from the formula (2.B.27) 
for 27rao, which has the consequence that c(27rao) = -21t Ix tr {~h h-181(ch h-1)}. 
Thus 

( 2.B.30a) 

Together with (2.B.28) 

(2.B.30b) 

the desired result is obtained. 

(2.B.30c) 

The wave-functional (2.B.29) has t.p-independent norm INI2 , hence it cannot be 
normlized by [funcitonalJ integration over t.p. This is to be expected of states that 
satisfy Gauss' law, because the Gauss law operator has a continuous spectrum. The 
resolution of course is that the integration measure Vt.p must be gauge fixed - c( t.p ) 
is a natural choice leading to trivial integrals. 

Note that it is possible to formulate the theory in terms of a gauge invariant, 
spatially non-local Lagrangian. From (2.B.24) it follows that the gauge transform of 
Las(A) is 

- - d 
Las(A9) = Las(A) + dt27ra1 (t.pj g) (2.B.31a) 

With (2.B.26), this can be presented as 

(2.B.31b) 

This means that the equivalent Lagrangian 

(2.B.31c) 

202 



is invariant against time-independent gauge transformations (hg == hg). In (2.B.31c), 
h-l 02h is the non-local functional of r.p = AI, defined by (2.B.28); A2 - h-l 02h does 
not vanish here, only when acting on physical states. 

The same results may be presented in the holomorphic representation, wherein 
states are functionals of a complex function A a and A a* == .h (A~ - iA~) is realized 

by multiplication by A a while A a == .h (A~ + iA~) acts by functional differentiation. 

I'll) ~ w(A) 
Aa*(x)lw) ~ Aa(x)w(A) 

8 
Aa(x)lw) ~ 6Aa(z) w(A) 

This action reproduces the commutator between A and A *. 

(2.B.32a) 

(2.B.32b) 

(2.B.32c) 

(2.B.33) 

The adjoint relationship between the two operators is maintained, provided inner 
products involve a non-trivial measure in the functional integral 

(2.B.34a) 

where 
VAVA* = VA~ VA~/ det(27ri) (2.B.34b) 

A development paralleling the previous discussion in the Cartesian polarization re
sults in a wave functional in the holomorphic polarization analogous to (2.B.27) and 
(2.B.28). 

w(A) = N e27riao(A) 

<:toeA) = ~: 1 tr (Ah-lo+h) + 47r1\: 1 wO(h) 

Here h is defined through 

(2.B.35a) 

(2.B.35b) 

(2.B.36) 

and o± == .h (01 ± i(2 ). The multivalued phase is of course encountered once again, 

while the integration measure exp -I\: Ix AC* AC insures convergence of the functional 
integrals - no further gauge fixing is needed. 

We conclude this presentation of the quantum Chern-Simons theory by noting 
that the Gauss law constraint is here solved after quantization. One may alternatively 
solve it classically, and quantize the remaining degrees of freedom. In general the two 
procedures do not commute, as is seen from the following example. 2d 

Consider the quantum mechanics for planar motion of a point particle described 
by the two-vector q = (qI, q2). The Lagrangian 

L = ~q2 - V(q) 
2 

is invariant under rotations through the angle 8, 

(2.B.37) 

(2.B.38) 
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when V(q) depends only on the magnitude of q. Here qi is a function oftime t, and the 
overdot denotes differentiation with respect to t. However, (J is time-independent -
the rotation in (2.B.38) is "global." In the usual way, one knows that invariance under 
(2.B.38) implies conservation of angular momentum J = q x p, where p == ~~ = q, 
and the familiar Hamiltonian operator for fixed angular momentum f. is 

r 2 0 . (2.B.39) 

[We temporarily restore Planck's constant.) One may promote the global symmetry 
under rotations (2.B.~8) to a "local" gauge symmetry by introducing into (2.B.37) a 
"gauge potential" aCt), 

(2.B.40) 

that transforms under time-dependent rotations. 

(2.B.41) 

In the Weyl gauge, a = 0, La coincides with (2.B.37), but now there is an additional 
constraint that captures the Lagrangian equation of motion obtained from (2.B.40) by 
varying a: the rotation generator J must annihilate physical states, which therefore 
are only s-states. If the constraint is solved classically, the classical Hamiltonian for 
rotationally invariant motion with vanishing angular momentum is 

2 
Hclassical = Pr + VCr) 

1=0 2 ' 

whose quantized form, obtained with the naive replacement P~ -+ -n,28~, 

1i2 82 
Hciassical --+ _ - - + VCr) 

(=0 2 8r2 

(2.B.42a) 

(2.B.42b) 

does not reproduce the quantum s-wave Hamiltonian that survives from (2.B.39) if 
the constraint is imposed after quantization. 

1i2 82 1i2 

Hl=O = -2 8r2 - 8r2 + VCr) (2.B.43) 

The O(1i2) difference between (2.B.42b) and (2.B.43) can be viewed as an ordering 
ambiguity i.e. (2.B.43) follows from (2.B.42a) if P~ is taken to be ~ ~8rr8r .}.:, but 
without further information there is no way to justify the "correct" choice. No such 
ambiguity arises if one imposes the constraint after quantization. [Henceforth we 
return 1i to unity.) 

This is not to say that there will always be a discrepancy when phase space is 
reduced before or after quantization. For example, in many-body quantum mechanics, 
the passage to the center-of-mass rest frame [which may be formulated as a gauge 
principle for translations2S) produces the same quantum theory whether it is carried 
out before or after quantization. Similarly, enforcing the Gauss law in quantum 
electrodynamics does not involve ordering ambiguities. It is therefore surprising that 
we find non-commutativity of quantization and phase-space reduction already for the 
Abelian Chern-Simons theory in flat space, which I shall now describe. 
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C. Abelian Chern-Simons Gauge Theory with Sources 

We begin with the Lagrange density 

(2.C.1) 

where jP = (p,j) is the conserved matter current with time-independent charge. 

Q=l p(t,x) (2.C.2) 

Here the fields are real functions, and the coupling constant is absorbed in the defi
nition of the current j p. We leave the matter Lagrangian unspecified; indeed we take 
the current to be an external, conserved, c-number source. The previous canonical 
development holds in this theory, except that the Hamiltonian does not vanish, 

and the Gauss law constraint acquires an inhomogeneous term. 

.. 1 
e'JoiAj = -B = -p 

K 

(2.C.3) 

(2.C.4) 

This constraint on the magnetic field B implies that particles with charge Q are 
also flux-tubes for A-flux, q, = -Q 1 K, and leads to exotic statistics and angular 
momentum of the charge- and flux-carrying particles. lo 

In contrast to the non-Abelian theory, here the gauge field contribution to the 
constraint (2.C.4) is linear, and may be chosen to be the momentum conjugate to a 
coordinate 8. This is achieved by decomposing Ai into its longitudinal and transverse 
components, 

Ai = OiO + €ijO-:-l B 
J 

0;1 == ojl\72 
(2.C.5) 

The decomposition (2.C.5) is unique and well-defined provided there are no zero 
modes of the two-dimensional Laplacian \72 • This we assume here; indeed, we consider 
space-time to be Minkowskian. 

The commutation relation (2.B.8) implies that Band 0 form a canonical pair. 

[O(x),B(y)] = ':<52(x - y) 
K 

(2.C.6) 

In the Schrodinger representation we realize B as a functional derivative with respect 
to the coordinate, 8, B = 61iK68. This is the rotationally invariant polarization. 

The constraint (2.C.4) reduces to 

(2.C.7) 

and is solved by 

W(8;t) = N(t)exp [-i 1 po] (2.C.8) 
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where N(t) is a 8-independent, but possibly time-dependent normalization fac
tor. N (t) is then determined by requiring that '11(8; t) satisfies the time-dependent 
Schrodinger equation. 

(2.C.9) 

Inserting the decomposition (2.C.5) and using the continuity equation for the matter 
current, we find 

N(t) = exp_i t dt' 1 p(t',x)j(t',x) , 
K 10 x 

(2.C.10) 

where we have written ji in terms of its longitudinal and transverse parts. 

·i a-I' + ija . J = - i P f jJ (2.C.11) 

N(t) is normalized to 1 at t = O. Note that for static matter the state '11 is an 
eigenstate of the Hamiltonian with energy eigenvalue 

E =.!.1 pj . 
K x 

(2.C.12) 

We see that the theory admits a unique physical state, which in the absence of sources 
is described by the wave functional '11 = 1. 

Of course, the above development can alternatively be presented in the Cartesian 
polarization Al = <p, A2 = OjiKO<p, whichwe used for the non-Abelian theory. In the 
absence of external sources, the unique physical state that satisfies Gauss's law is 

(2.C.13) 

in agreement with (2.B.25), (2.B.27) and (2.B.29). '11 responds to a gauge transfor
mation by 

'11 (<pg) = W(<p+&,x) = ei2 71'Q'1(l"j'\)w(<p) , 

(Xl (<p;,x) = 2: 1 [<p~,x+ ~&,X~,x] , 

in agreement with (2.B.22). 

(2.C.14) 

The unitary transformation functional that connects the Cartesian polarization 
to the rotationally invariant one is 

'11(8) = (81'11) = 1 , 

In the rotationally invariant polarization the physical state, in the absence of ex
ternal sources, '11 = 1, is obviously gauge invariant. This fact realizes the gauge invari
ant formulation described previously: in the rotationally invariant polarization the 
Lagrangian, apart from a total time derivative, is invariant against time-independent 
gauge transformations. 

Les = K B8 - - - B8 - l' K d 1 
x 2 dt x 

(2.C.16a) 

L~sariant = K 1 BO (2.C.16b) 
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Finally in the holomorphic polarization (2.B.32) the state of the Abelian theory 
IS 

KJ 0+ w(A) = N exp - A-A 
2 0_ 

(2.C.I7) 

We have already remarked that the Chern-Simons theory may be viewed as the 
K- -+ <Xl limit of the topologically massive model. It is interesting to examine in 
detail how one theory passes to the other, and this we can do explicitly for the wave 
functionals of the Abelian theory. For C of (2.A.6a) to pass into Ces of (2.A.6b) it 

suffices [in the Abelian case] to rescale the potential by R- and set K to infinity, with 

K-' remaining as the coefficient of the Chern-Simons Lagrange density. Performing 
this limit on the ground state wave functional (2.A.22a) leaves 

(2.C.I8a) 

In terms of complex variables A == .fi (AI - iA2 ) and A* = ?zeAl + iA2 ), (2.C.I8a) 
reads 

( K-' J 0) K-' J wo(A) K~ exp "2 A o~ A exp -"2 A* A (2.C.I8b) 

Comparison with (2.C.I7) shows that in the limit, the ground state wave functional 
of the topologically massive theory tends to the unique state of the Chern-Simons 
theory, times the square root of the measure factor, so that the probability measures 
correctly pass into each other.2e Other details on this limit can be found in the 
literature.2e 

D. Quantum Holonomy 

In the Abelian Chern-Simons theory defined on the topologically trivial plane 
there is very little structure. Indeed when the constraints are solved before quanti
zation, there is no structure at all if there are no sources. However, by quantizing 
first, and computing the quantum holonomy around closed loops at fixed time, we 
encounter non-trivial results that show an explicit difference between solving the 
constraints before and after quantization.2d 

The holonomy operator ~(C) is defined by the parallel transport equation around 
a closed planar loop C parametrized by x(r) for r E [0,1], with x(O) = xCI) == Xo, 
which serves as a marked point on the loop, where we also specify the initial and 
final unit tangent vectors, Vo = x(O)/lx(O)1 and VI = x(I)/lx(I)I, respectively. The 
marked point is on a smooth segment of the loop if Vo = VI; otherwise it is at a cusp 
with opening angle 7r =t= cos-I Vo . VI, where =t= refer to opening angles < 7r and ~ 7r, 
respectively, and 0 ~ cos-I Vo . VI < 27r. 

The equation for the holonomy 

[iOr + V(r)] ~(C) = 0, VCr) == xi(r)Ai(x(r» (2.D.I) 

is solved at the classical level by the Aharonov-Bohm phase. 

(2.D.2) 

The constraint (2.C.4) in the theory without sources forces Ai to be a pure gauge, 
and therefore cpclassical = 1, independent of the loop C. 

207 



To solve Eq. (2.D.1) at the quantum level we must recall that [AI (x)}, Az(x)J =I 0, 
therefore rVer), VCr')] =I 0, and the quantum holonomy operator is given by a path
ordered expression. 

(2.D.3) 

To determine the action of tP( C) on states we first need to undo the path ordering. 
Since the commutator [V( r), V( r')] is a c-number, this yields 

tP(C) = exp [-~ 11 dr 1T dr' rVer), Vcr')]} exp [i 11 drV(r)] 

= exp [- 2iK 11 dr 1T dr' :i;i(r)€iii:i(r')8 2 (x(r) - x(r'»] 

x exp [i 11 dr :i;i( r )Ai (x( r n] . 
(2.DA) 

In our chosen polarization, tP( C) acts on functionals of the "coordinate" B, and 
it is therefore convenient to reorganize (2.DA) so that the "momentum" B stands on 
the right. To this end, we split the operator VCr) into a self-commuting pair 

VCr) = VI(r) + V2(r) 
[V1(r), VI (r')] = [V2(r), V2(r')} = 0 

[V1(r), V2(r')] = c-number 

(2.D.5) 

Splitting the operator-valued exponential in (2.DA) gives an additional phase, which 
combines with the first to yield 

tP( C) = exp[irl exp [i 11 dr VI (r)] exp [i 11 dr V2( r)] 

,= i 11 dr 1T dr' ['Vi (r), V2(r'») 

With our polarization 

. d 
V1(r) = :i;'(r)&iB(x(r» = dr B(x(r» , 

V2(r) = :i;i(r)€iia;l B(x(r» , 

, becomes 

where 0;18 is the derivative of the two-dimensional Green's function. 

1 r j f jk r2 
0:-182 (r) = - ..,- = -Bktan-1 -

} 211" Irl 211" rl 

(2.D.6) 

(2.D.7) 

(2.D.8a) 

The formula relating 0;18 to a. derivative of tan-1 gives an alternative expression for ,. 
= - dr dr - - tan 

1 11 1T , a a -1 x2 (r) - x2 (r') 
, 211"K 0 0 Or or' x 1 (r) - x 1 (r') 

(2.D.8b) 
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The derivation may be organized differently. We recognize that the phase arising 

from splitting exp [i J01 dr V( r)] into exp [i J: dr V1 (r)] exp [i J01 dr V2( r)] vanishes 

because the loop is closed, leaving for the entire contribution to, just the last quantity 
in (2.D.4), which arises from undoing the path-ordering, and which is determined by 
the polarization-independent [Ai, Ai] commutator. 

(2.D.8c) 

Using the identity 27r82 (r) = €iiaiai tan-1 r2/r1 we can rewrite (2.D.8c). 

(2.D.8d) 

Equation (2.D.8c) exhibits the elusive nature of ,. Owing to the 8-function 
enforcing x( r) = x( r'), one might conclude that xi( r )€ij xi (r'), and hence" vanishes. 
However, upon closer examination we recognize that the two-dimensional 8-function 
is a product of two one-dimensional 8-functions, each enforcing the same constraint 
on the one-dimensional variables r, r'. Thus the integrand in (2.D.8c) involves the 
ambiguous quantity xi( r)€ii xi( r)/ \:i;1( r):i;2( r)\ 8( r-r')8( r-r'), and in the following 
a careful analysis is performed to obtain an unambiguous result. But it is already 
clear that, is non-trivial owing to the continuum properties of space, which give rise 
to 8-functions. In a discretized world with Kronecker delta's, (2.D.8) does indeed 
vanish. 

Our evaluation of, is based on the following observation. In spite of the singular 
nature of (2.D.8c), one can begin with any of the other formulas (2.D.8a), (2.D.8b) 
and (2.D.8d), manipulate finite expressions and arrive at an unambiguous answer for 
,. By this procedure, we shall derive below the result 

(2.D.9) 

Here .0.8r is the total angle accumulated at the marked point Xo when the loop is 
traversed by a vector based at Xo, 

r = x - Xo , 
(2.D.I0a) 

while the quantity .0.8v is the accumulated angular change in the tangent to the 
curve. 

(2.D.I0b) 

The evaluation of (2.D.8) that gives (2.D.9) is performed without using regula
tors. However, to illustrate the subtlety of (2.D.8) we remark here that if regulators 
are introduced, for example by regulating the 6-function, and if the regularization 
preserves the fact that the Green's function derivative is odd under interchange of 
argument, atP(x - y) = _a;182(y - x), so that a;182(0) vanishes, then we again 
obtain a unique answer that does not depend on the details of the regularization. 
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However, this answer differs from (2.D.9): 'Yreg = 2!K .6.0r , the contribution from the 
change in the tangent is missing. 

We now present the derivation of (2.D.9). In (2.D.8a) or (2.D.8b) the r derivative 
is interchanged with the r' integral. Starting from (2.D.8a) we have 

'Y =.!. t dr aa r dr' xi( r')fii 62 (x( r) - x( r'» 
I>, Jo r Jo 
- .!.11 dr (xi(r')fiia;162 (x(r) - x(r'))) I 

K 0 r'=r 

= -.!. t dr' x i(r')f ii a;t62 (x(r') - xo) 
I>, Jo 

+ .!.11 dr (xi( r')fii a;162 (x( r') - x( r))) I 
I>, 0 r'=r 

(2.D.lla) 

By expressing the derivative of the Green's functions in terms of the inverse tangent, 
or alternatively by beginning with (2.D.8b), we find 

1 11 a x2(r') - x2 
'Y = -- dr'- tan-1 0 

271"1>, 0 ar' x1(r')-x~ 

1 11 (a -1 x 2 (r') - x 2(r») I - -- dr -tan 
271"1>, 0 ar' x 1(r') - x 1(r) r'=r 

(2.D.llb) 

[It is easy to see that the same formula emerges if one begins with (2.D.8d), treats 
the arar, contribution as in (2.D.llb) and evaluates the ar,ar contribution by first 
performing the r' integral.] The integrand of the last term in (2.D.llb) is 

and so 'Y becomes 

1 lId a _lx2(r)-x~ 1 lId a _l x2 (r) 
'Y = -- r-tan - -- r-tan--

271"1>, 0 ar x1 (r) - x5 471"" 0 ar x 1 (r) 
(2.D.llc) 

This establishes (2.D.9). [Note that if a regulator had been used for the 6 function in 
(2.D.lla), then the last term of each equation in (2.D.ll) would vanish, with natural 
regulators such that a;162 (0) = 0, leaving, as commented above, for 'Yreg just the 
first term on the right-hand side of (2.D.llc). A possible regularization would be to 
retain the kinetic Maxwell term, and then decouple it by passing with I>, to infinity. 
It should be no surprise, in view of earlier discussions on this limit [see (2.C.18)], that 
different answers can be obtained. For more discussion, see the literature. 2e 

The value of 'Y depends on the curve. Consider first simple curves, traversed in 
the counterclockwise direction, without self-intersections. For smooth, simple curves, 
the angle swept out as the marked point is 71", and 

The angular change in the tangent is 271", so 

210 

1 1 
-.6.0v =-
471"1>, 21>, 

(2.D.12a) 

(2.D.12b) 



and therefore 
,=0 (2.D.12c) 

The same results hold if the curve has cusps, provided the marked point is not 
a cusp. However, when Xo does lie at a cusp where Vo =f. VI, there are shortfalls in 
the angular traversals and 

1 AE> 1 ( 1" ) --LJ. - r = -- 7r =t= cos- Vo· VI 
27r1l: 27r1l: 

1 AE> 1 (2 -1" ) 
--LJ. - v = -- 7r =t= cos VO· VI 
37r1l: 47r1l: 

1 -1,' ,= =t=-- cos Vo· VI 
47r1l: 

where =t= refer to opening angles of the cusp < 7r and::; 7r, respectively. 

(2.D.13a) 

(2.D.13b) 

(2.D.13c) 

We now discuss loops with intersections. We set the following conventions: the 
marked point lies on an outermost smooth segment of the loop, insuring that 1~E>rl = 
7r, regardless of the number of intersections and cusps, since Xo does not lie at any 
of these exceptional points; the parametrization takes the contour through Xo in a 
counterclockwise direction thus fixing ~E>r = 7r; an intersection is defined by an actual 
crossing - touching contours are not intersections; the total number of intersections 
is v and we do not consider loops with multiple intersections at the same point. 

Only ~E>v varies with the intersection number v. For v = 1, there are two 
elementary intersections: the "figure eight" where the two sub-loops are traversed in 
opposite directions, so that ~E>v = 0, and the "nested loop" where the two sub-loops 
are traversed in the same direction, with ~E>v = 47r. Loops with higher v can be 
constructed by superposing in various ways these two elementary blocks. For a given 
v, the highest possiblevalue for ~E>v, ~E>~ax = (v+1)27r, is achieved by superposing 
like-oriented nested intersections. The lowest possible value, ~E>~jn = -(v - 1)27r, 
is obtained by building out of v like-oriented intersections a loop whose direction has 
been reversed by a single figure eight intersection. The possible values of ~E>v, for 
fixed v, interpolate between ~E>~jn and ~E>~ax in steps of 47r. The different allowed 
values for ~E>v, combined with the unique ~E>r = 7r, give a table of values for, at 
fixed v. m ,=- , 

II: 
C2.D.14) 

Finally, we return to the full holonomy operator, and determine its action on the 
state (2.C.8). In our polarization, we have 

Since the holonomy of the pure gauge OiO is trivial, exp [i Ie dxio;O] = 1. The integral 
in the exponent of the last factor is evaluated by Stoke's law and gives 

(2.D.16) 

where Q( C) is the total charge contained within the closed curve, with contributions 
appropriately signed if C is self-intersecting. [For a single point source of charge Q 
surrounded by a counterclockwise loop, Q(C) = Q.] Thus the physical state (2.C.8) 
is an eigenstate of the holonomy operator with eigenvalue <PC C). 

(2.D.17) 

211 



[Note that the holonomy operator commutes with the Gauss law operator because it 
is gauge invariant, and with the Hamiltonian (2.C.3) if Q(C) is time-independent.] 

Since holonomies around closed loops are the only gauge invariant and generally 
covariant observables, this shows that the U(l) Chern-Simons theory in Minkowski 
space is characterized by the strengths of external charges, and by the vacuum holon
omy ei-y(C), which is missed when the constraints are imposed before quantization. 
The vacuum holonomy, which can be evaluated without regularization, vanishes for 
simple loops provided the marked point is not at a cusp; otherwise, it is determined 
by the opening angle of the cusp. This rich structure is already present for the U(l) 
Chern-Simons theory in Minkowski space. 

The gauge structure in the Chern-Simons theory follows closely that of its topo
logically massive antecedent: both involve essentially the same cocycle in the action 
of the gauge group. However, the behavior of the quantum holonomy <Ii is quite differ
ent. In the latter theory, the vacuum ground state - for the non-interacting Abelian 
model, the Gaussian (2.A.22) in A - is not an eigenstate of <Ii, and the vacuum 
expectation value of the holonomy operator is infinite. In the Abelian Chern-Simons 
theory, the vacuum state - the only state for the source-free model in Minkowski 
space - is a <Ii eigenstate with finite non-trivial eigenvalue, which is not seen when 
constraints are solved before quantization. 

If expectation values of the holonomy operator in a topologically massive theory 
are to possess physical significance, <Ii must be renormalized and its vacuum value is 
undefined. Neither regularization nor renormalization is needed in the Chern-Simons 
model; indeed since 'Y carries a rich loop dependence, a universal renormalization 
cannot remove the effect. 

E. Anomalous Statistics and Spin of Charged Particles 

We saw earlier that charged particles interacting through a Chern-Simons 
[Abelian] gauge field carry flux. This has the consequence that their spin and statis
tics is modified by the gauge-field interaction10 - a result which can be established 
without reference 'to the detailed nature of the particle dynamics.2d Here we first show 
how the holonomy modifies statistics, and that spin adjusts so that the spin-statistics 
theorem is preserved. Later, we shall take a point-particle model for the matter and 
regain these results in an explicit manner. 

Consider two identical particles, each with charge Q, and imagine a fixed-time 
test of statistics by carrying one particle around the other, corresponding to a double 
interchange of the particles. The wave function of the test particle will acquire, in 
addition to the conventional statistical factor, the phase 

where C is a loop without self-intersections surrounding the particle. The state 
(2.C.8) is an eigenstate of this operator with eigenvalue exp [iQ2 / K], apart from the 
vacuum contribution, which is absent provided the marked point is not at a cusp. The 
phase acquired by the wave function under a single interchange of the two particles 
is half the above, i. e. Q2/2K. Thus the statistics phase is an observable, whose value 
satisfies the spin-statistics theorem because particles in this theory carry anomalous 
spin S, 

(2.E.l) 

as we now demonstrate. 
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Spin fractionization for the charged matter particles is due to the angular mo
mentum of the gauge field associated with the magnetic flux created by the charged 
particle. The variation of the gauge field under an infinitesimal spatial rotation 
oxi = _Eij xj, 

OAi = -xj Ejk 8k Ai - €ij Aj , (2.E.2) 

leaves the Lagrangian corresponding to (2.C.l) invariant, provided the external cur
rent j is rotationally covariant. 

x j € jk8k/ + €ij jj = 0 (2.E.3) 

For the conserved angular momentum operator we take 

J = -~ f XiEij {Aj,B} 
2 ix 

(2.EA) 

J generates the transformation (2.E.2), 

OAi = i[J, Ad (2.E.5) 

and commutes with the Hamiltonian (2.C.3) when the current is rotationally covari
ant, i.e., (2.E.3) is satisfied. Also J is gauge invariant, as is seen by replacing Aj 
in (2.EA) by 8j A and B by -piK according to (2.CA). When the charge density 
is spherically symmetric, an integration by parts yields a vanishing response to the 
gauge transformation. J is not obtained from Noether's energy-momentum tensor, 
rather from the symmetric tensor, which has no pure gauge field contribution owing 
to the topological nature of the Chern-Simons term; only the interaction contributes. 

(2.E.6) 

Thus we have 

J = 1 EijxirOj = 1 EijxiAjp 

= -K 1 €ijxiAjB , 
(2.E.7) 

where (2.CA) was used. In (2.EA) the expression is symmetrized to insure Her
miticity; however, it differs from (2.E.7) by a commutator i Ix Eij8j82 (x - x), which 
although involving 82 (0) can be set to zero by an integration by parts. [Alternatively, 
8j82 (x) is odd in its argument.) 

Consider now the action of J on the state (2.C.8) 

Jw(B) = [1 €ijxiAjp] w(B) = J p€ijxi [8jB - ~Ejk8;;lp] w(B) (2.E.8) 

The contribution proportional to 8jB vanishes upon an integration by parts for spheri
cally symmetric p. This shows that the physical state (2. C.8) is an angular momentum 
eigenstate with eigenvalue S. 

S=~Jpxi8-:-lp 
K ' 

1 11 X· (x-y) = -2 - p(t,x) 1 _ 12 p(t,y) 
7rK x y X Y 

1 f f [X2 y2] 
= 47rKixiy

p(t,x) 1+ [x-=-yI2 p(t,y) 

(2.E.9) 

Q2 
--- , 

47rK 
Equation (2.E.9) gives the fractional spin carried by the charged matter particles, 
and agrees with previous results. S is a sharp observable, which satisfies the spin 
statistics relation (2.E.1). 
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F. Point-Particles with Abelian Chern-Simons Gauge Fields 

A possible model for charged matter consists of point particles.ll The total La-
grangian is 

where 

L = Lmatter + Linteraction + Lcs 

1 N 
Lmatter = 2 L mpv;(t) 

p=l 

N 

Linteraction = ~ep( vp(t)· A(t,rp(t» - Ao (t,rp(t») 

= -1 A/t(X)jlL(X) 

N 

j/t = L epv;(t)62 (x - rp(t» = (p(x),j(x» 
p=l 

v; = (1, v p ) 

Lcs = ~ f fiiA;(x)Aj(x) - '" f Ao(x)B(x) 2Jx Jx 

(2.F.1) 

(2.F.2a) 

(2.F.2b) 

(2.F.2c) 

We are considering N point-particles with coordinates rp(t), p = 1, ... , N, which are 
the particle dynamical variables, and vp(t) = rp(t) are the velocities. The masses 
and charges are mp and ep , respectively. The second expression for the interaction 
Lagrangian makes use of the point-particle current, which is a 6-function. Thus the 
integral over all space evaluates x = (t,x), the field point argument of A/t(x), at 
x = (t, rp(t». The time component Ao has not been set to zero. 

The [unordered) Euler-Lagrange equations of motion consist of the Lorentz force 
equation for the matter variables 

(2.F.3a) 

and a field-current identity that relates the electromagnetic fields to the matter cur
rents. 

. 1 ... 
E'(x) = -f'1j3(x) 

'" 1 
B(x) = --p(x) 

'" 

(2.F.3b) 

(2.F.3c) 

Point-particle electrodynamics suffers from well-known self-energy problems. Let 
us observe that these are absent here. Consider the equation of motion for a single 
particle, N = 1 and subscript p suppressed. The force in Eq. (2.F.3a) arises from 
the electromagnetic fields at the particle position r; by (2.F.3b) and (2.F.3c) they 
are given by the charge and current densities evaluated at x = r. However from 
(2.F.2b) we see that at x = r there appears the undefined quantity 62(r - r) - the 
density function of a point-particle at its position. Fortunately this singular object is 
multiplied by a factor that vanishes, since according to the field-current identity, the 
quantity 
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vanishes unambiguously; therefore we shall take it to be zero also at x = r. In other 
words the charge and current densities are regulated by non-singular expressions for 
the evaluation of the self-interaction, which is then shown to vanish. 

With this prescription, particles interacting through Chern-Simons gauge fields 
do not experience self-interactions. Equations (2.F.3) combine to give for the particle 
coordinates a closed equation of motion, free from undefined quantities. 

(2.FA) 

The Hamiltonian arising from the Lagrangian (2.F.l) and (2.F.2) is 

(2.F.5) 

It is recognized that the Lagrange multiplier Ao may be set to zero [by choosing the 
Weyl gauge] provided Eq. (2.F.3c) is imposed as a constraint. Thus the Hamiltonian 
is just the free particle one. 

1 N 
H= - ~m v2 

2L." Pp 
p=l 

(2.F.6) 

Although the gauge field is invisible in (2.F.6), its presence is felt in the commutator 
algebra. 

The commutation relations between canonical variables follow in the usual way, 
except that vector potentials satisfy the Abelian version of (2.B.8). However, it is 
useful to present the algebra in terms of the gauge invariant velocity operator, which 
occurs in the Hamiltonian, rather than in terms of the canonical momentum. 

Thus we have from (2.B.8), 

The particle variables satisfy 

(2.F.7) 

(2.F.8) 

(2.F.9a) 

(2.F.9b) 

(2.F.9c) 

The velocity commutator does not vanish; rather it contains terms that arise from: 
(i) the fact that v differs from p by A(r), (2.F.7), and p does'not commute with 
A(r) but produces the first term in the parenthesis of (2.F.9c); also (ii) the vector 
potentials do not commute, (2.F.8), giving rise to the second term in parenthesis of 
(2.F.9c). There is also the non-vanishing commutator between velocity and field. 

(2.F.I0) 
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Finally we remind that (2.F.3c) is imposed as a constraint. 
Before proceeding with an analysis of the dynamical problem, it is interesting to 

record the symmetries of our theory. 
First there are the spatial translation and rotation symmetries, under which the 

coordinates and fields change as 

(translations) 
(2.F.ll) 

cri = _eiiri 
p p 

cAo(t,x) = -eikxio,.Ao(t,x) (2.F.12) 
Ok 0 00 

cA;(t,x) = -e' X'O,.Ai(t, x) - e" Ai(t, x) (rotations) 

The Lagrangian (2.F.l), (2.F.2) is invariant, and the conserved constants of motion 
are the momentum P and angular momentum J, respectively. 

N 

P = L (mpvp + epA(rp)) + I>, 1 AB 
pI x 

N 

= LPp+1>, 1 AB 
p=1 x 

(2.F.13) 

N 

J = L(rp x (mpvp + epA(rp))) + I>, 1 (x x A)B 
p=1 x 

N 

= Lrp x Pp + I>, l(x x A)B . 
p=1 x 

(2.F.14) 

The second formula in both expressions makes use of the canonical momentum, 
(2.F.7). The vector potential, evaluated at x = rp , which is combined with mpvp to 
form the canonical momentum, arises from the integration Lagrangian (2.F.2b); the 
last term in (2.F.13) and (2.F.14), proportional to 1>" arises from the Chern-Simons 
kinetic term. 

Let us observe that E:=I rp x Pp possesses integer eigenvalues when acting 
on single valued wave functions. Thus point-particles, interacting with gauge fields 
that are governed by Chern-Simons dynamics, possess in their angular momentum 
a contribution additional to the usual integer. The extra term is not quantized but 
is determined by the gauge field and the Chern-Simons coupling strength K. This is 
consistent with the results of the external source analysis, presented earlier, and it 
will be shown later that in fact there is complete agreement. 

Note that for point-particles moving in prescribed external gauge fields [rather 
than dynamical ones], the last term in (2.F.13) and (2.F.14) is missing, and A(rp) is 
a given function of rp. Therefore, in the external field problem the angular momen
tum spectrum comprises the conventional integers, even though it differs from the 
kinematical momentum.12 

N N N 

I::rp x Pp = L rp x mpvp + L eprp x A(rp) 
p=1 p=1 p=1 

[This point is occasionally confused in the literature.] 
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In addition to the symmetries under the above spatial transformations, the theory 
is also invariant against transformations of time: obviously time translation [t ~ 
t + to} is a symmetry leading to energy [= Hamiltonian} conservation; but there 
are two further, unexpected time transformations that leave the action invariant: 
time dilation [t ~ '\t], and time special conformal transformation [lit ~ lit + 
lito}. Together, the three form a dynamical SO(2, 1) symmetry group of conformal 
transformations.2f 

Infinitesimally we have for these time reparametrizations 

8t = - J(t) 

J(t)={; 
t2 

translation 
dilation 
special conformal transformation 

The dynamical variables transform as 

1 . 
bfrp(t) = J(t)vp(t) - "2 J(t)rp(t) 

1 . 1 -
bfAo(t,x) = at (J(t)Ao(t, x») + "2 J(t)x. ~Ao(t,x) - "2 J(t)x. A(t,x) 

bfA(t,x) = at(J(t)A(t,x») - ~j(t)A(t,x) + j(t)x. ~A(t,x) 

(2.F.15a) 

(2.F.15b) 

(2.F.16) 

and the Lagrangian changes by a total time derivative. The constants of motion 
arising from the three transformations are, respectively 

(2.F.17a) 

1 N 1 f 
D = tH - 4" L mp (rp . v p + v p . rp) - "2 Jx X· A( liB + p) 

p=l x 
(2.F.17b) 

1 N 

K = -t2H +2tD +"2 Lmpr; (2.F.17c) 
p=l 

Of course (2.F.17a) coincides with the Hamiltonian of (2.F.5). 
Returning now to the dynamical problem, we observe that when the constraint 

(2.F.3c) is imposed, all reference to gauge fields disappears from the equation of 
motion (2.F.4). Hence, we can set liB + P to zero throughout, and suppress the gauge 
degrees of freedom. Therefore, only the dynamical algebra (2.F.9) is relevant, and 
now it takes the form 

(2.F.18a) 

(2.F.18b) 

(2.F.18c) 
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The consistency of these commutation relations is established by realizing the oper
ators through their action on functions of rp, with rp acting by multiplication, while 
mp v p is redefined as 

. . ep · . L (rj - rj) 
m v' = p' - --f.') e p q 

p p P 211"11: q Ir - r 12 
q#-p p q 

with pp acting as -iV rp' 

The symmetry generators (2.F.13), (2.F.14) and (2.F.17) become 

N 

P = Lmpvp 
p=l 

N 

J = Lrp x mpvp 
p=l 

1 N 
H= 2Lmpv~ 

p=l 

1 N 
D = tH - 4 Lmp(rp 'Vp +Vp' rp) 

p=l 

1 N 
K = -t2 H +2tD + 2 Lmpr~ 

p=l 

(2.F.19) 

(2.F.20) 

(2.F.21) 

(2.F.22a) 

(2.F.22b) 

(2.F.22c) 

The presence of the interaction is hidden, but it is in evidence in the commutators 
(2.F.18) and in the relation (2.F.19) between canonical momentum and velocity, which 
implies that the effective particle Lagrangian isll 

1 a 
----"e8 - 211"11: ar i L q pq 

p q#-p 

tan 8 = Yp - Yq 
pq Xp - Xq 

(2.F.23a) 

(2.F.23b) 

(2.F.24) 

Note that the angular momentum (2.F.21) is not constructed from the canonical 
momentum, hence as already remarked, its eigenvalues are non-integral. All the 
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constants of motion C = P, J, H, D and K generate the appropriate transformations 
(2.F.ll), (2.F.12) and (2.F.16) upon commutation. 

(2.F.25) 

In particular, the equation of motion (2.FA), properly symmetrized, emerges upon 
commuting v p with H. Also the SO(2, 1) generators satisfy the conformal Lie algebra, 

[D,H] = -iH, [D,K] = iK, [H,K] = 2iD (2.F.26) 

which may be presented in the more familiar Cartan basis by forming linear combi
nations with the help of a fixed, positive parameter a of time dimensionality 

n= ~ (~K+aH) 
8= ~ (~K-aH) 

L± = (8±iD) 

(2.F.27a) 

(2.F.27b) 

(2.F.27c) 

8 and D act as non-compact two-dimensional boost generators, while n generates 
the rotations that form the compact SO(2) subgroup of SO(2, 1). 

[n, L±l = ±L± 

[L+, L-l = -2n 
(2.F.28a) 

(2.F.28b) 

J commutes with the conformal generators; it rotates P in the proper manner. 

(2.F.29) 

The momentum commutes with H; the commutators with the remaining conformal 
generators are 

t 
[D,Pl = --P 

2 

[K, Pl = -i (tP - t mprp) 

p=l 

(2.F.30) 

(2.F.31) 

Equation (2.F.30) shows that the scale dimension of the momentum is 1/2, opposite 
to that of the coordinate rp. Since the commutator of two constants of motion is 
again a constant of motion, the right-hand side of (2.F.31) shows that center-of-mass 
motion is free. This is a consequence of the evident invariance of our theory against 
Galileo boosts, which are generated by tP - E:=l mprp-

That the generators are indeed constants of motion may be established by use 
of the formula 

~~ = *[H,Cl + ~ (2.F.32) 

It follows from (2.F.32) that all three generators are time-dependent. Note however, 
D and K do not commute with the Hamiltonian; their total time derivative vanishes 
owing to the explicit time-dependence seen in (2.F.22b) and (2.F.22c). 

We conclude this discussion of point-particle/Chern-Simons dynamics by record
ing the Casimir operator .:J2 of the SO(2,1) group . 

.:J2 = n2 _ 8 2 - D2 = !(KH + HK) - D2 
2 

(2.F.33) 
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G. Quantum Dynamics 

The Schrodinger equation governing dynamics of particles interacting with 
Chern-Simons gauge fields is inferred from (2.F.19), (2.F.22a) and (2.F.23). 

i! wet; rl, ... ,rN) = Hw(t; rl, ... , rN) (2.G.la) 

H= ~_1_ (~v -e a)2 
L.J 2m i rp p p 
p=l p 

(2.G.lb) 

The wave function W is single-valued. We may however make use of the formulas 
in (2.F.23b) to express ap as a gradient, and remove the interaction in (2.G.l) by 
redefining the phase of the wave function. 13 

w(rl, ... ,rN) = eieWO(rl, ... ,rN) 
N 

e = L vpqBpq 
p,q=l 
p<q 

V __ epeq 
pq - 27l"K 

Then WO satisfies the free Schrodinger equation. 

(2.G.2) 

(2.G.3a) 

(2.G.3b) 

(2.G.4a) 

(2.G.4b) 

Even though HO is a sum of one-body Hamiltonians, WO cannot be chosen as a 
simple product of one-body eigenstates [plane waves] because WO satisfies complicated 
aperiodicity conditions, which must hold so that W be single-valued. Of course WO 
is a superposition of plane waves, however, determining the precise superposition, 
which when multiplied by e ie gives a single-valued wave function, is a challenging, 
non-trivial problem that has been solved only for the two-body case. 

The two-body problem is tractable because of the center-of-mass reduction, 
wherein only the relative coordinate, r = rl -r2, experiences the interaction, while the 
center-of-mass coordinate R = m, r, !m2r2 moves freely. By setting total momentum 

ml m2 
to zero, the two-body wave function depends only on r and satisfies 

(2.G.5) 

where the Hamiltonian for relative motion is 

1 2 
h = 2M (p - a( r») (2.G.6) 

M is the reduced mass, M-I = mIl + m;l, and the vector potential a gives rise to 
a vortex with flux <I> = -7 
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. <I> ··f} 4> .. 
a'(r) = --e'J - = --e'J8·lnr 

r = (rcosB,rsinB) 

27l" r 27l" J 

<I> 
= -8iB = V8i B 

27l" 
(2.G.7) 



Hence (2.G.5) requires, after the usual separation of time, 

solving the following eigenvalue problem. 

- 2~ (V - ivV8)2 tPE(r) = EtPE(r) 

The eigenfunctions necessarily have theform 

where tP~(r), though governed by the free Hamiltonian 

h O = e-;v9heiv9 

o 0 k2 0 
h tPk = 2MtPk , 

k2 
E=-

2M 

(2.G.8) 

(2.G.9) 

(2.G.I0) 

(2.G.ll) 

(2.G.12) 

is not a conventional plane wave, owing to a non-trivial boundary condition, 

(2.G.13) 

which must be met so that tPE(r) is single-valued. 
Since rotation by 2?T corresponds to double exchange of particles, we see that 

tP~ acquires a statistics factor -?TV = e2/2,;" in agreement with (2.E.l) for el = e2. 
Moreover, the [relative] angular momentum 

J = r x Mv = r x p - r x a 

e2 
=rxp+--

2?T';' 

(2.G.14) 

indicates that each particle possesses additional spin e2 /4?TK, again in agreement with 
(2.E.l). 

[The angular momentum operator acting on the multi-valued wavefunction tP~ is 

i.e. it is just the angular derivative. Nevertheless, its eigenvalues are non-integral, 
just as those of J in (2.G.14), since JO = t :9 acts on multi-valued functions which 
satisfy (2.G.13). It should further be emphasized that, as we have already stated, 
the reason that J is just r x Mv and not r x p is because our effective particle 
theory arises from a dynamical model for the gauge potential, where the dynamics is 
governed by the Chern-Simons term. If the problem (2.G.5) and (2.G.6) is viewed 
as describing single particle motion in an externally prescribed gauge potential a( r), 
then the correct angular momentum is r x p, with integral eigenvalues.12] 

The Schrodinger equation (2.G.5), (2.G.6) and (2.G.7) leads only to scattering, 
and the scattering amplitude has been obtained long ago by Aharonov and Bohm, 
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and later by Ruijsenaars.14 More recently the problem has re-emerged in the con
text of planar gravity. 3e. As we shall see, there too one seeks free solutions with 
unconventional boundary conditions. 

I shall now present the solution, using the gravitational techniques, which have 
the advantage of giving an explicit wave function, in the form of a contour integraI.2f 

(2.G.15) 

Here k(z) = (kcosz,ksinz) and it is obvious that tP~(r) satisfies the free equation. 
That it also satisfies (2.G.13) requires a special contour C and weight function p, 
which we now derive, by considering the scattering problem, the radial equation and 
the phase shifts. 

The Ansatz u{;(r) ~ is made for tPE(r) in (2.G.9)j j is an arbitrary integer to 

insure single valuedness, j = 0, ±1, ±2, ... j u~(r) satisfies the radial equation, 

(2.G.16) 

and is given by a Bessel function. 

(2.G.17) 

The angular momentum of this partial wave is j - Vj see (2.G.14). The normalization 
is fixed by 

100 
rdru{;(r)u{;(r) = D(E - E') (2.G.18a) 

and insures 

rOO dE u{;(r)ui E(r') = .!.D(r - r') 10 r 
(2.G.18b) 

When the plane wave identity 

00 

eikrcos9 = L eij(9+f)Jj(kr) (2.G.19) 
j=-oo 

is recalled, we are led to form the scattering solution by 

(2.G.20) 

where the phase shift Dj of u~(r) relative to Jj(kr) is identified·from their large r 
asymptotes. 

Dj = {Vf,.. . ~ > [v] 
-v2" - J1r J ~ [v] 

(2.G.2l) 

Here the brackets [ ] indicate integer part. The energy independence of the phase 
shifts is a consequence of scale invariance.15 

222 



From (2.G.20) and (2.G.21), the wave function is constructed as 

(2.G.22) 

The sums are performed by using the Schliifli contour representation for the Bessel 
function. 

°T f dz Ok ° JO/(kr) = e'"2O/ s-e-' rcosze,zO/ 
211" 

(2.G.23) 

The Schliifli contour C s begins at z = -311"/2 + ioo, descends to slightly above the real 
axis, passes from z = -311"/2+i(O+) to z = 1I"/2+i(O+) and ascends to z = 1I"/2+ioo. 
The sums are now geometric, and give for the two terms in (2.G.22), respectively, 

"pE(r) = M J.s dz e-ikrcossei([v]1r-{v}z+[v]9) -1 ( )
1/2 

211" J 211" 1 + e-,(zH) 

+ M J. s dz e-ikrcos sei([v],..-{v}z-[v]9) ~ ( )
1/2 

211" J 211" 1 + e,(z-9) 

(2.G.24a) 

In passing from the first to the second equality, the change of variables z --+ -z is 
performed in the first integral. As a consequence, the integration contour for that 
integral, now called C-s, becomes the mirror image of the Schliifli contour Cs. [C- s 
starts from 311"/2 - ioo, ascends to 311"/2 below the real axis, passes to -11"/2 and 
descends to -11"/2 - ioo.] As a further consequence, the integrands of the two contour 
integrals become identical [we use ei[v]", = e- i [vj1r]. To proceed, contours are shifted: 
C- s is shifted by 11"/2 to the left, and Cs by 11"/2 to right, so that the vertical portions 
of both contours are at z = ±11". The last step is to redefine the integration variable 
by z = -z' + () - 11". The z' integral now runs over the contour C depicted in Fig. la, 
and "pE(r) is represented by [z' is renamed z] 

(M) 1/2 fd -i{v}z 
"pE(r) = _ e iv9 -=-eikrcos(z-9) e . 

211" 211" 1 - e- lZ 

(M) 1/2 fd -i{v}z = _ eive -=-eik(z).r e ° 

211" 211" 1 - e-zz 

(2.G.24b) 

[A constant phase factor has been suppressed.] Thus we have derived the represen
tation (2.G.15), with contour C as in Fig. 1a and p(z) given by 

z _ (M)1/2 e-i{v}z 

p( ) - 211" 1 - e- iz 
(2.G.25) 

223 



1m z 

-- -2Tr+e=~==I==e---
Re z 

a 

Imz 

-- - 2 Tr +etE=:i;::t::tte ---Re z 

b 

Fig. 1. (aJ Integration contour C for the wave function (2.G.24bJ. The 
pole at the origin is avoided. (b J Contour 6 equivalent to contour C. The 
pole at the origin is enclosed, giving rise to the incoming wave. The vertical 
contours produce the scattered wave. 

That 'tf;E(r) as given by (2.G.24b) satisfies the free Schrodinger equation is ob
vious; that it is single-valued - periodic in () with 211" period - is more easily seen 
in (2.G.24a). 

The contour C avoids the pole in p(z) at z = O. However, we may alterna
tively enclose the pole and replace the contour C by the three-segmented contour 
6, depicted in Fig. lb. The portion encircling the pole is evaluated by Cauchy's 
residue theorem, contributing (Mj211")1/2ei(krcoso+vO); the portions arising from the 
vertical axes are presented in terms of real integrals by setting z = () - 211" + iy and 
z = () + iy. Evidently, this separation decomposes the total scattering wave func
tion 'tf;E(r) into an incoming wave [pole contribution] and the scattered wave [vertical 
contour contributions]. 
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t/JE(r) = (~) 1/2 (t/Jin(r) + t/JE'(r) 

t/JW(r) = ei(krcos8+lI9) 

.. JOO dy . e{lI}Y t/JSC(r) = e,[/lg e ,"". sinzl7l' _e,krcoshy_--:.c:--_ 
E -00 11' e y -,9 - 1 

(2.G.26a) 

(2.G.26b) 

(2.G.26c) 

The large r asymptote of t/J~(r) defines the scattering amplitude f(9) through the 
formula 

t/JE'(r) --+ f{ f(O)e ikr 
r~oo V;: (2.G.27) 

Although the integral (2.G.26c) for t/J~(r) cannot be performed, its limit at large 
r can be evaluated. The circular wave formula (2.G.27) is found, with scattering 
amplitude 

(2.G.28) 

Equations (2.G.26b) and (2.G.28) are essentially the results of Aharonov and 
Bohm and Ruijsenaars;14 note especially that the incoming wave is not a plane wave, 
but is modulated by the additional phase eill9 . 

Since r = r1 - r2, eik(z)'r is a product of two plane waves 

e ik(z).(rt -r2 ) = t/Jf(rt}t/J~(r2) 
t/Jf(r) = eik(z)'r 

t/J~(r) = e-ik(z).r 

(2.G.29) 

Hence the representation (2.G.24b) shows explicitly how products of one-body plane 
waves are superposed to form our solution.2f 

(2.G.30) 

As yet we do not have a similar closed form for the N-body wave function. The 
problem is reminiscent of the b'-function interaction on a line. There too the many
body wave function is obtained by superposing one-body wave functions in a fashion 
prescribed by the Bethe Ansatz. Perhaps similar ideas will prove useful here. 

Finally, we conclude that the two-body relative coordinate problem of course also 
possesses the SO(2, 1) symmetry, with generators given by the relative coordinate 
parts of the two-body generators (2.F.22) 

1 2 
H = (h) = -Mv 

2 
1 

D = tH - -M(r· v + v· r) 
4 

K = _t2 H + 2tD + ~Mr2 

(2.G.31a) 

(2.G.31b) 

(2.G.31c) 
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The algebraic properties of these quantities hold as before; now they are based on 
the dynamical algebra 

(2.G.32) 

The Casimir in (2.F.33) can be expressed in terms of the angular momentum (2.G.14) 

(2.G.33) 

Since the eigenvalues of J are j - v, those of .:72 are ~ (j - v? - 1), and the entire 
motion at fixed angular momentum is described by a single, irreducible, unitary and 
infinite-dimensional representation of SO(2, 1). We have already remarked that the 
energy independence of the phase shifts is a consequence of the symmetry. Because 
of the higher symmetry, the time-dependent Schrodinger equation (2.G.5) can be 
separated in coordinates other than the usual time and space. Indeed group theory 
may be used to give a complete, alternative analysis of the problem.2f 

3. PLANAR GRAVITY 

A. Introduction 

The equations for Einstein's theory of gravity - general relativity - can be 
presented in any space-time with dimension d equal to or greater than three: The 
Einstein tensor 

1 
Gil" == RIl ., - 2gll .,R (3.A.l) 

vanishes in the absence of matter sources, 

Gil" = 0 (3.A.2a) 

while in their presence it is proportional to the energy-momentum tensor of matter, 

Til'" 
(3.A.2b) 

Here R llv and R are traces of the four-index Riemann tensor Rcxllfi., in which all 
local geometrical information about the space-time is encoded. G is the gravitational 
coupling constant - the generalization to other dimensions of Newton's constant; in 
(3.A.2b) G enters with an unconventional normalization that is convenient for the 
subsequent analysis. The reason that (3.A.2) cannot be posited in two space-time 
dimensions is because there Gil" vanishes identically. [However other geometrical 
equations have been proposed at d = 2.16 ] 

It is obvious from (3.A.2b) that when space-time is flat, i. e. when the Riemann 
tensor vanishes, so also does the Einstein tensor and Til" must be zero. In general, 
the converse does not hold: absence of matter implies vanishing Einstein tensor, but 
the Riemann tensor need not be zero so that empty space-time need not be flat. 
However, in three dimensions the Riemann tensor is linearly related to the Einstein 
tensor, 

(3.A.3) 

so that the vanishing of the latter implies the vanishing of the former: empty space
time is necessarily locally flatY 

Several consequences follow immediately: since the vacuum state [empty space
time] is locally flat, there are no gravitational waves in the classical theory, and upon 
quantization there are no quantum gravitons. Sources produce curvature, but only 
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locally at the location in space-time of the sources. Forces between sources are not 
mediated by graviton exchange, since there are no gravitons. Rather interactions 
arise because the locally flat space-time possesses in the large non-trivial geometrical 
and topological structure that gives rise to non-trivial motions. It also follows that 
the non-relativistic limit of Einstein's general relativity in three-dimensions is not 
three-dimensional Newtonian gravity, which involves a conventional force law that 
decreases with the inverse power of the distance. 

It is the purpose of our research program to study in three-dimensional space
time the classical and quantum motions of matter that interacts gravitationally.3 
Since there are no propagating gravitational degrees of freedom, the problem is 
tractable, and we can learn much about the puzzles that are encountered when a 
geometrical theory is confronted by quantum mechanics. In four dimensions these 
puzzles exist as well, and it is my opinion that understanding them is important 
for understanding quantum gravity; a task quite independent of and perhaps more 
fundamental than the task of overcoming the unrenormalizable infinities that pollute 
four-dimensional gravity, but are absent in three dimensions since non-renormalizable 
graviton exchange does not occur. To conclude these introductory remarks, I note 
the following points. 

(a) The theory can be elaborated by adding a cosmological constant to the field 
equation. The vacuum is then a space of constant curvature, whose sign depends 
on the sign of the cosmological constant. While some investigations of such 
models have been performed, I shall not further discuss them here.3c 

(b) Another elaboration of the conventional theory involves adding a topological 
term, analogous to the gauge theoretic modification.3a This Chern-Simons ad
dition will be discussed below. 

B. Classical Space-Times 

We record several interesting space-times that arise from classical sources.3b We 
begin with a single massive but spinless point-particle. Without loss of generality 
the particle is taken to be at rest at the origin of the coordinate system, i. e. it is 
described by an energy-momentum tensor all whose components, except the energy 
density, vanish, 

VdetgpvTOO = Mo(X)o(Y) 

TOi = Tij = 0 

Here M is the particle mass. 

(3.B.l) 

The task is to find the metric or equivalently to give a formula for the line 
element. Clearly it is non-trivial only in its spatial components, 

(ds? = (dt)2 - (dC? (3.B.2) 

and we need to find expressions for (dC)2. 
We recognize that we seek a space which is everywhere flat [TPV vanishes] except 

at the origin where a o-function singularity concentrates the curvature. It is clear that 
the desired space is a cone, with the source particle positioned at the apex. 3b, 4d, 17 

It remains to give an analytic description of this obvious geometrical fact. 
To solve the Einstein equation (3.A.2b) with sources given by (3.B.l), it is nec

essary to choose a coordinate system, and the conical solution looks different in 
different coordinates. Of course only the two-dimensional spatial section needs to be 
considered. 
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Particularly useful coordinates, which lend themselves to a many-body gener
alization, are the conformal ones where the metric tensor is a multiple of the fiat 
metric tensor; this can always be locally achieved in two dimensions. The confor
mally fiat spatial metric that solves Einstein's equation then leads to the following 
spatial interval. 

Here the variables range over the conventional circles. 

o :s; R :s; 00 

-7r :s; 8 :s; 7r 

(3.B.3) 

(3.B.4) 

While (3.B.3) certainly provides the desired solution, it does not seem to produce 
the cone described earlier. Nor is it manifest that the space is fiat except at the origin. 

All this can be seen by passing to another coordinate system, attained from 
(3.B.3) and (3.B.4) by a change of variables. 

R1- GM 
r = ----,--

1-GM (3.B.5) 

8 = (1- GM)8 

In terms of rand 8 the spatial metric is fiat, and the line-element is trivial. 

(3.B.6) 

However, the range of the new variables is unconventional - an angular region is 
excised, since according to (3.B.4) the range of (r, 8) is 

o :s; r :s; 00 

-7r(1 - GM) :s; 8 :s; 7r(1 - GM) 
(3.B.7) 

This describes a cone, with apex determined by GM. [Henceforth we take GM :s; 
1. For G M > 1, the space changes character and the description becomes more 
complicated.3b At GM = 1, it is seen from (3.B.3) that space becomes a cylinder in 
the variable r = In R.] 

In summary, we say that a point particle of mass M at the origin gives rise 
to a locally fiat space-time, but the global identification of coordinate variables is 
unconventional and reveals the presence of a massive point-particle: the point (t, r, 8) 
is identified with 

(t,r,8) ~ (t,r,8 + 27r(1- GM) (3.B.Sa) 

In terms of a complex variable description of the space, Z = x + iy, we identify z with 

z ~ e-2rriGM z (3.B.Sb) 

This is the analog in planar gravity of the Schwarzschild solution. 
To find the planar analog of the Kerr solution, we endow our point-particle at 

the origin with spin S, i.e. now the energy-momentum tensor possess non-trivial 
energy density and momentum density, the latter giving rise to no momentum but to 
angular momentum S. 
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Tij = 0 
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In the spatially conformal coordinate system, the metric that solves the field 
equation leads to a space-time interval, which is non-trivial in time as well as space. 

(3.B.IO) 

Once again, by a change of variables one may pass to a locally fiat space-time, where 
the presence of a massive, spinning source is encoded in a non-trivial identification 
of coordinate variables. Defining new spatial variables as in (3.B.5) and also a new 
time variable T by 

GS 
T = t + GSe = t + () 

I-GM 
(3.B.ll) 

we see that (3.B.1O) becomes fiat, 

(3.B.I2) 

but the required identification is 

(T, r, 9) ~ (T + 27rGS, r, 9 + 27r(I - GM») (3.B.I3) 

Time is helical, space is conical and there are closed time-like contours. 
Note that specifying a solution is equivalent to specifying an element of the 

2 + I-dimensional Poincare group that effects the identification (3.B.I3). 
The static one-body solution can be generalized to describe N particles located 

at Rj, with masses M; and spins Sj, i = 1, ... , N.1B One finds in spatially conformal 
coordinates 

(3.B.I4) 

The passage to locally fiat coordinates is effected by first defining a new time T. 

N 
~ (R-R;) 

dT = dt + G L.,;S;IR_ R'1 2 x dR 
i=l • 

(3.B.I5) 

This hides the spins in complicated identifications on T. To fiatten the spatial interval, 
it is useful to express it in complex variables Z = X + iY, etc. 

2 (N 1 ) (N 1 )_ 
(dR) = g (Z _ Zi)GM, dZ g (Z _ Zj)GMr dZ (3.B.I6) 

Thus the definition 

dz = (g (Z _ ~i)GM' ) dZ (3.B.I7) 

gives the fiat spatial interval 
(dR)2 = dzdz (3.B.I8) 

but complicated identifications on the complex plane, which generalize (3.B.8b), re
veal the presence of N particles with masses Mi. Unlike in the one-body problem, we 
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cannot express z as a closed form function of Z, but for most purposes the integral 
expression suffices, 

Jz N 1 

z = dz'11 (Z' - Zi)GM; (3.B.19) 

and it can be explicitly evaluated in special cases. 
It is easy to show that the above solution also satisfies self-consistently the 

geodesic equation.sb Thus a static N-body configuration exists and is stable in three
dimensional space-time, in contrast to higher dimensions where gravitational attrac
tion would prevent this. This demonstrates vividly the absence of Newtonian attrac
tion in our theory. 

With point-particle sources, the two-dimensional space is flat, but curvature 
is concentrated on a lower-dimensional sub-space: the zero-dimensional collection 
of points where the particles are located. One may next consider flat space with 
curvature concentrated on one-dimensional lines; i. e. string sources in the plane, 
which presumably correspond to domain walls in four-dimensional space-time, just 
as points on the plane correspond to strings in four-dimensional space-time. 

When considering strings, it is natural to allow for tension along the string; 
otherwise the source is an uninteresting pulvarization of the point-particle - a "dust" 
string. 

In the spinle~s case the results are simple and startling. Sf, 19 There are no open 
strings, only closed ones. A circular source at r = a is described by an energy
momentum tensor whose non-vanishing components are 

Jdetgp"Tg = I-'c(r - a) 

Jdet gp"T: = Tc(r - a) 

(3.B.20a) 

(3.B.20b) 

Here I-' and T are mass and stress density/per unit length; the total mass is M = 
27ral-'j for a relativistic string T = 1-'. The momentum density and the other stress 
components vanish. With this source the space-time interval in conformally flat 
spatial coordinates is 

(dS)2 = { (1 - 27rGaTln;) (dt)2 - (~)2 (dr)2 + r2(d8)2) 

(dt)2 - (dr? - r2(d8)2 

r~a 

r:5a 
(3.B.21) 

The exterior spatial interval also reads (d a In ;) 2 + (ad8)2, which is a half-cylinder 
of radius a extending from infinity to r = a, where it is capped by the flat disk of the 
r :5 a region. Moreover, the total mass M = 27ral-' is given by G-1, so that 

GM=1 (3.B.22) 

We have seen earlier that for point-particles obeying (3.B.22) the space is a 
cylinder; here (3.B.22) is always obeyed for spinless strings under tension and the 
space is a capped cylinder. 

Although for T > 0, goo vanishes at a finite distance, this is not a conventional 
horizon because goo does not change sign, but time does "stand still" there. Clearly 
there exist solutions with either sign of T and unrelated to fl. However, for a rela
tivistic string T = I-' > O. 

For more discussion on these extended objects and inclusion of spin, please con
sult the research papers. Sf, 19 
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c. Quantum Dynamics 

The simplest non-trivial dynamics arises when we consider the interaction of two 
point-particles with each other. As in other contexts, it is possible to pass to the 
center-of-mass frame where the relative coordinate moves in an effective potential 
that describes the interaction. 3d The same problem arises without the center-of-mass 
reduction, but in the limit when one particle's mass becomes much larger than the 
other.3e 

In view of this,it suffices to consider the problem of a test particle [mass m] 
moving in the field produced by the source particle [mass M] located at the origin. 

The classical motion of a spinless test particle is easy to describe: in flat coordi
nates there is no deviation from straight-line motion. However, when the unconven
tional identification (3.B.13) is performed, we find a classical scattering angle, 

68classical = ±7rG M (3.C.1) 

and a classical time delay, 
GS7r 

6tclassical = T 1 _ G M (3.C.2) 

where S is the source particle's spin, and the sign depends on which side the source 
is passed. The classical trajectories are depicted in Fig. 2 [ignore the dotted lines for 
the moment]. They depend only on the impact parameter, but not on the energy; 
the scattering angle does not vary with impact parameter, except in its sign. 

, , 
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I 
/ , 
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Fig. 2 Qualitatative pictorialization for 8cattering of wave8 on an ob8tacle 
at the ongm. The two 8harp line8 are cla88ical trajectorie8 with 8catter
ing angle ±7rGM in (9. C.l), the 8ign depending on which 8ide the trajec
tory pa88e8 the 80uree. The envelope to the right of the 80urce, formed by 
heavy diagonal line8, i8 the 8harp geometrical 8hadow. Broken line8 repre-
8ent diffraction on two 8harp edge8, even though no edge i8 actually pre8ent 
- the 80urce {conical defect] produced the "edge8." 
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Next we give a quantum mechanical description and to this end we solve a 
quantum mechanical equation appropriate to the test particle: Schrodinger or Klein
Gordon for spinless test particlesj Dirac for spin 1/2 test particles, etc. [We do not 
second quantize the matter degrees of freedom.] The question that still must be 
considered is what interaction should we use to describe the influence of the source 
on the test particle. 

The answer that we propose is that no interaction need be consideredj rather 
we solve the free, non-interacting equation but impose on the solution a coordinate 
condition that reflects the identification (3.B.13). 

For example, let us consider the simplest case first - a spinless test particle in 
a spinless source. The equation we propose to solve is the free [square-root] Klein
Gordon, 

i :t 1/;( tj 7", 8) = J - \72 + m21/;( tj 7",8) 

with the requirement that 

1/;( tj 7", 8) = 1/;( tj 7", 8 + 27l"O') 

O'=i-GM 

(3.C.3) 

(3.C.4) 

[If non-relativistic motion is of interest, the non-local "square root" operator is re
placed by m - \72 /2m, which leads to the free Schrodinger equation, with boundary 
conditions (3.C.4). The mathematical analysis is identical.] 

The solution of (3.C.3), which satisfies (3.C.4) is constructed along the same 
lines as the Aharonov-Bohm scattering solution discussed in detail earlier. I shall not 
repeat that presentation, beyond remarking that time, radial and angular variables 
are separated in the usual way, with partial waves carrying angular momentum, £, 
which is not integer quantized, rather 0'£ is an integer. This of course is a consequence 
of the fact that the angular range is 27l"O', not 27l". 

The scattering solution is given by a contour integral in which plane waves are 
superposed, with definite weight3d ,e 

.I.(t. 7" 8) = e-iEt J,dz eik(z).r 1. 
'I' , , j 27l" 1 _ etz / Oi (3.C.5) 

== e-iEt1/;(7",8) 

Here E = y'k2 + m 2 and k is the vector of magnitude k, rotated by the contour 
integration variable z: k = (k cos z, ksinz). That (3.C.5) satisfies (3.C.3) is obvious, 
that also the boundary condition (3.C.4) is obeyed depends on the specific weight 
function in (3.C.5) and also on the contour, which is depicted in Fig. 3a. 

The weight function has poles on the real axis at z = Zn = 27l"nO' and the contour 
C avoids them. However, the contour may be deformed as in the discussion of the 
Aharonov-Bohm problem. We can consider the equivalent, three segment contour C, 
depicted in Fig. 3b, where the poles are encircled and also there are integrals along 
the vertical lines. The contribution from the encircled poles is evaluated by Cauchy's 
theorem; it gives the incoming wave. The remaining integrals along the vertical lines 
give the scattered wave, but the integrations cannot be evaluated, so no closed form 
is available. Nevertheless, the large 7" asymptote is accessible, and the scattering 
amplitude is determined explicitly.3d,e 

(3.C.6) 

232 



t Imz 

-Tr + 8 

(a) 

t Imz 

- Tr+8 

(b) 

Tr + 8 

Tr+8 

Re z .. 

Rez 

Fig. 3: (a) Integration contour _C for the representation of'ljJ(r,8) in 
(3. C.5 ). (b) Integration contour C for the representation of 'ljJ(r, 8) equiv
ale~t to that in (a) but giving rise to the decomposition 'ljJ = 'ljJin + 'ljJsc. 
The incoming wave 'ljJin is given by the [negative] Cauchy contour around 
the poles at z = 21l'na, indicated by heavy dots. The integrals along the left 
and right verticle contours determine the scattered wave 'ljJsc, whose large 
distance asymptote defines the scattering amplitude f. 
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"pin(r, B) = a L::' eik(zn)·r (3.C.7a) 
n 

"pSC(r, B) = i /00 dy eikr cosh y [ ... 1 l' 1] 
-00 211" 1- e·ae-;;(y+·II) - 1- e-i!e-~(y+ill) 

---+ fT. f( B)eikr (3.C. 7b) 
r~oo V ~ 

() 1 [( B-1I" .) ( B+1I" .)] f B = --- ctn-- -z - ctn---z 
2J211"k 2a 2a 

(3.C.8) 

The prime on the sum in (3.C.7a) indicates that Zn must lie in the interval [-1I"+B, 11"+ 
Bj. Note that the incoming wave is not a plane wave, rather it is a superposition of 
variously rotated plane waves. This is analogous to the modulated plane wave found 
in the Aharonov-Bohm analysis. 

We observe that the scattering amplitude f(B) in (3.C.8) is real and vanishes 
when l/a is an integer. Also there are singularities at finite values of B, where either 
of the two cotangents blows up. Finally, the optical theorem, which in two dimensions 
and with our normalization reads 

Imf(O) = If J dB If(B)12 (3.C.9) 

fails because the left-hand side vanishes and the right-hand side diverges. Neverthe
less, there is no loss of unitarity: one can verify from the exact solution (3.C.6) -
(3.C.7) that the probability current is conserved. The peculiarities of the scattering 
amplitude are presumably related to the long-range nature of the "interaction": no 
matter how far the scattered particle is from the source, it remains on a cone. An 
interesting problem that here remains is the study of how a wave packet evolves in 
time. 

Going beyond the simplest case, we consider the situation that arises when both 
the source and the test particle are spinning. The source spin S is arbitrary; for the 
test particle we consider spins 0 and 1/2, solving the Klein-Gordon and Dirac equa-

. tions, respectively, but now with the more elaborate identification (3.B.13). One may 
again give a contour integral representation for the wave function, obtain the incom
ing wave by performing a Cauchy contour integral, and deduce an explicit formula 
for the scattering amplitude. The result is an elegant generalization of (3.C.8), which 
can be presented in universal form, provided the following definitions are made. 

S8 = spin of source [can be arbitrary, previously called Sj. 

st = spin of test particle [actual calculations done only for st = 0, 1/2j. 

E 8 = energy of source [taken to be M]. 

Et = energy of test particle (Et = Jk2 + m 2 ) 

The scattering amplitude is3d ,e 

f(B) = e-,{w}1!"/a ctn-- - i - e,{w}1!"/a ctn-- - i e-i[wlll/a [. (B-1I")' (B+1I")] 
2yf211"k 2a 2a 

Here w is the symmetric cross product 
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(3.C.10) 

(3.C.ll) 

(3.C.12) 



while the square and curly brackets denote integer and fractional part, respectively. 

w = [w] + {w} (3.C.13) 

For the spinless test particle, st = 0, one can determine from the phase shift 
a(E) the time-delay by Wigner's formula. Agreement with the classical result (3.C.2) 

is found. 

boT = 2B8(E) 
BE 

(3.C.14) 

We may understand the scattering amplitude as arising from diffraction effects 

[like in physical optics] which supplement the classical trajectories [whose analogy is 
geometrical optics]. These diffraction patterns are indicated by the dotted arcs in 
Fig. 2 and the two terms in (3.C.S) correspond to the two branches. We observe that 
scattering consists of a rotation through the angle ±7rGM, and we recall that in the 
presence of spin a rotation is accompanied by a phase change in the wave function. 
This explains the emergence of the additional phases in (3.C.11) as compared to 
(3.C.S). 

The analysis of the Dirac equation is especially interesting owing to the fact 
that the Dirac Hamiltonian ceases to be self-adjoint on a conical, time-helical space 
time. 3e [The same malady afflicts the Dirac equation in the presence of a vortex - the 
spinning Aharonov-Bohm effect. 20] Of course the derivatives are formally Hermitian, 
but consideration of the boundary conditions indicates that a self-adjoint extension, 
depending on parameters, must be made and different physical results emerge with 
different values for the parameters. [In deriving Eq. (3.C.11) a definite choice is made 
to insure universality - but other choices are possible.] 

In physical terms what is seen here is the failure of the point-particle description. 
Extended, smooth objects - described e.g. by fields - would lead to a self-adjoint 
Hamiltonian and in the point-particle limit various parameters, characterizing the 
extended object, survive as boundary terms on the particle surface and provide the 
missing information. The situation is similar to what is found for the Dirac equation 
with a [Dirac] point magnetic monopole. The Hamiltonian needs a one-parameter self
adjoint extension. 21 When a smooth 't Hooft-Polyakov monopole is considered, the 
parameter is identified as the QCD vacuum angle. 22 For the gravitational [and vortex] 
problems it remains an open question what model for the extended particle gives a 
physical origin to the mathematically necessary self-adjoint extension parameters. 

The loss of self-adjointness appears to be related to the closed time-like curves 
that are present in a background metric arising from a spinning source. 

We conclude this discussion of quantum motion by remarking that the true two

body problem - in contrast to its test particle source-particle equivalent description 
- is solved on a space with deficit angle given by the eigenvalues of the two-body 

Hamiltonian.3d This truly "Machi an" behavior raises conceptual puzzles - for ex
ample it is impossible to superpose or compare energy eigensolutions. Moreover, the 
three- or more~body problem has thus far not been resolved [apart from a very easy 

special case3e] owing in part to difficulties in describing the multi-conical space on 
which the physical motion takes place. 
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D. Topological Elaborations 

Up to now the discussion has been based on the three-dimensional version of the 
Einstein equation (3.A.2). However, in complete analogy to three-dimensional gauge 
theories, it is possible to modify (3.A.2) by an additional term, because in three 
dimensions there exists another second rank tensor that is symmetric and covariantly 
conserved. Sometimes called the Cotton tensor, its form is 

I 
C,JII = epafj DO/Rp + p. +-+ v 

2J'detgpll 
(3.D.I) 

Symmetry is manifest, covariant conservation follows from the Bianchi identities. CPII 
is traceless as follows from (3.D.I). also with the help of Bianchi identities. 

(3.D.2) 

Moreover, CPII may be viewed as the three-dimensional conformal tensor - an odd
parity analog of the Weyl tensor, the latter vanishing identically at d = 3. [That 
is why the Riemann tensor is determined by the Einstein tensor.] CPII is invari
ant against conformal redefinition of the metric tensor gPII(X) - >'(X)gPII(X) and 
vanishes if and only if space-time is conformally fiat, gPII(x) = >,(x)77plI. We may 
supplement/replace the left-hand of (3.A.2) by the addition of a multiple of CplI.3& 

GPII + .!.CPII = 0 
I>-

GPII + .!.CPII = 27rGTPIl 
I>-

(3.D.3a) 

(3.D.3b) 

[Also a cosmological constant can of course be added to the equation with or without 
sources, (3.D.3a) or (3.D.3b) respectively - we shall not do so.] 

From its definition (3.D.I), we see that CPII is of one derivative order higher than 
G"''' , hence the dimension of I>- is mass. Analysis of the linearized approximation yields 
dramatic results. While in the absence of the modification, there are no gravitational 
excitations, the addition "liberates" a previously "confined" graviton, which now 
becomes a single propagating mode; moreover, it is massive, while retaining general 
covariance. The spin is ±2, the sign being correlated with the sign of 1>-. [The triple 
derivative nature of the differential equations (3.D.3) does not give rise to acausality; 
here, the conformal invariance comes into play, removing possibly dangerous terms 
from CPII.] 

GPII is obtained variationally from the Einstein-Hilbert action. Similarly, CPII 
may be obtained variationally from the Chern-Simons action, for the local Lorentz 
group in 2+ I dimensions - SO(2, I). Constructing that quantity as in a gauge theory 
from the connection - either Christoffel or spin - but viewing the connection as 
a function of the fundamental dynamical variable - either the metric tensor or the 
dreibein respectively - and varying the dynamical variable gives CplI.3& 

Thus we see that the proposed modification is the complete analog of the situa
tion in the gauge theory, and for that reason the model (3.D.3) is called topologically 
massive gravity. 

However, no quantization condition need be imposed on 1>-.23 Non-trivial ho
motopies in a non-compact group like SO(2, 1) coincide with those of its maximal 
compact subgroup, here SO(2); but SO(2) is trivial in this respect, so the gravita
tional Chern-Simons action is invariant, just as the field equations are covariant, and 
I>- is unrestricted. 
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It is not known whether topologically massive gravity is renormalizable. 

Of course a theory based solely on the Chern-Simons action/Cotton tensor field 
equation may also be considered.3a Here again, there are no propagating degrees 
of freedom, and due to the tracelessness of CI'V, only massless sources, with trace
free energy-momentum tensor can be coupled. However, owing to its triple derivative 
structure, the topological term is not natural for a low energy description, in contrast 
to the gauge theoretic Chern-Simons term. On the contrary. The Einstein/Hilbert 
theory is dominant at low energies, while the Chern-Simons/Cotton term dominates 
at high energy. 

I conclude this discussion of topological elaborations on planar gravity by the 
following observations. 

(a) Just like the gauge theoretic Chern-Simons term, the gravitational 50(2,1) 
Chern-Simons term is induced by virtual fermions. 24 This raises a puzzle about 
our treatment of quantum scattering, when the matter degrees of freedom are 
second quantized fermions and the "bare" gravitational action is just the con
ventional Einstein-Hilbert action. On the one hand the bare gravitational action 
suggests that there are no propagating gravitational degrees of freedom. On the 
other, fermion loops induce a Chern-Simons action which when considered to
gether with the bare action indicates the presence of massive, propagating gravi
tons. So which viewpoint is correct? Is the emergent "graviton" a fermion/anti
fermion bound state? How should perturbative calculations be organized? 

(b) The fact that in planar Einstein gravity, the gravitational field is locally de
termined by matter sources is analogous to the situation in gauge theoretic 
Chern-Simons theory. Indeed the analogy exposes an identity: the Einstein
Hilbert action is also the Chern-Simons term for 150(2,1), the inhomogeneous 
(2 + I)-dimensional Lorentz group, i.e. the Poincare group.25 There are six 
generators: JI' rotations and PI' translations. With these we associate respec
tively the "gauge" connections wI' and el' - the spin connection and dreibein 
- and use an off-diagonal "trace," (PI'PV) = 0, (JI'JV) = 0, (JI'PI') = 81'V, to 
construct the Chern-Simons term. The result is the Einstein-Hilbert action in 
first-order form. 

(c) The Lagrangian for topologically massive gravity consists of LEH + ~LCS, the 
Einstein-Hilbert Lagrangian summed with 1\:-1 times the Chern-Simons term. 
Equivalently we may write it as LCS + I\:LEH, and view the higher derivative LCS 

as the "kinetic" term and I\:LEH as the "mass" term. The former possesses more 
symmetry than the latter - it is conformally invariant. In some sense that is 
"too much" symmetry, and no propagation is possible with just the kinetic term. 
Inclusion of the less symmetric mass [Einstein-Hilbert] term lowers the symmetry 
and "liberates" the previously confined graviton. One may even promote I\: to a 
scalar field cp with its own [unspecified] dynamics. The combination LCS +CPLEH+ 

L", can be conformally invariant for suitably chosen L",. Then an expansion 
about (cp) = 0 contains no propagating gravitons, while the symmetry breaking 
starting point (cp) = I\: liberates the graviton. 26. 

(d) Some classical solutions to topologically massive gravity have been found. They 
are planar analogs of Godel universes.27 
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INTRODUCTION TO CONFORMAL FIELD THEORY AND INFINITE 

DIMENSIONAL ALGEBRAS 

David Olive 

Imperial College 
London SW7 2BZ, UK 

LECTURE 1 

In 1909, soon after Einstein's formulation of the theory of special relativity, based 
on the Lorentz invariance of Maxwell's equations, it was discovered by Bateman and 
by Cunninghaml that these equations possessed an even larger synmletry, conformal 
symmetry. Conformal transfomlations are those space-time transfomlations preserving 
angles but not necessarily lengths. For a metric diag(l, 1, .. 1, -1, -1, .. - 1) with p 
entries + 1 and q entries - L and with p + q larger than one, they constitute the group 
so(p + 1,q + 1) which has finite dimension. But for two Euclidean dimensions, the 
conformal group possesses infinite dimension, as is familiar from electrostatics. If we 
consider holomorphic maps of the complex variable z = x + iy,:; ......... :;' = I'(z) with 
o"y loz = 0, angles are preserved. Near the identity map, "Y(z) = z+ l:n EnZ n+!, with all 
coefficientSE n small, and f('y(:;)) - f( z) = l:n E,,:;u+!O flo::. The differential operator 
in = zn+!oloz satisfies the infinite dimensional algebra [lm,lnl = (m - nllm+n' This 
is the Virasoro algebra2 without central extension. 

The same algebra arises in Lorentzian two dimensions, periodic in space. Space-time 
transfonnations are generated by the energy momentUIll tensor, ij/-LV = (}V/-L. Scale 
symmetry implies that this is traceless, O~ = (}tt - Oxx = 0, in order that the scale 
current ;rllOllv he conserved. This in turn implies conservation of the conformal cur
rents. Hence, in a local theory, conformal invariance can result from the absence of 
a fundamental scale. In two dimensions it is convenient to use light cone variables 
x± = (t ± xli V2. Then 0+- and (}-+ vanish, leaving only 0++ and 0-- which are 
right moving and left moving, respectively, and hence called "chiral". Appropriate 
Fourier components of these two quantities generate two commuting copies of the 
Virasoro algebra; 

(1.1a) 

(l.1b) 

and similar equations for Lm and c which commute with Lm and c. 

Note the "central extension" which satisfies all necessary Jacobi identies. Any consis
tent central extension can be put into the above form upon a redefinition of the Ln. 
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Note also that Lo, L~l satisfy a three dimensional subalgebra, 81{2, R), in which c does 
not appear (thereby explaining our choice of the fonn of the central extension). 

In physical applications we require 

Lo + Lo ~ const., 

as this quantity can he interpreted as a Hamiltonian, or a dilatation generator. As Lo 
and Lo belong to commuting Virasoro algebras, it follows that 

Lo ~ const, Lo ~ const. (1.2) 

We shall also require the representation space to carry a positive definite scalar product 
such that 

(1.3) 

These properties we call "unitarity ". They are not well founded in all the physical 
applications but make a convenient working hypothesis which simplifies subsequent 
mathematical arguments. 

In a given confonllal field theory (CFT), c and c are definite numbers on the whole 
Hilbert space 1i of the theory. Because of the unitarity, 1i decomposes into irreducible 
representations (irreps) of Virr, tfJ l'irR, (the left-handed and right-handed Virasoro 
algebras). In order that the confonnal symmetry have maximum predictive power we 
would like this decomposition to be finite in the sense that only a finite number of 
irreps occur. Such theories have now been classified. and it turns out that many other 
significant CFT's can be treated similarly by extending II ir to a yet larger synulletry 
with a finite decomposition. Examples work via affine Kac-~100dy algebras or via 
supersymmetry, but there are lllany other possible llleans of extension, all of which it 
seems, can be approached via affine Kac-Moody algebras. . 

ANALYSIS OF UNITARY IRREPS OF VIR 

We can choose as basis the eigenstates of Lo. Let Ih > denote such an eigenstate with 
eigenvalue h. Then, by (1.1), 

LoLnlh >= (h - n)Lnlh, > 

i.e. Ln lowers Lo by n. But the spectrwll of Lo is bounded below, (1.2), and so there 
must exist "ground states ", Ih >, such that 

Lnlh >= 0, n ~ 1; Lolh >= hlh >. (1.4) 

Consider the space spanned by states obtained by acting on grotUld states Ih > with 
a finite product of L's with negative suffices: 

(1.5) 

This space is invariant under the action of Vir and fonns an irrep of it, which can 
be labelled (h, c) as all the scalar products between states in (1.5) can be evaluated 
in tenns of these two nUlllbers. The states (1.5) need not be linearly independent. 
Linear combinations with zero nonn must vanish by the unitarity assumption. No 
linear combination can have negative nonn, and this places severe restrictions on c 
and h, as we illustrate by considering the state L_nlh > for n ~ 1. 
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by (1.4). By (1.1) 
(1.6) 

Taking n = 1 we deduce h ~ 0, i.e. Lo ~ 0, and by taking n very large, we deduce 
c~ O. 

In fact, if ItI' >= L-2nlh >, Ie/> >= L_nL_nlh >, 

if c vanishes. If h > 0, this expression is negative for large enough n. As this is 
impossible, we conclude that h vanishes whenever c does. In this situation we deduce 
by (1.6) that L_nlh >= 0 for all /I. so that Vir acts trivially in a unitary representation 
with zero c. Discounting this possibility as an empty theory we reach the important 
conclusion that the central term c is essentially positive; 

c>O (1.7) 

The basic idea of this result goes back to Schwinger3 although the details of this version 
are due to Gomes~. 

THE VACUUM 

For any valid value of c, valid values of It should always include zero as it is a physical 
requirement that we have a special ground state, called the vacuum. 10 >, with h (and 
h) zero. By (1.6), the vacuum is also annihilated by Lo and L±l. i.e. the generators of 
the aforementioned 81(2. R) subalgebra. and is the only ground state with this property. 
It is assumed to be unique in any physical theory. 

THE FQS THEOREM 

Unitary, positive Lo irreps of Vir must have either 

c ~ 1, or. if 0 < c < 1 

6 
c= 1- . , . 

(17£ + 2)(17£ + 3) 
(1.8) 

and 
h = h = [(17£ + 3)p - (rn + 2)qj2 - 1. 

p,q 4(m + 2)(m + 3) 
(1.9) 

Note that the hp,q are positive rational numbers, and that for any m, h1.1 = 0, thereby 
automatically supplying the vacuwn required by physical principles. 

If, for example, rn = 1 so c = 1/2, then hy (1.9) 

hl,l = 0, h2,1 = 1/2, h2,2 = 1/16. (1.10) 

The proof of the above result, due to Friedan, Qiu and Shenker5 , based on earlier 
work of Belavin. Polyakov and Zalllolodchikov6 and of Kac', in turn based on the 
structure of the no ghost theorem of string theory8, is rather technical, synthesising 
the requirement that the space (1.5) be positive definite. We shall be satisfied with 
the special cases presented above which illustrate the general principle of the method. 
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Note that the proof does not guarantee the existence of the corresponding unitary 
representations. 

CONCEPT OF PRIMARY FIELD 

A confonnal field theory possesses an infinite nwnber of fields, amongst which there 
are some (hopefully a finite number) obeying a particularly simple transfomlation law 
with respect to the confomlal transfonnations -y{z): 

(1.11a) 

and similarly for the antiliolomorphic transformation "1(z). Such a field is called "pri
mary "and is characterised by two "confonnal weights ". the numbers h and Ii. We 
shall show later that this usage of the symbol h agrees with our previous usage. It is 
readily checked that such a transfomlation law (1.11) satisfies the group property. The 
notion has been advocated by Belavin, Polyakov and Zamolodchikov6 • If AI is close to 
the identity so that ,),(z) = z + En fnZn+1 and U(')'(z» = 1 + En fnLn we have 

(1.11b) 

This version of the condition has been familiar for twenty years in string t.heory9. 

CORRELATION FUNCTIONS OF PRIMARY FIELDS 

These are vacuwn expectation values of products of primary fields: 

(1.12) 

where we have taken each field 4> to be chiral (i.e. independent ofz) for simplicity of no
tation. The confonnal transfonnations generated by Lo,L±b the sl(2,R) subalgebra. 
have the fractional linear fonn 

~,(~)_(az+b) d be 
r "'. - (cz + d) , a - = 1. (1.13) 

As U(-y)IO >= 10 >, for such A(, by the properties of the vacuwn, the correlation 
function (1.12) equals, by (1.11a) 

This relation is sufficient to detennine the one, two and three point correlation ftmc
tions up to an overall constant. We find 

< OI¢(z)IO >= const. [,,,,0, (1.14) 

and 
(1.15) 

using the identity 
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Thus correlation functions exhibit a power law decay with separation in space, the 
power being given by 2h. 
In statistical mechanics models of materials capable of making second order phase 
transitions, the correlation length specifies the scale of an exponential decay in sep
aration at non-critical temperature. This correlation length diverges at the critical 
temperature, leaving a power law decay in separation, given by a "critical exponent" , 
which can be measured in the laboratory. 

Nearly twenty years ago PolyakovlO proposed that, because of the disappearance of a 
fundamental scale at the critical temperature, and because of the local interactions, 
confonllal symmetry should apply at the critical teIllperature. These ideas have been 
vindicated by their fruition in recent years, and it is this which provides much of the 
justification for the renaissance of interest in confonnal sYIllmetry. 

LECTURE 2 

Recall that the Hilbert space 1l of a confonnal field theory decomposes into irreps 
of VirL ffJ VirR, as 

where 

1l = L Nhli {c, hH-J (c, h), 
h,h 

1Voo = 1, 

(2.1) 

(2.2) 

in view of the assumed uniqueness of the vacuum. The other Nhh are the integers 
denoting the multiplicities of the representations indicated. We would like the sum of 
these integers to be finite as mentioned earlier, so that 1l decomposes finitely. 

TWO POINT CORRELATION FUNCTION OF TWO NON-CHIRAL 
PRIMARY FIELDS 

Repeating the previous analysis yields 

Introducing polar co-ordinates ZI - Z2 = rei9 , we find 

so that we can identify 

h + h = critical exponent or anomalous dimension of </>, 

h - h = spin of </>. 

(2.4) 

(2.00) 

(2.5b) 

We see that the correlation function (2.3) is single valued in space (i.e. under () ..... 
() + 211") if the spin, h -h, is an integer or half integer. However, unlike the case in 
higher dimensions, there is no topological reason why this should be so. 

lf 4>1 and </>2 are fields of the same species, we can effect an interchange by () ..... 
() + 11". The result is a sign change (-1 )8p in = ±1 according as the spin is an integer 
or half integer. Thus results the usual connection between spin and statistics. 
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ISING MODEL 

Comparing the behaviour (2.4) with the known behaviour of the Ising model as 
explained, for example, in Baxter's bookll, we see that the "spin variable " has 
(h, h) = (1/16,1/16). Comparing with (1.10) suggests that c = 1/2 at the critical 
temperature of the Ising model. This agrees with Onsager's result12 of 1944 in which 
he used a Jordan-Wigner transfonnation 13 to convert the spin variables into a fennion 
field. It is known from the Ramond-Neveu-Schwarz fennionic string theory14 that a 
single fenni field indeed yields c = 1/2. There the analogue of the spin variable is the 
"femlion emission vertex", much studied in the early 1970's15. 

FUNDAMENTAL PROPERTY OF PRIMARY FIELDS 

This is the theorem: If </J( z, z) is a primary field with confonnal weights (h, h). Then 

</J(O, 0)10 >= Ih,h >, (2.6) 

a ground state (1.4). 

Let us suppose </J is chiral, for simplicity. ThenljJ(z) = z-2h</J(I/z*)t is the 
"conjugate "primary field to dJ possessing the same weight. So 

, 2h 2h ~ (2h + It - 1) < 01¢(z)¢(z')IO >= const. (z - z')- = const.z- ~(z'/zt n ' (2.7) 
n=O 

using the binomial theorem and arranging to exhibit that the coefficients are positive. 
Alternatively, inserting a complete set of eigenstates of Lo 

= L < 01¢(z)lh' >< h'I¢(z')IO > . 
h' 

As Lo is the dilatation operator, </JC:;) = zLo¢(I)z-Lo, with the sanle for ¢, we have 

= Z-2h L(Z'/Z)h'-hl < h'I¢(I)IO > 12. (2.8) 
h' 

Comparing powers of z' / z in (2.7) and (2.8), we see 

h' = h +n, n = 0,1,2,3, .. 

So </J(z) maps the vacuwn irrep into that with ground state Ih >. All the matrix 
elements I < h+nl¢(1)IO > 12 are proportional to the constant in (2.7). We infer that 
</J(O)IO > exists and that 

n ~ 0, 

= [zn+l ~~ + hen + l)zn +l</J(z)]z=oIO > 

{ On> 0 
= h¢(O)IO > - n = 0 

Hence </J(O)IO >= Ih > and, more generally, the result (2.6). 
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Thus the primary fields map the vacuum irrep into those irreps labelled by their 
confonnal weights. We expect a one-to-one correspondence between the irreps in the 
sum (2.1) and the primary fields. Thus there are Nh,h primary fields of weight (h, til. 
The primary field corresponding to the vacuum is simply the unit operator. 

The physical importance of the result is that it establishes that the number h originally 
defined by the gTound state (1.4) is the same as the confomlal weight carried by the 
primary field (1.11) corresponding to that ground state, and hence the same as the 
value of the critical exponent governing the power law decay in separation of the 
correlation function of that primary field. The conclusion is that. in two dimensions at 
lea.<;t, critical exponents are purely nWllbers detemuned by the representation theory 
of the algebra of confonnal symmetry. In particular they do not depend on details of 
the inter-molecular forces. This explains why it was so useful to introduce the concept 
of "universality" 16. 

ASSIGNMENT OF PRIMARY FIELDS 

It follows that the detemlination of the representation content (2.1) is equivalent to 
the assignment of primary fields for the theory. This a.,-,;signment ha.,-,; to satisfy certain 
consistency conditions. 

(a) Operator Product Expansion 

The coefficient of the leading term ha.<; to be primary if ¢r and 0"2 are. The statement 
of the multiplicities occurring here constitutt' what is known a.<; the fusion nue algt'bra. 
This algehra is abelian, a.,-,;sociative and finite dimensional if there is a finite Ilwllber 
of primary fields, that is, if the sum in (2.1) is finite. 

(b) Cardy's postulate of modular invariance of the partition function 

The partition function of the confonnal field theory is the following tluantity 

where 

As the trace in (2.10) is taken over the space (2.1) 

where 

Z(r) = L N h •h Xh(q)X/i(q), 
h.h 

Xh(q) = Tr(qLo-c/2-1l\c.hi 

is a Virasoro character for the irrep (c, h). 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Cardy 17 proposed convincing arguments which we shall not review here to the effect 
that Z(r) should be invariant under the action of the modular gTOUp acting on r: 

I ar+ b 
r ....... r=cr+d' a, b, c, d integers, ad - be = 1. (2.14) 

247 



The modular group is generated by 

T:71-+7'=7+1} 
S:71-+7'=-I/, ' 

and so it is sufficient to check invariance with respect to these. 

By the structure of the irrep, 

(x ) T _ e2rri(h-c/24) 
(h,c) - X(h,c)' 

and Z is invariant under the action of T if 

'" N - [1 - e27ri(h-h-(c-C)/24j XhX-h = O. 
~ h,h 
h,h 

(2.15) 

(2.16) 

As the characters are linearly independent, each coefficient vanishes. Thus a primary 
field with conformal weights (h, Ii) occurs in the theory only if h - Ii - (c - c)/24 
is an integer. But Noo = 1 by the uniqueness of the vacuum, so C - c must be an 
integer multiple of 24. Further we conclude that h - Ii is an integer. Thus, by (2.5), 
all primary fields have to have integer spins by Cardy's condition. In the Ising model, 
the aforementioned femllon fields t/J L and t/J R are not primary but their product t/J L t/J R 

is. This carries the weights (1/2,1/2). 

Notice that c and c need only be equal if they are both less than 24. Later on we 
shall mention interesting theories in which they are unequal. 

The characters of the Virasoro irreps with c < 1 exhibit the following remarkable 
behaviour under S, (2.15) 

(2.16) 

A way of proving this will be mentioned later. The inclusion of the c/24 in the definition 
(2.13) is motivated by the simplicity of the result (2.16). 

As the matrix S is unitary and independent of 7, 

sst = 1, (2.17) 

we see that 
(2.18) 

is always a solution to Cardy's condition as the corresponding partition function is then 
modular invariant (if c < 1). This partition function is called the diagonal invariant 
but it implies that all the primary fields are spinless. We should like to find more 
interesting solutions for the multiplicities so that the primary fields carry spin. The 
Ising model has only the diagonal invariant. Hence the primary fields have weights 
(0,0), (1/2,1/2) and (1/16,1/16) by (1.10). 
E. Verlinde18 found how to express the matrix S in (2.16) in terms of the structure con
stants of the fusion rule algebra. This was a surprising connection of ideas, and Moore 
and Seiberg19 have carried these ideas further as Seiberg explained in his lectures2o . 

Let us comment that one extremely important field already mentioned, the energy
momentum tensor O++(z) = 2:n z-n-2 Ln, is not primary as 
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which is not a ground state as it belongs to the vacuum irrep. 9++(z) is said to be 
a descendant of the unit operator as this is the primary field corresponding to the 
vacuum irrep. 

NEED FOR THE EXTENSION OF THE VIRASORO ALGEBRA 

When c> 1 the states (1.5) are linearly independent. This is why there exist unitary 
representations of Vir for any such c. It follows that for any Virasoro irrep with c > 1 

00 

Tr(qLO-c/24)(c,h) = qh-c/24 II (1- qn)-l. 
. n=l 

(2.19) 

The modular transfonnation S, see (2.15), acting on this does not produce a finite 
linear combination of similar expressions with the sante c but different h. It follows 
that unlike the situation for c < 1 there can never be a finite number of primary fields 
if c > 1. In fact a finite nWllber of primary fields requires c and c to be equal and less 
than one. 
However there are interesting cOllfonnal field theories with c > 1 and the most natural 
way to relax our assumption concerning the finite decomposability of 1£ is to suppose 
that there exists an extension of the Virasoro algebra acting on the Hilbert space 1£ 
of the theory in such a way that 11. decomposes finitely into irreps of this extended 
algebra. We can then appropriately modify the definition of ground state and primary 
field and investigate to what extent an analysis similar to that above can still apply. In 
fact there are many ways of achieving such extensions, via affine Kac-Moody algebras, 
via super confonnal algebras, via parafennions and so on. It turns out that the first 
possibility is the most powerful, apparently including all the others known, in a sense 
to be explained. 

LECTURE 3 

EXTENSION OF THE VIRASORO ALGEBRA BY AN UNTWISTED 
AFFINE KAC-MOODY ALGEBRA 

Both for the reasons just stated, and in order to understand better the theories with 
c < 1, we consider the extension of the Virasoro algebra (1.1) by 

[Ta Tb] - 'jabcTc + k cab c m' n - ~ m+n mu um+n,O, (3.1) 

(3.2) 

where k commutes with all the other quantities. Equation (3.1) specifies the affine 
untwisted Kac-Moody algebra21 g. The suffices are integers. Because they are con
served across the equations they constitute an integer grading. Equation (3.2) states 
that the "current" En z-n-lT;: has unit confonnal weight. Notice that {To"} = g, 
the compact Lie algebra with totally antisymmetric structure constants roc, whose 
affinisation is g, and that g commutes with Vir. 

When the central terms c and k vanish (1.1), (3.1) and (3.2) admit a nice geometrical 
interpretation. (3.1) is the Lie algebra of the group of maps of a circle into the Lie 
group G obtained by exponentiating g. This group is called the loop group. The 
Virasoro algebra is the algebra of diffeomorphisms of the circle. 
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In addition to the previous unitarity assumptions, (1.3) etc., we suppose 

(3.3) 

As T! lowers the Lo eigenvalue by n in the same manner as Ln, we must modify the 
notion of "ground state " 

Lnlh,A >= T!lh,A >= 0, n 2: 1, 

Lolh,A >= hlh,A >, T«flh, A >= L Ih, B > tBA" 
B 

(3.4a) 

(3Ab) 

We see that now the ground states can form a unitary representation of 9 with gener
ators tao 

THE ROOT SYSTEM OF 9 
Although the algebra 9 has infinite dimension, its root system spans only one more 
dimension than that of the finite dimensional Lie algebra g. To see its structure, 
introduce a Cartan Weyl basis for g, {Hi, Ear} and a corresponding basis for g. In this 
notation, take as Cartan subalgebra of 9 augmented by Lo: 

(H~,k,-Lo) 

We find from (3.1) and (3.2) that the following are roots with step operators E~: 

(ai,O,n) 

while the following roots display a rank g-fold degeneracy as they possess rank g 
linearly independent step operators H~: 

(O,O,n) 

This accounts for all the generators of 9 augmented with Lo. The first type of root is 
called "real "or "space-like "and possesses the single step operator. The second type 
of root is called "imaginary" or "light-like" and is degenerate in the sense explained. 
This root system can be split into two disjoint parts, a set of positive roots, those with 
n > 0, or n = ° and a > 0 in the sense of g, and the remainder, the negative roots 
which are also the negatives of the positive roots. Just as for finite dimensional Lie 
algebras, we can choose "simple "roots so that any positive root can be expressed as 
a sum of them. They are: 

i = 1,2,.. rank g, a i a simple root of g, 

aO = (-V\O, 1), I/J the highest root of g. 

(3.5a) 

(3.5b) 

It is possible to form a Dynkin diagram for 9 from these as Patera explained in his 
lectures22• It is obtained from that of 9 by adding one point in a special way. 

EXTREME GROUND STATES 

By analogy with the procedure for irreps of 9 we can single out of the degenerate 
ground states (3.4), "extreme ground states "by adding to (3.4) the conditions 

Eolh,A >= 0, a> 0, (3.6) 
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The significance of these extreme ground states is that they are annihilated by the 
step operators Ea for the positive roots a of g. If a is, in addition, real, then 

Thus we obtain an stt(2) subalgebra of g associated with each real positive root, a. As 
2a.H/a"2 is the analogue of 2T3 it should have an integer spectrum since the su(2) is 
represented unitarily when 9 is. Further if Ih, >. > is an extreme ground state 

Choosing a to be one of the simple roots (3.4) in turn furnishes the most restrictive 
conditions on >. and k. If a = (ai, 0, 0), we find 

Hence>. is an integral dominant weight of g. If a = ao, (3.5h), equation (3.7) yields 

-2>'.lN~}2 + 2k/1/}2 = 0, 1,2,3,4 .. (3.8) 

As the first tenn is a negative integer we deduce that 

2 2k/1/J :::x=level=O,1,2,3,4 .. 

Thus the central tenn k is quantised in this simple way in terms of an integer x, called 
the "level "of the representation. Furthennore (3.8) also implies that 

(3.9a) 

or 
(3.9b) 

There are only a finite number of dominant integral weights satisfying this inequality. 
This result was recovered by Seiberg during his lectures20 starting from Chern-Simons 
theory, that is, a much more geometrical starting point. A further consequence of 
(3.9) is that any dominant integral weight which satisfies the condition for a given 
level automatically satisfies that condition for any higher level. In particular >. = 0 
is a valid integral dominant weight for any level of any g. Again the mathematical 
structure pennits one and only one vacuum, just as we would wish on physical grounds. 

Let us illustrate with 8t1(2).,. Conventionally 1/J = 1 in this case so that (3.9a) reads 
>. 5 x/2. As the spin >. can only take the values 0, 1/2, 1,3/2, .. when it is integral and 
dominant, we see that>. can only take the x + 1 values 

>. = 0, 1/2, 1,3/2, .. x/2. ((3.10) 

The review article by Goddard and Olive23 or the book by Kac24 presents the above 
results in greater detail but it can already be seen that the representation theory of 9 
unifies ideas from finite dimensional Lie algebra theory and quantum field theory, 

PRIMARY FIELDS FOR THE EXTENDED ALGEBRA 

As we have seen, the extension of the algebra lead to a modification by restriction 
of the concept of ground state in equation (3.4). Correspondingly we must modify the 
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notion of primary field by adding to (1.11b) the condition25 

(3.11) 

Again ¢(z)IO > is a ground state, but now in the modified sense (3.4) as 

T:¢(O)IO >= [T:.¢(O)]IO > ifn~O 

SUGAWARA CONSTRUCTION 

Currents which are analogues in four dimensions of the affine Kac-Moody currents 
are sources of gauge fields in the 9 = u(2) electro-weak gauge theory. Before the 
importance of gauge theory was appreciated, much emphasis was placed on "current 
algebra" in the 1960's. Gelhnann argued that it should determine the dynamics 
of the theory and hence the energy momentum tensor. Sugawara and Sommerfield 
independently proposed a formula26 that achieved this, in retrospect, most naturally 
in two dimensions with confomlal symmetry, 0++ '" L:a ja+ ja+. 

In the present notation, this construction reads, for 9 simple or abelian 

1 dimg 00 

I"g _ X '"' '"' Til Til X 
.... m - 2k + Q,p x ~ nf:::oo m+n -n X· 

(3.12) 

The crosses denote the normal ordering whereby T:: is shifted to the right or left 
according as the suffix n is positive or negative. This nonnal ordering is necessary to 
ensure that this bilinear operator has finite matrix elements with respect to states in the 
irrep built on the ground states (3.4). The process upsets the algebraic properties which 
must be carefully recalculated in the manner of the classic string theory calculations. 
The prefactor quoted in (3.12) assures 

(3.13) 

The quantity Q>. denotes the quadratic Casimir operator for an irrep of 9 with highest 
weight A. As 'ljJ, the highest root, is the highest weight of the adjoint representation, 
Q,p is given by 

m,n 

Furthermore C~ satisfies the Virasoro algebra (1.1) with 

d' _ 2kdim 9 _ xdim 9 
- 2k + Ci:t: - ~ + h(g) , 

(3.14) 

(3.15) 

the result of another tedious calculation. h(g) = Q,p/'ljJ2 is known as the dual Coxeter 
number of g, and can be shown to be an integer taking the following values for the 
simple lie algebras 
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( _ 9 : su(n) so(n)j n ~ 5 sp(n) Es E7 E6 F4 G2 ) 
h(g): n n-2 n+l 30 18 12 9 4 . (3.16) 

These results may be derived from the known structure of the root system of 9 from 
which also follows 

_0 k (x - l)nL + {x - (SIL)2)ns 
L- = ran 9 + _ , 

x + h(g) 
(3.17) 

where nL and ns denote the nwnber of long and short roots of g, and LIS is the ratio 
of their lengths. As the second term is positive or zero 

rank 9 ::; dI ::; dim g. (3.18) 

In particular, c9 is rational and exceeds one and so lies outside the interesting range 
(1.8). 

If 9 is abelian, its structure constants vanish, and hence so do Qt/> and h . Hence 

dI = rank 9 = dim g. (3.19) 

As g then reads 
(3.20) 

it can be realised in terms of the derivative of a set of rank 9 spinless scalar boson 
fields. In this case the Sugawara construction (3.11) reduces to the canonical energy 
momentum tensor for them and coincides with Virasoro's construction in bosonic string 
theory where the abelian group is the translation group in space time. 
If 9 is not simple but compact, it can be decomposed 

9 = go + 91 + g2 + .. + gk, 

where go is abelian and the remaining pieces simple. Then 

We can simplify eg as 

k 

e9 = Le9" 
i=O 

e9 _ Ea T~T~ + 2 Ea E:=1 T~nT:: 
0- 2k+Qt/> 

and deduce the eigenvalue h9 on a ground state (3.4) 

(3.21) 

(3.22) 

In particular h~ vanishes if and only if A does, a possibility that can occur for any gill 
as already explained. This is the vacuum. 
Thus, given a unitary representation of gill, we have constructed an automatic repre
sentation of the Virasoro algebra, which is also unitary. Thus g symmetry guarantees 
conformal symmetry as is illustrated by the Wess-Zumino-Witten modeI27•2s• As each 
gill irrep decomposes into an infinite number of Virasoro irreps the character 
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(3.23) 

is an infinite sum of Virasoro characters of the type (2.19) for fixed c given by (3.15) 
and variable h. Yet it was discovered by Kac and Peterson28 to display a beautiful 
behaviour in response to the action of an element M of the modular group (2.14) on 
T = (In q)J27ri: 

xr.,,>.)I M = L S>.,>.,(M)x(.,,>.,), (3.4) 
>" 

where S is again a finite, unitary matrix independent of q. Kac and Peterson noted that 
the simple behaviour (3.24) required both the inclusion of the cJ24 in the definition 
(3.23) and the Sugawara expression (3.22) for the ground state eigenvalue of Lo. 
One can enquire whether the Sugawara construction provides the most general solution 
to equation (3.2). IT one puts 

Lm =.c~ +Km 

one finds that Km commutes with T:;' and hence .c~ so that Km satisfies the Virasoro 
algebra itself. Thus the ambiguity in Lm consists in the addition of a Virasoro algebra 
Km corresponding to an extra independent degree of freedom. Thus the Sugawara 
construction gives, in a well defined sense, the minimum solution to (3.2). 

LECTURE 4 

COSET CONSTRUCTION 

The argument given at the end of the preceding lecture provides a simple trick for 
obtaining unitary representations of Vir with c < 1 from unitary representations 
of affine Kac-Moody algebras (3.2), together with other information that we shall 
describe30,31. 

For simpleness of explanation, let us temporarily suppose that 9 is a simple Lie algebra 
containing a Lie subalgebra h. IT h is also simple, it possesses an index of embedding 
I in 9 which is an inte.e;er 1,2,3,.. . A level x repres~tation of 0 then decomposes 
into representations of h with level xl. We write 0., :J h.,{.The Sugawara construction 
(3.12) can be performed both for 0 and it, and yields, respectively 

So, subtracting, 

[Km,T:l =0 

since h C 9 and, by definition 

(4.1) 

(4.2) 

Because of (4.1) and the Sugawara construction (3.12), Km commutes with C~. It is 
then easy to check that Km satisfies a Virasoro algebra (1.1) with c-number 

(4.3) 

Unlike cfJ and ch , cK need not be larger than unity, but, like them, it must be positive 
(or zero) as Ko must have a spectrum bounded below so that the result (1.7) applies. 
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IT the spectrum of Ko were not bounded below, Kn for n > 0, which commutes with 
all the C~, could be used to lower the cg eigenvalue indefinitely, contradicting its 
positivity. We conclude 

(4.4) 

COSETS WITH POSITIVE C 

The result readily extends to the case in which 9 is semisimple, using (3.21). A 
particularly interesting coset is su(2) x su(2) divided by the diagonal su(2) subalgebra 
with the levels indicated below 

K = sti(2)m x su(2h/su(2)m+l (4.5) 

has 
cK = 1-6/(m+2)(m+3), 

that is, the FQS series (1.8), since by (3.15), sU(2)m has c = 3m/(m + 2). This finally 
verifies that the FQS series representations can indeed be constructed in a unitary 
manner30 • 

Using characters for the c < 1 Virasoro irreps due to Rocha-Caridi32 it is possible to 
calculate the decomposition of the irrep (m, i) ® (1, E) of the numerator of K in (4.5) 
into irreps of su(2)m+l + VirK: 

(m,i) ® (I,E) = 9 ~)m + 1,1') ® (cK ,h2Hl,2l'+l), (4.6) 

where the sum is over i' and is restricted so that i-I' - E is an integer and (3.10) is 
satisfied, with A and x replaced by i' and m + 1 respectively. 
The relation between the characters of these irreps can be recovered from (4.6) by 
taking traces of appropriate quantities. From this it is possible to deduce (i) the 
modular transformation properties of the c < 1 characters, and in particular an explicit 
formula for the matrix S in (2.16), given the formulae of Kac and Peterson for the 
matrix S relevant to the Sti(2)m characters, and (li) all possible modular invariant 
partition functions for c < 1, given those for sU(2)m. 

All possible cosets with cK less than one have been listed by Bowcock and Goddard33 

but there are many others of interest. For example, 

yields the FQS superconformal series, while 

9z x 9;'(g)/9z +;'(g) 

yields more cosets on which the superconformal algebra can be realised. The "ZIc 
parafermions" can be realised on the cosets 

su(2)Ic/u(l) "V su(k)l x su(k)dsu(kh. 

Many, if not all, rational conformal field theories can be found in this manner or else 
in variations of it. This is the basis for the claim, made above, that the extension of 
the Virasoro algebra by affine Kac Moody algebras is, in this sense, universal. Recall 
that Seiberg, in his lectures, explained how to obtain these coset models out of Chern
Simons gauge theories in three dimensions. 
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THE SITUATION OF VANISHING C K 

If cK vanishes, then so do all K .. , as Ko is positive and the argument leading to 
(1.7) therefore applies. Thus the equality of c9 and ch furnishes the necessary and 
sufficient condition for the equality of £9 and Ch when 9 contains h in the sense 
already explained. This can be thought of as a quantum equivalence between the g 
and it theories. 
We have already seen a non-trivial coset for which cK vanishes. This is 9ft where 9 
is a simply laced, simple Lie algebra, that is of A, D or E type, while t is the Cartan 
subalgebra and the level of 9 unity, as we saw from (3.17) and (3.19). The equality 
of the two Sugawara constructions for 9 and t relates the sum of the squares of the 
step operator currents of 9 to the sums of the squares of the t currents, which, as 
we remarked, can be thought of as derivatives of spinless boson fields. This relation 
suggests that the step operator currents can also be expressed in terms of these boson 
fields and, indeed, this is the substance of the vertex operator construction34 of gl . 
This can be used to verify the identity between £9 and Ch . This sort of argument has 
also been used to infer quite new constructions of affine Kac Moody algebra represen
tations of, for example, gl when 9 is not simply laced so that additional fermions of 
unconventional type are required35 . 

If cg = ch , we say that h is "conformally embedded" in 9. As cK is a strictly increasing 
function of the level x of 9 when 9 is simple, the conformal embedding can only occur 
when x is unity, as in the above example. 

MODULAR INVARIANT PARTITION FUNCTIONS FOR gl 
Instead of (2.1), we now suppose that the structure of the Hilbert space of the theory 
is given by 

(4.7) 

where the sum is finite, in the sense that 'L.N>. X < 00. Since each term in (4.7) 
contains an infinite number of irreps of VirL 0 VirR, the decomposition (2.1) would 
emphatically not be finite. The partition function is again given by (2.10) and required 
to be modular invariant. By the same argument, this is only possible if c and c differ 
by an integer multiple of 24. One possibility is that 9 is Es + Es + Es with x equal 
to unity and X vanishing. However we shall discard such possibilities in what follows 
and assume the equality of x and X, thereby assuring the equality of c and c. Then 

Z(r) = LX;,>.N>.,>.tX;>.', (4.8) 
>.,X 

where the sum over the modified "conformal blocks "is finite. Again, because of (3.23) 
and the unitarity of S, N>.,>.' = 6>.,>.' is a solution, but again somewhat uninteresting. 
However there is now a simple way of using conformal embeddings to generate new 
modular invariant partition functions, first observed by Victor Kac36 , and relying on 
a result of Goddard and Olive37 to the effect that: an irrep of gl decomposes finitely 
into irreps of it I if, and only if h C 9 is a conformal embedding. 
For definiteness let us take 9 :::> h with both algebras simple. If the embedding is 
conformal, the levels are 1 and I, respectively. Let D~,>. denote the irrep of g at level 
x with highest 9 weight A. Then the decomposition of this irrep can be written 

D~,>. ::;: EB L A>.,.D1,,.· (4.9) 
,. 
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The integers AAI' ~ 0 are the multiplicities. The content of the theorem is that E AAI' 
is finite if, and only if the embedding is conformal. I' 

If h C 9 is not conformal, the coset construction tells us that there is a Virasoro algebra 
V irg/h, commuting with h and acting unitarily on the 9 irrep. As Vir only has infinite 
dimensional irreps when c > 0, the multiplicities are all either infinite or zero, that is 
the decomposition is not finite. Conversely, if the embedding is conformal, the values 
of J.L on the right hand side of (4.9) run over a finite number of values determined by 
the inequality (3.9), (with x replaced by I). The corresponding values of h are given 
by (3.22) and apply equally as eigenvalues of cg and e.3 as these are equal in conformal 
embeddings. The largest of these values is therefore finite. But the subspace of the 9 
irrep with smaller e.g eigenvalues is finite dimensional so that the sum in (4.9) is finite 
and the result established. 
Taking traces of (4.9) yields the following relation between characters 

xtA = L AAI'X~.,.. (4.10) 
I' 

This can be inserted into any modular invariant partition function (4.8) for 9 to give 

(4.11) 

that is, a modular invariant partition function of the form (4.8) but for hI instead of 
91 and with N replaced by 

N'=ATNA. 

This matrix, like N is symmetric, with integer entries greater than or equal to zero. 
Further, as AAG = bAG, N~o = Noo and so the vacuum remains unique if originally 
so. The conclusion is that non-trivial modular invariant partition functions can be 
constructed for hI whenever h is embedded conformally in 9 and I is the index of 
embedding. 

MODULAR INVARlANT PARTITION FUNCTIONS FOR su(2}z 

Examples relevant to su(2) and hence c < 1 partition functions are 

These give modular invariant partition functions for su(2) at levels 10 and 28 respec
tively, numbers which happen to be two less than the dual Coxeter numbers (3.16) 
of E6 and Es respectively. However, a more systematic and complete construction 
of these partition functions, due to Nahm38 , uses the fact that a straightforward ex
tension of the above argument yields modular invariant partition functions for h if 
h X h' c 9 is confomlal by an elimination of h'. Therefore if h = A1 we can use the 
conformal embeddings 

(At}r-1 x Ar-2 x U1 C so(4(r - 1», 

(A1 h(r-2) x Dr- 2 X ...11 C so(8(r - 2)), 
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(AdlO X k C 80(40), 

(Adls X Ds C 80(64), 

(Alha X (E7)12 C 80(112). 

(4.12) 

These may seem rather recondite, but in fact, they can be read off standard mathemat
ical tables listing irreducible symmetric spaces, making use of the following theorem 
by Goddard, Nahm and Olive39 : c;B0(n)/h vanishes if, and only if there exists a Lie 
algebm h' such that h' /h is a symmetric space of dimension n. 
The proof can only be sketched here. As soC n) must have have level 1 for the embed
ding to be conformal, it can be represented by bilinears in fermions, a construction 
familiar as the "quark model "in particle physics and one that can be regarded as the 
aflinisation of the Clifford algebra construction of representations of the Lie algebra 
of the orthogonal groups. According to (3.15), and the fact that so(n) has dimension 
n(n - 1)/2 and dual Coxeter nWllber n - 2, the Virasoro c for so(nh is simply n/2, 
the same as that for the canonical energy momentum tensor of Dirac for n real, free, 
massless fermions, as we mentioned in connection with the Ising model and string 
theory. Hence by an argwnent of the type already used, there is a quantum equiva
lence equating the Sugawara construction for soC n h with the Dirac energy momentum 
tensor which, of course, is bilinear in the fermions, but involves a derivative of them. 
Since the currents are bilinear in fermions the Sugawara construction apparently con
tains terms quadrilinear in the fermions. This appearance must be deceptive in the 
case mentioned) and the qua.c!rilinear temlS must cancel out, and this can be checked 
explicitly. As hI C 80(nh, hI can also be represented bilinearly in the n fermions 
which transform according to the n dimensional representation of 80( n) implied by 
the statement. If further this embedding is conformal, the Sugawara construction for 
it equals the Dirac construction, and so the terms quadrilinear in the fermions must 
yet again cancel out. These can be isolated by replacing the normal ordering with 
respect to currents by a new one with respect to the fermions and denoted by open 
dots. So if the current is 

n A,B 

where tj7A(z),A = 1,2, .. n, are the fermion fields, the term quadrilinear in fermions, 
which in fact must cancel to zero, is proportional to 

L : tj7A(z)MABtj7B(z)tj7C(z)McDtj7D(z): 
aABCD 

= (1/3) L 0 tj7Atj7Btj7Ctj7DO {L(MABMcD + MBCMAD + MCAMBD } 
ABCD 0 0 a 

using the antisymmetry properties of the normal ordered product of the fermions. 
The condition that the embedding be conformal thus reduces to the vanishing of the 
expression inside the curly brackets. This expression resembles a Jacobi identity and, 

indeed, it is the condition that the space h' /h be symmetric as the quantities r bc and 
M~B actually constitute the structure constants of h'. The above argwnent can be 
reversed and extended to cover the situation when h and h' are not necessarily simple. 

The symmetric spaces which are responsible for the conformal embeddings (4.12) are, 
respectively 
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Ar/Ar-2 x UI X Al 

Dr/Dr- 2 X Al X Al 

E6/A5 X Al 

EdD6 X Al 

Es/E7 X AI. 

(4.13) 

Notice that the algebra in the numerator is always simply laced and possesses a dual 
Coxeter number two more than the Al level indicated in (4.12). The particular sym
metric spaces in (4.13) have a very special structure because of the Al factor in the de
nominator. The representation carried by the tangent space, and hence the n fennions 
always has the form (n/2, 2) where the n/2 denotes an irrep of the factor of the de
nominator besides su(2). The only irrep of the su(2) occurring has two dimensions, 
and so is pseudoreal. As the tangent space is real the n/2 irrep must also be pseu
doreal, from which it follows that n is a multiple of four. Thus the su(2) generators 
can be thought of as Pauli matrices and the symmetric spaces (4.13) have a special 
quaternionic structure. Actually, it is easy to prove that there exists one, and only 
one, such quaternionic symmetric space for each choice of simple Lie algebra in the 
numerator of the quotient. However only those which are simply laced need be con
sidered in order to find the complete set of modular invariant partition functions for 
su(2)." previously established, using brute force methods, by Cappelli, Itzykson and 
Zuber4o , who recognised the various superficial connections to the numerator algebras, 
now explained by Nahm's construction. 

These results pose many intriguing questions. For example, there is a well known con
nection between the simply laced Lie algebras A, D and E with the finite subgroups 
of so(3) or su(2). In his lectures2o , Seiberg mentioned an alternative and more recent 
construction of the modular invariant su(2) partition functions related to this. There 
should be a direct connection between this and the work of Nahm. Pasquier4I has 
reformulated the Q-state Potts model on a square lattice and found generalisations 
capable of second order phase transitions which also possess an A, D and E classifica
tion which corresponds almost, if not quite exactly, to the c < 1 theories consequent 
upon the results for su(2)"" via the coset construction (4.5). 
There have been many other exciting recent developments such as new and interesting 
super coset models which I regret I shall have no time to explain. Let me finish 
by reminding you that this rich area of development ill two dimensional conformal 
quantum field theory has been achieved using techniques hitherto underused in this 
context, namely the very clear and precise methods of the theory of Lie algebras and 
their representations. It is, of course, a challenge to rederive and reinterpret these new 
results according to the more traditional, geometrical methods and progress already 
made in this direction was described by Seiberg, in his lectures. 
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1. Introduction - a trip to the Zoo 

The fundamental principles of string theory are not yet known. Since conformal field 

theory [1] plays a crucial role in string theory, many researches believe that a detailed study 

of conformal field theory will bring us closer to the concepts underlying string theory. It 

is hoped that a better understanding of the mathematical foundations of conformal field 

theory will lead to interesting and relevant generalizations of CFT, which might in turn lead 

to progress in string theory. There are other good reasons to study CFT, on the one hand, 

the study of CFT might eventually be useful in identifying 2D critical phenomena in nature 

and on the other it has lead to beautiful results and applications in pure mathematics, and 

promises to lead to more. 

Motivated by the desire to understand better the mathematical structure of conformal 

field theories one turns to the problem of classifying theories. We are not so much interested 

in the final list of theories as we are in the techniques used to obtain such a list, and the 

mathematical structures characteristic of members on that list. 

General conformal field theories have not yet been attacked in any meaningful way, 

but the study of an interesting subclass of theories has been very successful in the past 

two years. In order to motivate and define these theories let us recall that some theories 

have the beautiful properties that their correlation functions, partition functions etc. have 

very simple analyticity properties in the moduli. The prototype of such behavior is the 

holomorphic factorization of determinants on Riemann surfaces: 

det88", IF(TW 

which plays a key role in the Belavin-Knizhnik theorem of string theory. Should we focus on 

this criterion? No: the theories which have this property are too simple - they are basically 

free theories (on the world sheet!). Holomorphic factorization admits a generalization which 

leads to a very rich class of conformal field theories, namely, the rational conformal field 

theories (RCFT). These may be characterized by saying that all correlation functions, 

partition functions, etc. can be expressed in terms of finite sums of analytic times anti

analytic functions: 

N<oo 

(ifJ···ifJ) '" L IFil 2 

i=1 

More formally, RCFT's are distinguished amongst the set of all conformal field theories by 

the existence of a holomorphic (and anti-holomorphic) monodromy-free subalgebra A (and 

A) of the operator product algebra such that the physical Hilbert space can be decomposed 
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into a finite sum of Ax A representations: 

A = EBf:,l 'Hi ® Hi 

In fact, known theories satisfying this criterion comprise a veritable zoo. 

Let us collect some specimens from this zoo. The oldest and most venerable are surely 

the current algebras - also known as Wess-Zumino-Witten [2] theories. These current 

algebras have various extended algebras (a notion we explain below). So far, all known 

extended algebras are related to orbifolds [3] of WZW theories by a subgroup of the center. 

Another venerable example of rational theories are the minimal models of BPZ [1] and FQS 

[4] (and their N = 1 and N =2 generalizations). These are based on the chiral algebra of the 

(N=I,or N=2 super-) Virasoro algebra itself, and these have rather nontrivial extensions 

known as W-algebras and their generalizations, Wn-algebras [5]. In addition there are 

various species of parafermions [6]. Between .1984 and 1986 it was realized [7] [8] [9] 

that parafermions and the various discrete series could be obtained by the GKO coset 

construction [10]. Indeed, any coset construction based on two rational chiral algebras will 

define a rational conformal field theory. Finally whenever the chiral algebra has a discrete 

symmetry we can form an orbifold [3] theory [11]. 

Clearly, this zoo should be organized. By trying to formulate all these theories in a 

unified way, we are led to conjecture: all RCFT's are related to certain deformations of 

groups, this deformation can be described axiomatically or in terms of 3D Chern-Simons

Witten (CSW) gauge theory and is closely related to certain quantum groups. A cynical 

version of this conjecture would state that nothing new has been found since 1986, so we 

must be done. 

The purpose of these lectures is to make a case that the conjecture is not cynical but 

based on the insight that RCFT is closely related to group theory, and in fact must be 

defined by axioms closely related to those defining groups. 

These lectures are not meant to be a review of the subject of RCFT. Many groups 

have contributed to this subject from various points of view. In particular, a completely 

independent line of development, beginning with the classic papers of Doplicher, Haag, and 

Roberts, and using the conceptual framework of algebraic quantum field theory has led to 

similar results [12]. For the most part we will review our own work on the subject [13] [14] 

[15] [16] [17] and will present it from the point of view developed in these references. 

We will assume the reader has some familiarity with conformal field theory, e.g. we 

will assume familiarity with the material covered in standard review lectures [18]. We have 

included many exercises, hoping they will help the reader study the subject. It is a good 

idea to try to work out at least some of them in order to practice the formalism in the 
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text. The answers to most of these exercises can be found in standard CFT reviews or in 

our papers [13J-[17J. 

In the next section we give several different definitions of chiral vertex operators. 

These allow us to have an operator formalism for calculations of conformal blocks and lead 

to the definition of the duality matrices. In the third section we examine the consistency 

conditions these matrices have to satisfy. The complete set of independent identities of 

these matrices is found in section 4. In the fifth section we describe the Tannaka-Krein 

approach to group theory which is similar to the structure we found in sections 2 - 4. This 

leads us to the conclusion that RCFT is a generalization of group theory. In section 6 we 

combine the left moving and right moving conformal blocks into a consistent conformal 

field theory. Section 7 is devoted to a general discussion about the relation between 

two dimensional duality (as described in the previous sections) and three dimensional 

general covariance. This general discussion is made more explicit in sections 8 - 10. In 

the eighth section we have some comments about quantum groups and the relation of 

quantum groups to knot invariants and RCFT. In sections 9 - 10 we consider an explicit 

example of a topological three dimensional field theory. This is the Chern-Simons-Witten 

(CSW) theory. We first discuss the canonical quantization of the theory (section 9) and 

explain the connection between the theory and two dimensional conformal field theory. 

We then consider different gauge groups in three dimensions (section 10) and show that all 

known RCFT can be obtained by an appropriate gauge group in three dimensions. Our 

conclusions are summarized in section 11 where we also present some conjectures about 

the classification of RCFT. 

2. Chiral Vertex Operators and Duality Matrices 

We need a formalism for manipulating holomorphic parts of vertex operators. Vertex 

operators will be replaced by objects known as chiral vertex operators (eVO's) [19J [20J 

[13][14][15J the distinction being that chiral vertex operators are purely holomorphic and 

keep track of the various internal states and couplings used to form a conformal block. 

Rather than give the definition immediately, let us build up to it. 

Consider the minimal Virasoro models. For every triplet i, i, k of Virasoro represen

tations and f3 E 'Hj we define 

by its matrix elements. 

First, consider f3 to be a highest weight vector f3 = Ii >. For the primaries in 'Hi and 

'Hk we have 
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where A is the conformal dimension of field. We can compute matrix elements between 

descendants using the Virasoro algebra and the rule 

This only defines cIi on Verma modules. Demanding that cIi is defined on the irreducible 

quotients forces some of the constants " cIi:" " to vanish . 

• Exercise 2.1 Null vector. at work 

a.) Suppose tP has a nonvanishing weight. Show that if 10) is the 81(2) invariant 

vacuum then the null vector L_1IO) implies that IlcIitoll = o. 
b.) Consider the Ising model with primary fields 1,,p, IT of dimensions 0,1/2,1/16. 

Use the null vector 

to show that IlcIi:,p1l = o. 

We initially define the fusion rule Nj" = 0,1 according to whether" cIi " must be zero 

or not. Having defined cIiff for highest weight states, we can define it for descendants 

f3 = L-Ili > (and their linear combinations) by contour integrals: 

For simplicity we will often restrict ourselves to the minimal models. However, we will 

occasionally point out new elements that arise in more general RCFT's. For example, we 

define chiral vertex operators for affine Lie algebras g. Each 9 representation 'Hi contains 

a ground state representation Wi C 'Hi for the finite dimensional algebra g. We first define 

cIiff(z) for f3 E Wi. By commutation with the generators of 9 it suffices to define the 

matrix elements between a E Wi, 'Y E Wle 

where tp'l E Inv (Wi ® Wi ® W") is an invariant tensor. Other matrix elements and the 

definition for f3 a descendent can be carried out exactly as before. Again the null vectors 

will only allow one to define cIi consistently starting with a subspace of Inv(Wi® Wi® WIe). 

This subspace of good couplings 
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is called the space of 3-point couplings and Nj" = dim VA are the fusion rules .. Notice 

that in this case, unlike the discrete series, the integers Ni~ are not all zero and one - in 

some cases there exists more than one invariant coupling. Also, the representations are 

not all self conjugate. In other words, N/o = 61 but N?j = 6'j where { is the conjugate of 

i. In more general theories there are evo's which vanish for three primary fields but do 

not vanish for the descendants. 

evo's give an operator formalism for computing conformal blocks. For example, the 

conformal blocks of the 4-point function for 4 primaries in t.he minimal models are 

(2.1 ) 

where the rhs of the above equation illustrates a useful pictorial notation for conformal 

blocks. 

The physical correlation function is given (in the diagonal theory) by 

(.pil.pj(Z2).p"(Z3)14/) = L dplFpl2 
P 

where dp are constants independent of z and z. This correlator looks like it depends on 

many choices. Duality states that many of those choices don't affect the above final result. 

More precisely, part of duality states that the physical correlators are independent of the 

choice of basis of conformal blocks. In particular, the order of .pi.p" on the lhs is irrelevant 

so one could also have used the blocks 

(2.2) 

But these blocks must give the same correlation function . 

• Exercise 2.2 Trivial fact of life. Show that if {fi},{9i},{hi },{ki} are four sets of 

linearly independent analytic functions such that 

N M 

L j;Yi = L hiTei 
i=1 .=1 

then N = M, and l = Ah 9 = (A -1)t k for some invertible matrix A. 

From the above exercise it follows that the two sets of blocks (2.1) and (2.2) are 

linearly related, and in fact, by considering descendants we have an· operator identity: 
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(2.3) 

where that the coefficients B are the same for the primaries and all the descendants. 

If one thinks carefully about the above argument he will note that we must choose 

cuts since the :F's are not globally defined and have monodromy. So we choose the cut: 

Zl - Z2 E ffi+. In order to compare (2.1) and (2.2) we must use analytic continuation, 

and we can only compare these functions on their common domain of definition. In the Z2 

plane we find that (2.1) and (2.2) are defined on the following regions: 

~/ / / / 

~/ / II 
hence the overlap consists of two components and there are in principle two distinct B 

matrices. We define B(+) by (2.3) for Im(zl - Z2) > O. For Im(zl - Z2) < 0 we have, in 

general a different matrix B( -). If the sign is omitted, we refer to B( +) . 

• Exercise 2.3 Relation to BPZ. Compare the above discussion with section four of [lJ 

and show that the definition of conformal blocks as matrix elements of !fI corresponds with 

that of BPZ. 

All of this has been derived in the simplified notation appropriate for the minimal 

models, but these considerations apply to arbitrary RCFT's. In the general case, when 

the space of three-point couplings VA is a vector space of dimension larger than one we 

have linear transformations 

The other part of the algebra of the !fI operators follows from the operator product 

expansion. We have 

Summarizes the 
representation-theoretic 

content of the operator 

sum over descendants 
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• Exercise 2.4 Defining tke F MlJtriz. Prove that the operator product expansion of 

two ~ operators has the form 

(Hint: Write out the operator product expansion with arbitrary coefficients. Use trans

lation and scaling invariance to determine some of the structure of the coefficients. Now 

take the operator product expansion with a third operator ~ and demand consistency with 

braiding.) 

Now going back to our blocks :p"ikt we see that we can insert the operator product 

expansion and define a new basis of conformal blocks, which we may denote pictorially: 

i __ J-'--__ -LI_k_l 
p 

In the general case we have a linear transformation 

The F, B transformations are the basic duality transformations. The reader may well ask 

why these objects are of interest. We may answer with two immediate consequences of 

these considerations. 

Fir~t point: Already the e:r:i~tence of B, F have interesting consequences. Since they are 

defined by a change of basis, the transformation 

is an isomorphism. Therefore, matching dimensions, we have 

L NjpNft = L Nt"Nft . 
" p 

This defines Verlinde's fusion rule algebra: (21) 
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• Exercise 2.5 Ftuion Rule Algebnl. Using the fact that Band F define isomorphisms 

show that the matrices 

form a commutative associative algebra. This algebra is known as Verlinde's fusion rule 

algebra . 

• Exercise 2.6. Eza.mple, 0/ Fu,ion Rule Algebra,. 

a.) Show that the fusion rule algebra for the rational torus (see section 10) is 7l./N71.. 

b. )Write out the algebra for the Ising model. Try to determine all physically acceptable 

fusion rule algebras with three self-conjugate primaries. 

c.) Show that the FRA for the WZW model SU(2)k (the subscript denotes the level) 

is generated by elements <Pt, t. = 0,1/2, ... ,1c/2 with 

min{t,+t"Ic-{t, +t,» 
<Pt, <Pt. = L <Pt 

It,-t.1 

by considering the null vector J~12Hllt.it.). (See, e.g. [221.) 

d.) Consider the WZW model SU(3)2' Show that the fusion rule algebra for the six 

integrable representations 1,3,3*,0,0*,8 can be determined purely from the known group 

theoretic decompositions and consistency conditions on the FRA. Note in particular that 

Nus = 1 whereas in group theory it is equal to two. 

Second point: Next, the matrix B2 is not an identity matrix, precisely because of the cuts. 

In fact, B2 is exactly the monodromy matrix for the analytic continuation of Zl around Z2 

for the vector of blocks .:F;ikt( Zit Z2). That is, if -y(,) is the following curve: 

Y(OI 

A curve in Zl plane surrounding Z2 

Then one can compute the monodromy as in 

271 



• Exercise 2.7 Monodromy 0/ the biodel. Show carefully that upon analytic continua-

tion we have: 

Now, the monodromies of conformal field theory are related to the mutual locality 

factors and therefore to the conformal weights. Thus, the primitive hope is that nontrivial 

identities on B, F matrices are so restrictive that one can solve them and thus classify 

RCFT's. This is too naive, but it is on the right track. At any rate, with this hope in 

mind it is clearly wise to get better acquainted with B as in the following exercise: 

• Exercise 2.8 Band F with the unit operator. By setting various external represen

tations in the four-point function to be the identity we obtain a computable three-point 

function. Use this observation to evaluate the F and B matrices in the special cases that 

one of the fields is the identity. Notice that 

defines a linear map 

ni . Vi u; 
"jk' jk -+ Ykj 

which may be interpreted as the square-root of a mutual locality factor (compare the 

previous exercise). Show that 

Therefore 

where e = ±1. In simple RCFT's like the discrete series e is always +1. In other theories 

e can be -1. For example, in SU(2) KM, the sign e corresponds to the symmetry or 

anti symmetry of the tensor coupling the representations. Show that in this example 

where the representations are labeled by their spin (which is integer or half integer). For 

simplicity, we will limit ourselves in some of the formulae below to the case e = 1. 
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From this discussion it is clear that we need to understand the identities on E,F. 

A number of questions arise: How can we obtain nontrivial identities? What is the full 

set? What is the minimal set of independent relations? To understand these identities 

we should understand better what a eva is. Therefore, let us broaden our viewpoint 

on chiral vertex operators so that we see more clearly the S3 symmetry of three-point 

couplings which is fundamental to duality. Instead of choosing the state !3 to define <) we 

should consider a ~ingle linear operator 

that commutes with contour deformation of the chiral algebra. We would like to give this 

operator a geometrical interpretation. Namely, suppose we have representation spaces on 

three circles as in the following picture: 

"l 

three-holed sphere with rep spaces on the three holes 

Placing one of the holes about the point at 00 we can define the Virasoro generators 

acting on the Hilbert space 'Hi at 00 by: 

But, since T is analytic, these can be deformed to generators around zero and z 

L~OO) = i (n+lT(O + i C+ 1T(O 

= Ln(O) + f (n: 1) zn+l- kL k_t{Z) 
k=o 

(2 .. 5 ) 

The chiral vertex operators commute with contour deformation, so we look for oper

ators that satisfy: 

Ln(oo)Cik). (!3®,)= Cik). [(2: (n~1)zn+t-kL~~1!3) ®,+!3®Ln(Oh] 
(2.6) 
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for Rny states p,-,. This equation can be interpreted as follows. Think of Ln(z} as a set 

of Virasoro operators acting on a Hilbert space at z, 'H •. Then Ln(z) ® Lm(O) acts on the 

Hilbert space 'H. ® 'Ho. The operators Ln(oo) act on the tensor product 'Hz ® 'Ho. They 

sRtisfy the Virasoro algebra with the .tame value of the central charge as Ln( z). Therefore, 

equation (2.5) defines a map ~z from the Virasoro algebra, A to A ® A 

co (n + 1) n+l-'" ~z(Ln) = 1 ® Ln + L k Z L"'-1 ® 1 . 
"'=0 

This "comultiplication" allows us to take tensor products of Virasoro modules with given 

central charge. Then evo's are "intertwining operators" for this notion of tensor product. 

(More on this below.) The above considerations generalize to arbitrary chiral algebras. 

We must specify the z-dependence of these operators completely and this leads to the 

condition that 

d(i) (i) d ·k (P ® -,) = ·k (L_ 1P ® 7) 
z 1 z 1 • 

(2.7) 

In RCFT's there is a finite-dimensional space, V/", of operators satisfying (2.6) and (2.7) 

and we take these equations as our final definition of the. evo's. The connection to our 

previous description is that 

• Exercise 2.9 Prove the equivalence of these two definitions. 

The superiority of our final definition is evident since we can now understand more 

clearly in terms of the formula (2.6) the statement that the evo is an operator associated 

to a 3-holed sphere. Furthermore, it suggests a natural generalization, since we can consider 

more complicated situations - say, a 4-holed sphere. There will be a finite dimensional 

vector space V/"'l of operators 

which commute with contour deformation on the surface: 

£ 

k 
00 :. l 

J 4-holed sphere with representations at each hole 
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The space of these operators is the same as the space of conformal blocks. This must 

be true since they are determined by the same equations (which follow from contour de

formation arguments) used in more standard descriptions of conformal field theory [1][231. 

The new spaces V/lel can be understood in terms of the simpler spaces of 3-point couplings. 

Geometrically, we can represent the 4-holed sphere as sewn 3-holed spheres. Analytically, 

we can use completeness of states to write operators in V/Icl as compositions of evo's. 

Each sewing has a corresponding composition of evo's and a corresponding decom

position of V/lel into simpler spaces: 

V/Ie,3:! ev}p ® V[; 

k J. 

f 

VA, 3:! e V~p ® ~~ 

k 

l. i 

r 

k ~ 

t \ \ "1 

f' 

k 

~~ 
J. . 

1 
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Note that each of the sewings corresponds to a different asymptotic region of Te

ichmiiller space. The general construction is the following - any ,p3 diagram can be thick

ened to give a surface - we can put FN length/twist coordinates on that surface and the 

region with small lengths corresponds to a region in Teichmuller space. In the asymptotic 

regions of Teichmuller space where the length coordinate goes to infinity the Riemann 

surface looks like a ,p3-diagram. In this limit the amplitudes of the conformal field theory 

and the conformal blocks have poles. The leading singularity corresponds to keeping only 

one intermediate state in the corresponding channel. 

Thus different sewings simply correspond to different bases for V/u . The braid

ing/fusing isomorphisms express the relationships between these sewings. They are com

puted from the projectively flat connection on moduli space - according to the picture of 

the Friedan-Shenker modular geometry [24]. 

Finally we need the following remark - The compositions described so far only give us 

9 = 0 surfaces. For CVO's of type ~i we can sew to get: 

one holed torus obtained by sewing 

The space of such conformal blocks with channel i will be the space Vii' and the space 

of all one-point blocks is EBi V/;. In formulas, if we put a state f3 at a puncture on the torus 

we may form 

(2.8) 

Here z is a point on the complex plane, but the trace essentially identifies z '" qz so that 

we actually compute a torus amplitude. If f3 is a Virasoro primary these blocks form a 

representation of the modular group with the matrix: 

(2.9) 

In terms of sewings we are relating the following two diagrams 
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<--) 

sewings for 8 

All these remarks generalize. As first emphasized by Friedan and Shenker [241, to every 

Riemann surface E we associate a vector space of conformal blocks H(E). This space is 

intrinsic but can be expressed in terms of the V/k in many ways. Each such expression 

may be associated with a dual diagram. (Which, by its associated pants decomposition is 

correlated with an asymptotic region of Teichmiiller space). Different decompositions of 

the ~ame vector space must be related by isomorphisms. The specific isomorphisms follow 

from the existence of a projectively flat connection on moduli space. These isomorphisms 

are known as duality transformations. 

An important point is that, in RCFT, all duality transformations can be expressed in 

terms of a finite number of basic duality transformations. Thus, we need only deal with a 

finite amount of data. This statement is intuitively obvious. It can be proved [251 that all 

sewings can be obtained from one another by the two basic moves 

moves on four holed sphere and 1 holed torus 

From this, taking into account twists around tubes one sees that all duality transfor

mations can be written in terms of F,B,8 and e27fic/24. 

• Exercise 2.10 Simple Move~. Decompose the following move ("8 for the two-point 

function") into steps of simple moves: 
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3. Duality Identities 

The transformations F, B, S satisfy a large number of nontrivial identities. These 

identities can be understood in three ways: 

a.) The algebra of operators ~ must be consistent. 

b.) The monodromies of conformal blocks form representations of the modular group 

(duality groupoid). 

c.) Different paths of the basic transformations F, B, S relate the same basis of blocks. 

Thus the identities are intimately connected with the geometry of moduli space. 

The simplest example of an identity is the Yang-Baxter relation because it follows 

immediately from the exchange algebra of the ~ operators. Consider the following sewings 

for the 5-point function: 

I 
k } 

I 

\ 
? ~ I< k J- 7 

I I 

\ I 
} 'I Ie ~ K 1 

I -~ I 
hexagon 

implying an equation of the form BBB = BBB (see below) . 

• Exercise 3.1 Yang-Ba:z:ter Equation. Derive the Yang-Baxter equation for the B

matrix by considering the product of three chiral vertex operators and demanding consis

tency of the braiding algebra. 
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It is very useful to introduce another pictorial formalism for deriving relations be

tween braiding/fusing matrices. We imagine the the braiding and fusing matrices are 

like amplitudes between conformal blocks with "time" flowing upward as in the following 

picture: 

1. 

1 

L 

Other pictures for B, F 

(In the 3 dimensional point of view we will see that this interpretation of time can be taken 

quite literally.) Then we can picture the Yang-Baxter relations as follows: 

usual picture for Yang-Baxter 

Another such identity is the braiding/fusing or pentagon identity which, in terms of 

duality diagrams may be represented as: 
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. 
11 ~ /( I< I' s I 

d-e -) 

F/ 
. . 

I< 1 I 

I I 
J F 

B '\ . 
k k 1 ~ 1 .. 

\ 
B I I I 4 

pentagon of dual diagrams 

or in the other pictorial notation may be represented as: 

braiding/fusing 

Clearly, by looking at more and more complicated graphs we will obtain more and 

more complicated identities. These identities can be neatly characterized as follows. Form 

a simplicial complex whose different vertices represent different 4>3 decompositions of con

formal blocks. Join two vertices, if they are related by a simple move B or F. Every loop 

on the resulting one-complex gives a relation on duality matrices. 
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• Exercise 3.2 The duality complez. Write out the simplicial complex for the five-point 

function. Keep initial and final representations fixed in all moves. (Warning: This takes 

some time.) 

These identities, and their graphical relations are a great deal of fun to play with -

but there are a large number of indices and one can only understand them once he has 

worked them out for himself. Therefore we urge the reader to work through the following 

exercise . 

• Exercise 3.3 Sy~tematic Derivation 0/ Equation~. Consider the 4-point function 

complex. Show that the closed loop of moves: 
; 

--~ I 
J. , 1 

. 
t J. ---~ 

leads to the equation 

'" B I [i k](E)F. I [k i] = F [i k]e-i,..(Ll..+Ll.;-Ll..) L..J pp il pq it pq it 
pi 

(3.1 ) 

The e denotes the sense of the braiding. Note that this identity shows that the eigenvalues 

of B are the square roots of mutual locality factors. Interpret (3.1) graphically: 

• 
J 

1. 
p 
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Write similar equations involving F-l, B- 1 • Now consider the braiding/fusing iden-

tity: 

~, 

Write the corresponding equation: 

(3.2) 

Now specialize this equation by putting is = 0, the identity representation, and derive: 

(3.3) 

Now use the relation (draw the picture!): 

[i k] [k i] ~ Bpp' i' (E)Bp'q i' (-E) = 6p,q (3.4) 

to derive the following two consequences. First 

[i k] [' k] ~ Fpp' i' Fp•q i i = 6p ,9 
P 

(3.5) 

and next 

Interpret (3.5) graphically as a relation following from a closed loop of dual diagrams 

on the duality complex: 

282 



~< Q~I A-

I' i -) I Ie 1 

1= l' \ I®.R 

1 
~ I I ~ 

.t 
t\ k 

I I 

, ®.Q \ I F 

,l\ 
K . S2~1 

~ \ 
JI. 

I ~- . 
~ k '1 

Note that the closed loop is a hexagon. 

Note that the determinant of (3.6) gives an interesting constraint on the weights of a 

rational conformal field theory [26]. 

Now substitute (3.3) back into (3.1) to get 

'"' B [i k] (e)e'''''.o.. B [i i] (e) = e'''''.o.. B [i k] ( ) i,...'O'.e-2,..i.Ll.j 
L., P' i 1 .q k 1 pq i 1 e e (3.7) 

Write (3.7) in terms of F and interpret in terms of dual diagrams via the hexagon identities 

as follows: 

~, 
. 

S2.£) , ). tt . -) ; I I Ie 1 

F 1 ~ I ~ . 
~ I ( J. i k 

\ ~ 

I ®Sl I/®n . 
. 

F J I .t 
j I 1.( k :, -;> 

1 
,- Ie 
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We have thus found three hexagon identities. Show that anyone of these hexagons 

can be deduced from the other two, so there are only two independent hexagons. We will 

adopt the last two we have just derived. 

Now use the equation for B in terms of F to rewrite the braiding/fusing identity: 

'"' [i k] [i s] [i i] [ i i ] [r k] L.J F1'2• PI b F1'" a b F. r I k = Fp,r a P2 Fp" a b 
• 

Interpret this identity as a pentagonal loop of dual diagrams. 

Finally, write out the equation corresponding to the figure: 

J, 

J-1t-----+----+-- J S" J, 
jl. 

pictorial representation of the Yang-Baxter equation 

giving the Yang-Baxter equation: 

2:Bi.1'[~2 ~3](f)Biri' [h ~4](f)B1'i. [~3 ~4](f) = 
p 11 J7 P J5 JI J9 

J7 

2: Bir1' [~3 ~4] (e)BiGi• [i~ i4] (e)Bpi. rh ~3](e) 
l' J6 J5 JI P US J5 

(3.8) 

. )5 
H-

(3.9) 

Show that by putting il = 0 or i5 = 0 we recover the two hexagon identities. Show 

moreover that the full Yang-Baxter equation may be deduced from the pentagon and 

hexagon identities. (Hint: Bring all the B matrices to one side of the equation. Insert 

FF-I = 1 and use the braiding/fusing identity repeatedly.) 

The two hexagons and the pentagon are the fundamental genus zero identities. 
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• Exercise 3.4 Gauge Choice6. Note that we did not specify the normalizations lI<I>hll 
in the definition of the chiral vertex operators. How do the F, B matrices change under 

a rescaling by ~;lc? We refer to such a change as a change of gauge. Show that the 

polynomial equations of the pervious exercise are gauge invariant . 

• Exercise 3.5 Symmetriel 0/ the F matriz. Show, in the case of the discrete series 

that the matrices satisfy: 

[ile] [il] Fpp' i I = F"". j Ie 

[ I i] = Fpp' Ie j 

Show that these symmetries are gauge invariant. Interpret these symmetries pictorially. In 

theories other than the minimal models these symmetries typically hold only up to signs. 

(These signs are described precisely in [15].) When a special choice of gauge is made these 

matrices sometimes have much more symmetry, similar to the tetrahedral symmetries of 

Racah coefficients (see below). 

If we move on to higher genus we get new identities on duality matrices. For example 

from the one-point block we obtain, as described above, Sw(j). As is well-known, when the 

torus is represented as the quotient of the plane by a lattice the square of the transformation 

S is a 180 degree rotation around the puncture at z, so logz -+ -logz and we have (in the 

case where all the representations are self conjugate) 

(3.10) 

where C is the conjugation matrix on representations and the sign is very similar to the 

quantity e discussed above, and again arises from the symmetry or antisymmetry of a 

coupling. Similarly we have 

(3.11 ) 

where Tjle = ebi(6 j -fi>6jle' Moving on to several punctures on the torus a new element 

appears. We may always fix one operator at the standard basepoint, but then there is 

nontrivial monodromy under the diffeomorphisms which move each of the points around 

the nontrivial homology cycles of the surface, and around each other. 

For a famous example we have for the 2-point function. 
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two points on a torus with a, b curves 

As indicated before, each of these monodromies may be expressed in terms of F, B, S. 

Then the relations of the modular group of the n-holed torus imply identitiell on duality 

matricell. For example denoting the monodromies of conformal blocks obtained by dragging 

one operator around the a, b cycles by the same letters a, b we have 

Sa S-l = b . 

The a, b monodromies can be expressed in terms of F, B matrices. Thus, the above equation 

implies a new identity relating F, B, S. Clearly, these considerations extend to any number 

of punctures at any genus. 

Below we'll begin to bring some order to this chaos of identities. But first let us show 

that some of these identitiell can lead to very nice consequences indeed. 

For example, the relation SaS- 1 = b leads to a proof of Verlinde's formula (21): 

(Here S = S(O), i.e. the transformation matrix on vacuum characters.) To prove this one 

looks at the blocks: 

k 

k" 

blocks for two points on the torus in one basis 
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and computes the a, b monodromies for 

Ie 
1<" 

1 ---? c. 
d 

transformation of these blocks 

r---+--- Ie" 

Then using the fact that S converts a to b monodromies gives the result. Details are 

left to the following exercise: 

• Exercise 3.6 Proof of Verlinde " Formula 

Verlinde conjectured that the matrix S = S(O) diagonalizes the fusion rule algebra in 

[21]. There are now, superficially, three different proofs of this statement [13], [27] [28) but 

all are really equivalent. We will return to a version of Witten's proof later. For now, we 

proceed with the least elegant, but most straightforward approach. 

Consider the discrete series for simplicity. Show that Verlinde's formula 

S··S'1e " ~ = L..J Nile,S'j 
SOj , 

follows from the modular relation SaS- 1 = b by considering the submatrix element illus

trated below: 

I< 

1 -) 

restrict to: 

..--'---
kIf 

---~ 
c.. 

J 
J 

submatrix needed for a proof of Verlinde's formula 
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Relate the above basis of blocks to the basis 

k 

1 

a different basis for the two point function on the torus 

Show that the a monodromy in this basis is just e2"'i(~i-~p). Use the identity 

[ i i) [k i) [i i) Fico j j Fo; Ie i = Foo i i == Fi 

to simplify the b-monodromy in the original basis and obtain: 

From this derive Verlinde's formula, and show also that 

s·,. _1_ = 
( B [~ :J B {7 iJ ) 00 

soo FieF; 

Note especially the formula for j = O. An argument analogous to the above holds for an 

arbitrary RCFT. 

From Verlinde's formula we can deduce many interesting things. As a simple example 

we can describe the fusion rules for Kac-Moody algebras in a rather elegant way (21): 

• Exercise 3.7 Geometry 0/ the Kac-lvIoody Fu~ion R1J.le~. From Verlinde's formula and 

the formula for the matrix S of the Weyl-Kac characters show that the one-dimensional 

representations of the fusion rule algebra: 

rPmrP' = L N:",rPi 
i 

in the level Ie WZW theory are just given by 

\(j) = h (2 Il; +p) 
Am C m 'Ir Ie + h 

Here chm is the character in the representation m, Ilj is the highest weight of the repre

sentation j, p is the Weyl vector, i.e., half the sum of the positive roots, and h is the dual 

Coxeter number. 
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Using this result characterize the fusion rule algebra for the level k WZW theory in 

terms of reflections in the hyperplane x .1j; = k + 1, where 1j; is the highest root . 

• Exercise 3.8 Verlinde'~ Dimen~ion Formula 

a.) Go to the dual basis for the vacuum characters of the form 

A circle with mirrors emanating from it. 

and use Verlinde's formula to show that the dimension of the Friedan-Shenker vector bundle 

is [21] 

dim'H(Eg) = ~)_1_)2(9-1) 
Sop 

p 

b.) Go to the dual basis for the n-point functions of the form 

. . 
if 12. ~"-I 

0-0-0- . -. -D---..J....I--J.,..I_· ._. '--- i .. 

to show that the formula for the case with punctures in representations ii, ... ,in is given 

by 

d . 'l..J(~ (P .) (P')) "( 1 )2(9-1) Si,p SiaP 
lmn .ug; 17 11 ,... n,1n = ~ S -S"'-S 

p Op Op Op 

c.) Verify that S2 = C guarantees the dimensions behave as expected under sewing. 

d.) Substitute the Kac-Peterson formula for Sij into the formula of part (a) to show 

that for level k WZW theory with simple and simply connected group G we have [29J: 

Here h is the dual Coxeter number, Art is the root lattice, ~ is the set of roots, the sum 

runs over weight vectors >. defining level k integrable highest weight representations of 

the current algebra, and fh. = 271'* is the conjugacy class canonically associated to the 

Kac-Moody integrable representation >.. Verlinde has conjectured that this formula can 

be derived as a fixed point theorem, but such an interpretation has not yet been given. 
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e.) Write the formula explicitly for s"U(2). and show that, as k -+ 00, we have 

dimll(E) '" k3g - 3 • This behavior is very natural from the Chern-Simons gauge theory 

viewpoint explained below. 

4. Completeness 

In the previous section we said that all duality transformations are expressed in terms 

of a finite amount of data: F, E, S. However, there seemed to be a proliferation of identities. 

The completeness theorem states that, in fact the number of independent identities is finite. 

From the exercises you know that a special case of the B-matrix is 

1 

a pictorial representation of n 

Its eigenvalues are just the square roots of mutual locality factors. 

The basic genus zero identities are 

1) The pentagon 

2) The two hexagons 

3) At 9 = 1 there are 3-more identities: 

S2(j) = ±Ce-i,..Aj 

(ST)3 = S2 

SaS- 1 = b 

(4.1) 

(4.2) 

Using these identities we can check all the relations on F, E, S following from duality on 

all surfaces. One would like to present the equations in the most economical possible way. 

In fact, the last torus equation SaS- 1 = b, which is rather complicated when written out 

with all its indices, contains a great deal of redundant information. Some of the equations 

290 



implied by SaS-1 = b can be used to solve for S(p) in terms of the braiding and fusing 

matrices and the normalization term Soo(O). In the case of the discrete series, the explicit 

formula one finds is 

-,,.A F,o [; !J " [i i] [i i] 
S,iCp) = Soo(O)e P F. F. [i iJ F. [' iJ L..J B".. . . (- )BrO . . (-) 

,. ,.0ii ,.0" r lJ 'J 
(4.3) 

and a similar formula holds for an arbitrary RCFT. (The only complication in the general 

case are some signs meas'uring the antisymmetry of certain couplings.) This expression 

is a generalization to arbitrary p of the expression in [13][14]. A nontrivial computation 

(outlined in section seven below) shows that once this expression is substituted into the 

remaining equations implied by SaS- 1 = b one finds no new conditions on F, B. Hence, in 

specifying the fundamental equations, the above three torus equations can be replaced by 

the definition (4.3) together with the constraint of the first two torus equations, determining 

that S define a representation of the modular group . 

• Exercise 4.1 Ezample 0/ the [,ing model. Check (4.3) in the Ising model. In this 

case we have three representations 1, t/J, CT with the famous fusion rule algebra: 

t/J x t/J = 1 

(4.4) 

CTxCT=l+t/J 

choose a gauge by demanding that: 

(4.5) 

Then show, either by solving the polynomial equations, or by using explicit conformal 

blocks that we have 

(4.6) 

And substitute these into (4.3) . Note, in particular that for the one-point function of t/J 

the block 11(r)(dz)1/2 gives S(t/J) = e-''''/4, as predicted by (4.3) . 
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Strictly speaking - only the following cases have been carefully checked in all details: 

(g = 0, n holes), (g = 1, n holes), (g, n = 0). We have no doubt that the remaining cases 

will also work (an argument is given in [15]), but what is needed is a better understanding 

of why the result should be true which will lead to a more conceptual proof, which should 

handle all cases simultaneously. 

Here we will describe part of the 9 = 0 case in detail. To begin recall the generators 

and relations for the modular group of the sphere with n holes. The generators are: Firstly, 

Ri = a Dehn twist around the itk hole. Equivalently, this is a transformation on a local 

choice of coordinate dz -+ e27ri dz. Secondly, Wi = interchange holes i and i + 1 The action 

of the generators Wi may be pictured as follows: 

Illustrations of one of the generating modular transformations. 

The idea of the proof is the following. Recall the simplicial complex from section 3 

which is built by declaring that: 

vertices --> .dual diagrams 

edges --> simple moves 

Define a 2-complex by filling in all faces corresponding to pentagons/hexagons and -

in the high genus case - the torus relations. There are no new relations, if the resulting 

complex is simply connected. 

The question can be reduced - in a way which will be indicated below to checking the 

relations of the modular group. So let's worry about these. The relations we must check 

are: 

A. 
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B. 

c. 

D. 

)" = IIR; (WI'" Wn-l 
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Now checking these relations is quite easy. We use the basis of blocks: 

,fl h J,3 ,}~_I j ... 

0 I I I i 0 
J I Pl.. P3 J .. 

multiperipheral basis 

So the representation is just: 

Relation (A) is obviously satisfied. One easily checks that (B) follows from the Yang

Baxter relations. To check (C) we use braiding fusing: 

Finally we check (D) similarly . 

• Exercise 4.2 The barber pole. Use the braiding/fusing identity and induction to 

verify the barber pole relation: 

With considerably more work we can go on to check the modular relations at high 

genus. An example of a rather tractable one is: 

• Exercise 4.3 A Simple High-Genu, Relation 

a.) Rewrite the equation (ST)3 = S2 as the equation 0.{30. = {30.{3 where 0.,{3 are 

Dehn-twists around the a, b cycles, respectively. (Hint: Show that 0. = T-l and (3 = T ST.) 
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b.) Verify geometrically the relation 0/30 = /30/3 in the modular group at any genus 

from the configuration of curves shown below: 

(Hint: Show that the product of Dehn twists 0/30-1 is a single Dehn twist around 

the image under 0 of the curve /3.) 

c.) Why is this not a new high genus relation on duality matrices? 

One should still prove that it is enough to check the relations of the modular group. On 

the sphere, the argument is inductive in the number of external lines. The basic idea in the 

proof is to use the pentagon to show that there are no new identities from a set of duality 

transformations starting and ending in the multi peripheral basis. Then, it follows that 

every closed loop of transformations in the duality complex is homotopically equivalent to 

a closed loop of transformations in the multi peripheral basis. These transformations form 

the modular group. Since all the relations in this group are satisfied in this basis, there 

are no new identities. 

The completeness theorem strongly suggests that the equations come close to defining 

RCFT. Specifically, what it does show is that a solution to the equations allows one to 

define transition functions for a compatible family of Friedan-Shenker vector bundles on 

all moduli spaces. This statement can be reformulated in a language currently much in 

vogue, which we now explain. 

In Friedan-Shenker modular geometry the existence of a projectively flat vector bundle 

means that the data defining the bundle is essentially topological, involving (projective) 

representations of the Teichmiiller modular group. Graeme Segal abstracted the concept, 

implicitly used from the earliest days of dual model theory and somewhat more precisely 

described in [1][24][21][131 to the notion of a modular functor. A modular functor may be 

specified by the following data and axioms: 
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Axioms for a Modular Functor 

Data: 

1. Representation labels: A finite set I of labels (i.e. the representations of the chiral 

algebra) with a distinguished element 0 E I and an involution i -+ i-such that 0 - = O. 

2. Conformal blocks: A map 

from oriented surfaces with punctures, each puncture Pr being equipped with a direction 

Vr and a label i r , to vector spaces. 

3. Duality transformations: A linear transformation H(f) : H(~d -+ 'H(~2) associ

ated to an automorphism ~l -+ ~2 (and similarly for punctures). 

Condition~: 

1. Functoriality: 'H(J) depends only on the isotopy class of f. Thus the mapping 

class group acts on 'H(~), (and similarly for punctures). 

2. Involution: 1£ bar denotes reversal of orientation and application of the involution 

to the representations then 'H(f:) == 'H(~). 

3. Multiplicativity: 'H(~l II ~2) == 'H(~tl0 'H(~2)' 

4. Gluing: Pinching (~,(il,VI,Pd, ... (in,vn'Pn» along a cycle to obtain a surface 

(possibly connected or disconnected) (t, (iI, VI, Pd, ... (in, Vn, Pn ), (j, V, P), (F, V, p» with 

a pair of identified punctures P, P defines vector spaces related by 

5. Normalization. 'H(S2 j (j, P» == tSj,o . C. 

The all-important gluing axiom may be illustrated by the figure: 

0... c... 

b 

EB 
jE.I 
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The directions Vr at the punctures are needed to keep track of the nontrivial 

effects of Dehn twists around the punctures. Geometrically they are needed since 

conformal blocks should be thought of as differentials on the surface E, i.e., :F ~ 

f( Zl,.· . Zn, . .. )( dZ l )A, ... (dzn)A ... This subtlety, which shows up in the three-dimensional 

point of view in the need for framings of links, was first emphasized in [26). 

In an obvious way one can change the definitions to define a modular functor which 

is projective, unitary, and so forth. In this language the completeness theorem states 

that from a finite amount of data F, B, S satisfying a finite number of conditions one can 

construct a projective modular functor. 

The idea of a modular functor is truly beautiful and allows us to ask many interesting 

questions in a succinct way. For example we may ask to what extent a modular functor 

characterizes a rational conformal field theory. Since there are nontrivial theories with 

trivial modular functors this is a serious question. Or, we may ask if every modular 

functor arises in some conformal field theory. Simply defining the bundles is not enough 

for defining physical correlation functions. Whether these bundles have reasonable sections 

which correspond to blocks in a eFT is another matter which remains undecided. However, 

there is a closely related problem in mathematics where the answer is known to be in the 

affirmative in a suitably defined sense, namely the Tannaka-Krein approach to group theory 

- so we discuss this next. 

5. Tannaka-Krein theory and Modular Tensor Categories 

Let us switch our attention momentarily to an apparently different problem - we want 

to characterize the sets: 

Rep(G) = {VIV is finite dimensional representation of G} 

For example, let us consider G to be a compact Lie group, then there are the most 

important elements 

Ri = irreducible representations 

Moreover, we can decompose 

with 

Ri Q9 R j = ... fYRk Q9 ... Q9 RkQ9,"·· 
v 

d· Vk k 1m ij = nij 

The spaces Vi' are characterized as the space of a certain kind of intertwiner. Recall that if 
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W1'PI and TV2 ,P2 are two representations (that is, PI : G ---t End(Wd is a homomorphism, 

etc.) Then an intertwiner T : WI ---t W2 is a group - equivariant map, i.e. 

T 
-+ 

(5.1) 

T 
-+ 

commutes for all 9 E G. In this language Vi1 = {intertwiners : Ric ---> R; ® R j } e.g. in 

SU(2) the space of intertwiners is always zero or one-dimensional and is spanned by 

where < mlit m2i2IM J > are Clebsch-Gordon coefficients. 

Now we will examine some nontrivial properties satisfied by these vector spaces, these 

follow from rather obvious isomorphisms of representations. First, we have the evident 

isomorphism n : R; ® Rj ~ Rj ® Ri since the map :z: ® y ---> y ® :z: is an intertwiner. 

Therefore, if we decompose the above tenllor products of representations we learn that: 

n : Vi' ~ Vj~ 

When manipulating these spaces of intertwiners it is good to develop a pictorial notation. 

Denote 

Then 

n:~j ---> ~i 

Note well that an obvious consequence of the fact that the transformation n squares to 

one is that 

as a transformation on Vi;. Thus, when i = j we can diagonalize n, the eigenvalues are 

±1 depending on the symmetry of the coupling. 

Now consider the second evident isomorphism: 

F: Rjl ® (Rj2 ® Rj3) ~ (Rjl ® Rj2) ® Rj3 

:z: ® (y ® z) ---> (:z: ® y) ® z 

When decomposing in terms of irreducible representations we meet compositions of inter-

twiners, for example we find: 

( i) ( P ) : Rit ® Rio ® Rio -+ Ri 
jlP i2i3 

Carrying our pictorial notation further we denote the tensor product of a spaces of inter

twiners by 
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p 
®V .. 

J :LJ3 
p 

If we have a direct sum of these spaces over "intermediate" representations, then we 

denote the resulting vector space by 

. 
(}z d' Jo, d, 

I I . ® , 1 I 1. }3 J3 

P f 

Thus, decomposing the second isomorphism in terms of irreducible representations we 

learn that there must be a transformation: 

[ J. 
\ 1 

Or, in formulas: 

~, 

S I dl. 

'1-..L-.1 -LI--.::.h 
picture for F 

In the physics literature the intertwiners are known as Clebsch-Gordan coefficients (3j 

symbols) and the F's are known as 6j or Racah coefficients. Moreover, the fact that F is 

an isomorphism implies that nfj defines a commutative associative algebra which is, in 

fact, the character ring of the group. 

Now the two isomorphisms of representations nand F satisfy simple compatibility 

conditions. The first is the pentagon relation: 

11®F 

F 
--+ 

F 
-+ 

!F®l 

(Rl ® (R2 ® R3 » ® R4 
(5.2) 

for representations R1 , • •• , ~. The second is the hexagon relation: 
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RI ® (R2 ® R3) 
F 

(RI ® R2) ® R3 
n 

R3®(RI®R2) --4 --4 

11 ® n 1F (5.3) 

RI ® «R3 ® R 2 ) 
F 

(R1 ®R3 )®R2 
O®I (R3 ® R 1 ) ® R2 --4 -+ 

Decomposing these relations in terms of irreducible representations we learn that F,n 

satisfy two corresponding compatibility conditions 

~ [j k] [i s] [i j] [ i j ] [r k] L.J Fp,. PI b FPlt a b F.r I k = Fp,r a P2 Fp,t a b 
• 

(5.4 ) 

nm L' [i k] nt ~ [j I] i [k i) 
t/,£mn i I ;Ic = L.J Fmr i k nkrFrn i I 

r 

(5.5 ) 

In the case of SU(2), these relations are known in the physics literature as the Bieden· 

harn sum-rule and Racah's sum-rule. 

In category theory there is a theorem, called the Mac Lane coherence theorem that 

states that the above two identities are the full set of independent identities on F, n. 
Let us describe the idea of the proof: 

Define a simplicial complex where vertices correspond to dual diagrams and edges 

correspond to simple moves between diagrams. Label these edges by F, n etc. Fill in th(' 

pentagons and hexagons to get a two-complex, and show that the resulting two-complex 

is simply connected. There are two kinds of loops, those involving only the F move and 

those involving F, n. Define the following composite move: 

"l 

I 
.l-

I ---::;. 

J. 

I 

B from F and n 

By the pentagon and hexagon we can deform all loops to those involving only multi

peripheral diagrams: 
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. . 
"l J J. 

... -) I I - - . -.. 
J I --7 

multiperipheral diagrams 

Then we need only check that B satisfies the relations of the symmetric group. 

There is a clear analogy here with rational conformal field theory, and we have now 

arrived at the point we were at with RCFT. In the case of group theory it turns out one 

can go further and state a partial converse to the above results. We would like to know if 

all solutions to the above axioms in fact come from group theory. It turns out there are 

solutions to the previous equations that do not come from groups, but we can eliminate 

these by adding two more axioms. 

The first axiom corresponds to the existence of the trivial representation Ri=o = C. 

Note that we have: 

Every representation has a conjugate representation: 

(Ri) = Rt 

and Ri @ R j contains the singlet only if j = i", so 

The second axiom that we must add, which is due to Deligne, [30J involves the special 

fusion coefficient (for the case n?i = 1) 

o 

Namely consider the composition 

Ro --t (R;) @ Ri --t Ro 

We have a map of a one-dimensional vector space to itself, which is, canonically, a com-

plex number. One can compute the value of this number by decomposing in terms of 

intertwiners, and one finds the answer -};. 
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• Exercise 5.1 Deligne', condition in term, of F,. By considering the sequence 

R, ~ Ro ® R, -> (Ri® R,) ® R, -> (Ra ® Raj ® R, -> R, ® (Ri® R,) -> R, ® Ro ~ R, 

and decomposing the tensor products into irreducible representations, show that 

~ = dim R, 
F, 

• Exercise 5.2 Another proof of Deligne'6 Condition in term6 of F,. Consider the 

"group theoretic one-loop two-point function": 

Group theoretic two point function 

Consider the "monodromy" under /32 -> Ph(g)/32, Where (;~) denote intertwiners. 

Using the basis of tensors: 

f 

show that the monodromy is just: 

I< 

1 --~ 
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Take the limit 9 --+ 1. Show that the oth-er terms vanish and deduce that 

~ dim Ri = L n{"dim R; 
" ; 

and hence 

The nontrivial result is that these axioms now characterize group theory. This is due 

to Deligne [30] and, in a slightly different form to Doplicher and Roberts [31] [32). More 

precisely, suppose we are given the following: 

Axioms for a Tannakian Category 

Data: 

1. An index set I with a distinguished element 0 and a bijection of I to itself written 

2. Vector spaces: V/" i,j, Ie E I, with dimV/" = Nj" < 00 

3. Isomorphisms: 

Condition,: 

ni Vi '" ITi ;/e: ;" = YIe; 

F[ 1: t:l : Ea,. V/1l,. ® v;. Ie. ~ Ea. V.i~2 ® v;:;. 

1. (q-= i and 0 - = o. 
. 0 i "" /c. ( . r . 2. V;; ~ 6i;C l-i; ~ 6ijC V;I; = V;i VA ~ V}/i 

3. n~"ni; = 1 . 

4.The identities: 
F(fl ® I)F = (1 ® fl)F(1 ® fl) 

F23F12F23 = P23 F13 F12 

5. The normalization condition: 

(5.6) 

From such a set of axioms we can reconstruct a group for which V/" are the intertwin

ers, F, the Racah coefficients, etc. 

The proof of this result is rather involved, but it would probably be worthwhile to 

sketch the main ideas of reconstruction which proceeds as follows: 

a) Define vector spaces R; = en;, obviously. (In category theory these correspond to 

simple objects which we must realize with honest vector spaces.) 
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b) Define the space of intertwiners (morphisms) to be: 

Hom(Ri ---+ Ri) = C 

Hom(Ri ---+ R j ) = 0 i i= j 

and extend by linearity to H om( EaR ---+ EaR). 

c) Define tensor products: Ri ® Rj ~ EaVi' ® R/;. That is, Vi' is a set of intertwiners. 

Now we define the set Rep = {all sums, products, quotients, duals of the Ri}. 

d) Finally define the set of families of linear transformations: 

9 = {(A.,).,ERepl'v':z:, A., : :z: ---+ :z: is an invertible linear transformation. 

A.,®y = A., ® Ay 

T: :z: ---4 y an intertwiner => TA., = AyT} 

9 is a group: This is the group we want! One might naturally wonder whether, had one 

started with a group G, produced the objects F, n etc. and formed the group Aut, one 

would have recovered the same group G. This is settled in the following exercise . 

• Exercise 5.3 On Reconstruction [30)[33). Suppose one begins with a compact group 

G and constructs the spaces V/,. as above. We will indicate why the reconstructed group 

9 defined by the abstract procedure given here is exactly the original group G. 

a.) Note first that G C g. Note that every 9 E G defines a family {Ax} XERep via 

AX(g) = px(g), where PX is the representation defined by X. 

b.) Show that if v E X is fixed by all of G, i.e., if 

'v'g E G : px(g)v = v 

then it is fixed by all of g, i.e., 

AX(V) = v 

for any family satisfying the defining axioms of Q. (Hint: Show that ARo = 1, and that 

z ---4 zv is an intertwiner C ---4 X.) If G is a continuous Lie group we conclude that there 

are no "broken" generators in giG and hence that 9 = G. 

c.) More generally suppose that G egis a proper subgroup. Then there is some 

AX E End(X) which is not in the set {px(g)lg E G} c End(X). Use the fact that G 

is compact to show that there must exist a polynomial P on End(X) which vanishes on 

{px(g)lg E G}, but not at AX. Show that the space S of polynomials of degree ~ deg(P) 

on End(X) is a representation of G. Note that PES violates (b), to conclude that 9 = G. 
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In the above characterization of a Tannakian category we have worked directly with 

the data ~i" etc. Alternatively we could have defined the category more directly in terms 

of objects, with a tensor product of objects satisfying pentagon and hexagon conditions 

identical to (5.2) and (5.3) , and with some axioms relating to the unit object and dual 

objects. This is the definition one finds in the literature. 

The situation arising in RCFT is more complicated than the one we have described 

for the Tannakian categories. In RCFT the index set I is finite. Moreover n 2 #= 1. This is 

crucial: it is the characteristic that leads to interesting monodromy and hence interesting 

braid representations. The pentagon relation remains but there are two hexagon relations 

involving nand 0-1 • The category so defined (equivalently, the category defined by axioms 

on objects and morphisms of objects) is closely related to what is known as a "compact 

braided monoidal category" which was studied in [34}. Different definitions differ slightly 

on such details as whether - is involutive, or whether the set I should be finite or not. 

Thus, roughly speaking, the duality properties of RCFT's on the plane are characterized 

by "compact braided monoidal categories." Well defined RCFT's have more structure and 

must be defined on all Riemann surfaces. By the completeness theorem it suffices to define 

S(p) : EBV;; -+ EBV;; according to (4.3) and impose the relations of the modular group. We 

will call the category defined by these axioms a modular tenaor category. More precisely 

we have 

Axioms for a Modular Tensor Category 

Data: 

1. A finite index set I with a distinguished element 0 and a bijection of I to itself 

written i ....... i-. 

2. Vector spaces: V/le i,i,k E I, with dimV';" = Njle < 00 

3. Isomorphisms: 

ni Vi ~ ui 
"ile: jle = Ylej 

F[:: ~:] : EBr ~;llr ® V!.Ie. ~ ~. V.i~2 ® Vi:;' 

4. A constant Soo(O). 

Condition$: 

1. (i}-=i,O-=O. 

2 v.; '" C G VO ~ C G Vi ~ Vie· (Vi r~ Vi • OJ = (lij ij = (Iii jle = ji jle = iii 

3. nhnij E End(V/,,) is multiplication by a phase. 

4.The identities: 
F(n· ® l)F = (1 ® W)F(l ® n·) 

(5.7) 
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for f:;:: ±1. 

5. The identities 

S2(p) :;:: ±e-i ... ApC 

(ST)3 = S2 

where S(p) E End(EBV;i) is defined by 

-i ... A Fio [; ~l " [i i] ) [i i] ( ) 
Sij(p) :;:: Soo(O)e p F. F. [~~l F. [~~l ~ Bpr i . (- B ro i· -

1'1'0
" 

pO" r ] ] 

C represents the action or-, the numbers ±e-i7rAp may be deduced from 0, and T : V/i -+ 

Vj~ is scalar multiplication by e2'll"i(A.-c/24) for a constant c. (For more details see [15].) 

Just as for Tannakian categories we could define modular tensor categories more 

di~ectly in terms of objects and axioms on the tensor products of objects. In these terms 

one must define the analog of (4.3) . This may be done in terms of a generating set of 

simple objects Ri by defining a single morphism S of the object EBiRi ® R, to itself as 

follows: 

EBiRi ® Ri --+ EBi,jRi ® Rj ® Rj • ® Ri 

0'0101 .. 
--+ EBi,; Ri ® Rj ® Rj ® Ri ® 

0- 1 00 .. 
--+ Eai,; Rj ® ~ ® Ri ® Rj ® 

(5.8) 

--+ EajRj ®Rj 

Similarly one may use 0 to define the data ±e,,..AJ as a morphism Rj -+ Rj and from 

this define T on EBRi ® R, and impose a relation on 52 (relating it to 0) and the relation 

(5T)3 :;:: 52. 

The name modular ten.sor category was suggested by Igor Frenkel and we will adopt 

it. We thank him for discussions on this subject and for urging us to express the definition 

of S, (4.3) ,in terms of simple objects, along the lines of (5.8). 

As we have mentioned, the above axioms are sufficient for establishing the relation 

Sa :;:: bS. Thus we may summarize the main result of [13][15] in the statement that a 

modular tensor category (henceforth MTC) is equivalent to a modular functor. As in 

section four we may ask whether all MTC's are associated to some RCFT, and to what 

extent an MTC characterizes the original RCFT. 

From the analogy of Tannakian categories and MTC's one naturally wonders whether 

there is a reconstruction theorem for MTC's analogous to Deligne's theorem. This is not 

known at present, but there is some good evidence that such a statement exists. First, 

there is an analog of the integrality condition in RCFT. From the proof of Verlinde's 
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formula one finds 

We have already noted that classically the quantity on the LHS is related to the dimen

sion. The quantity on the RHS has been interpreted as the "relative dimension" of the 

representation spaces. Note that [35) 

"dimH·" trH. qLo-c/24 SOi -----",- = lim --"'-"-:--=-
"dimHo" q-l trHo qLo-c/24 Soo 

All this strongly suggests that some axioms additional to the above polynomial equations 

in fact characterize RCFT's - and that classifying solutions to these equations is the same 

as classifying RCFT's. 

The relation between the axioms of RCFT as discussed above and the Tannaka-Krein 

approach to group theory becomes more complete in a certain limit of RCFT. Some RCFT's 

are labeled by a parameter k such that they simplify considerably in the k --+ 00 limit. In 

this limit the conformal dimensions of all the primary fields approach zero. More generally, 

there is a subset of the primary fields with a closed fusion rule algebra (namely, if i and j 

are in the subset then Nfj 1= 0 only for I in the set) whose conformal dimensions approach 

an integer in the k --+ 00 limit. We define this limit as the clauical limit of the RCFT. 

Examining our axioms at genus zero in this limit we see that they simplify. In particular, 

since the relevant ~ 's are integers, 

{l2 = 1 . (5.9) 

Therefore, there are no monodromies in the classical theory and the two hexagons are the 

same equation. In this limit the axioms of a RCFT are identical to those of group theory 

in the Tannaka-Krein approach. Since classical RCFT is the same as group theory, it is 

natural to conjecture that quantum RCFT i~ a generalization of group theory. We'll return 

to this conjecture below. For the moment we note the following correspondences between 

group theory and conformal field theory: 

Group 

Representations 

Clebsch-Gordan coefficients/Intertwiners 

Invariant tensors 

Symmetry of couplings 

Racah coefficients (6j symbols) 

Chiral algebra 

Representations 

Chiral vertex operators 

Conformal blocks 

Fusion matrix 

It is also interesting to examine a larger class of CFT's. We refer to them as "quasir

ational CFT's." In these theories the chiral algebra has an infinite number of irreducible 
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representations. However, the fusion rules are finite, i.e. for given i, j, Ni~ is non zero 

only for a finite number of representations k. Because of this condition, the formalism 

of the CVO and the duality matrices on the plane is still applicable. Consequently, the 

polynomial equations on the plane (the pentagon and the two hexagons) are satisfied. One 

can still define S(p) by (4.3) but since the number of irreducible representations is infinite, 

the torus polynomial equations are not obviously present. The category of representation 

spaces of the chiral algebra of a quasirational conformal field theory is also a generalization 

of a tensor category. A well known example of such a theory is the Gaussian model at an 

irrational value of the square of the radius. 

Finally, we must not lose sight of the fact that many interesting irrational (non

quasirational) CFT's exist and that the challenge to understand their structure remains 

unanswered. 

6. Combining leftmovers with rightmovers 

CFT is not just the study of chiral algebras and their representations. In order to 

have a consistent conformal field theory, we need to put together left and right-movers to 

obtain correlation functions with no monodromy. 

The left and right chiral algebras A, and A are the algebras of purely holomorphic 

and anti-holomorphic fields. We can decompose the total Hilbert space of the theory into 

irreducible representations: Hr 0 Hr, so t he partition function is: 

TrH qLo-c/24 -qLo-C/24 = ~ h () (-) L.J rrXr q Xr q . 
1",r 

The nonnegative integers hrr characterize the field content of the theory. 

We can write the physical conformal fields in terms of the chiral vertex operators as 

.J,jrn,im(z, -Z) = ~ d(i~ _ q,j,m(z)¥J.!-m(z) 
Y' L.J (jj)(Ie,Ie) ,Ie ,Ie (6.1 ) 

i,le 

We assume for simplicity that there is only one field with representation (i, I) in the theory. 

Below we'll show that this assumption is always satisfied. 

Now the physical correlation function must be independent of the choice of blocks, 

50 there are certain conditions on the d-coefficients. For example, from invariance of the 

partition functions under T : T -> T + 1, we see that hi; = 0 unless ~i -~, E Z Proceeding 

more systematically we could have deduced this from an analysis of 2 and 3 point functions. 

Moving on to the four-point function, we must have the same correlator from either 

basis of blocks: 
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k. 

, ___ --...,.,..1_1._ or-

sand t channel blocks relevant for the four point function 

this implies 

• Exercise 6.1 Monodromy invariance 

a.) Write out the conditions on d following from locality of the three-point function. 

b.) Show that the invariance of the physical correlator under B is guaranteed by the 

condition of part (a) together with the equation for F (6.2). 

By using the operator product expansion for chiral vertex operators together with 

(6.2) we may deduce that 

.l.i,m;],,,,(z i).l.A:,n;k,~(z i) - ~ d(P'fI') ~ .l.P',P';P"p'(w w) 
'I' ,'I' ,- LJ (iJ)(A:k) LJ 'I' , 

p',fI' PE'H"P'E'H., (6.3) 

Again there is a nice analog of this equation in group theory. 

Recall that for a compact group the Hilbert space of L2 functions on the group has an 

orthonormal basis given by the matrix elements D:" in the irreducible representations R. 

The operator U(D:,,) on L2(G) given by multiplication ~f functions may be represented 

in terms of intertwiners as 

(6.4) 

Where we sum over a basis of intertwiners and a- is a basis dual to a. The algebra of 

functions on the group manifold is given by 

Thus we see that in the k ---+ 00 limit of WZW models the operator product expansion of 

the fields with t::. ---+ 0 becomes the algebra of functions on the group G, thus providing an 

explicit example of an old idea of Dan Friedan's for the reconstruction of manifolds from 
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the operator product expansion of CFT. In fact, as described later, in the specific example 

of current algebra the above ope for finite Ie is closely related to the algebra of functions 

on a quantum group. For further discussion of these and related ideas see [36). 

We now show how the above equations can be used to deduce some general theorems 

about the operator content of rational conformal field theories . 

• Exercise 6.2 No repre,entation appear, more than once. Consider a RCFT where 

some representations occur more than once (either hrr > 1 or both hrr and hrr' are non 

zero for r i= r'). 
a. Add indices in equation (6.1) to describe this situation. 

b. Rewrite equation (6.2) for this case. 

c. Study the four point function of (q,c/u/hlJ') where q, and q,' transform the same under 

A (the representation r) but they are different conformal fields (they might or might not 

transform the same under A) and assume for simplicity that all the representations are 

self conjugate. Use (3.5) to bring F to the other side of the equation and study it for the 

case where the intermediate representation is 0 on both sides. Simplify the equation by 

using the fact that the A (A) includes all the holomorphic (antiholomorphic) fields i.e. the 

identity operator is the only primary field under A ® A which is holomorphic. The ope of 

q,q, contains the identity operator and q,q,' does not contain the identity operator. Use this 

fact to show that one side of the equation vanishes. The other side is proportional to Fr 

and does not vanish. Therefore, we are led to a contradiction and no representation can 

appear more than once. 

Notice that in proving this result one uses only the equations on the plane and not 

the equations on the torus. Hence, this result applies not only in RCFT but also in 

quasirational theories. On the other hand, this result is not true in theories which are not 

quasirational[ll). A Z2 orbifold of the Gaussian model at an irrational value of the square 

of the radius is not quasirational - the ope of two twist fields includes all the untwisted 

representations. Since the previous proof does not apply, we are not surprised to see the 

same representation appearing more than once in the spectrum. 

Similarly there is an equation for the d's following from the modular invariance of the 

9 = I, one-point functions . 

• Exercise 6.3 Equation lor d /rom genu, one. Write the equation for invariance under 

S(p) for every p. Remember that the characters of the one point function on the torus are 

defined as differential forms i.e. they have a z-dependence '" (dz/z)l1(p) (otherwise they 
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are not invariant). Therefore, there is a phase relating S of the left-movers to S of the 

right-movers. 

At this point one may wonder whether there will be further constraints on the d 

coefficients from duality invariance of correlation functions on other Riemann surfaces. 

The answer is no. Since duality matrices defining an MTC allow us to define duality 

matrices on all surfaces we know that the conformal blocks are duality covariant. To check 

invariance of left-right combinations of blocks we merely have to check invariance under 

the generators of duality transformations. Since an MTC defines a modular functor, the 

generators can be taken to be those duality transformations represented by F, E, S. Thus 

the above duality invariance conditions suffice to guarantee invariance on all surfaces. A 

similar conclusion was reached independently in [371 . 

• Exercise 6.4 Every repre,entation 0/ A occur, in the 'pectrum. Show that S(O) is 

unitary. Use this to show that one of the equations of the previous exercise can be written 

as 

L hi]S]Tc = L Sijhj ;. (6.5) 
J j 

Use hOi = hiO = 6iO , i.e. A (A) includes all the holomorphic (antiholomorphic) fields, to 

show that there is no r such that hrj = 0 for every j. Hence, no representation can be 

omitted. 

From the last exercises we conclude: If the chiral algebras, A and A are maximally 

extended, hr.t' must be a permutation matrix. We are now ready to tackle 

• Exercise 6.5 The left mover, are paired with the right mover, by an automorphi,m 

0/ the Ju,ion rule algebra. Use Verlinde's formula relating the fusion rules to Sand (6.5) 

to prove this. 

We conclude that FRA(A) = FRA(A) and the pairing of the left movers and the 

right movers is an automorphism of the fusion rule algebra: 

where 
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The main point here is that the classification ot RCFT's is a two-step process. First 

we classify all chiral algebras and their representation theory, then we look for all auto

morphisms of the fusion rule algebras. 

• Exercise 6.6 No New Condition, on F. For a unitary diagonal (I.e. hi. = c5ii) theory, 

assuming F is real and the fusion rules are zero and one, show that the operator product 

coefficients may be written 
F. [i i] d2 _ Ok i j 

ii" - F [i i] ''0 i i 

a.) Use the polynomial equations to show that d is totally symmetric. 

b.) Substitute the above equation back into the full set of equations for dii" on the 

plane. Show that the resulting identities are guaranteed by the polynomial equations. 

• Exercise 6.7 Open Problem. How general is the result of the previous exercise? Do 

the equations for the torus one-point function follow from the other identities? (Felder and 

Silvotti (38) have shown that for the discrete series the answer is yes, by direct calculation.) 

What about non-unitary theories? What about arbitrary fusion rules? Is this true for the 

non-diagonal theories - when a non-trivial automorphism is used to pair left and right 

movers? 

• Exercise 6.8 Modular Invariance of A~l) Character~ 

a.) Find the automorphisms of the fusion rule algebra for the level k SU(2) WZW 

model. 

b.) Impose other necessary conditions, e.g. the monodromy invariance of the two

point function. 

c.) Using the above point of view interpret the other modular invariants of A~l) 

characters. 

• Exercise 6.9 Automorphi~m~ of Ka.c-Moody Fu~ion Rule~. Using Verlinde's formula 

for Nii" and Kac's formula for Sij, show how automorphisms of the extended Dynkin 

diagrams can define automorphisms of the fusion rule algebra. An application of this fact 

can be found in [39). 
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• Exercise 6.10 the d-coefficient3 and gauge invariance. How does d transform under 

the gauge transformations of rescaling the chiral vertex operators? Show that the equations 

for d are gauge invariant. 

• Exercise 6.11 Modular invariant3 for the rational torUJ. As we will see in section 10 

below, the Gaussian model at radius squared R2 = [q has a chiral algebra which depends 

only on the quantity pq. Compute the automorphisms of the fusion rule algebra of the 

rational torus and show ·that they define the different models for which pq = p' q', but 

p / q i= p' / q' . 

The analogy between conformal field theory and group theory continues to hold for 

the combination of left movers with right movers. We can add to the table at the end of 

section 5 a few more rows: 

Functions on the group 

Product of functions on the group 

Average over the group 

of a product of functions 

Physical fields 

Operator product expansion 

Physical correlation function 

• Exercise 6.12 Analogy with group theory. Explain the table. Show that it corresponds 

to the diagonal theory. 

The equations for the ope coefficients d can be interpreted as defining a metric [24J 

on the vector space of the conformal blocks. Therefore, if all the d's are real and positive 

(and therefore we can pick the gauge d = 1), the vector space of the conformal blocks is 

a Hilbert space. This interpretation will play an important role in the following sections 

where this Hilbert space will appear in the quantization of a quantum mechanical system. 

7. 2D Duality vs. 3D General Coordinate Invariance 

Many people have noticed that RCFT's lead to knot invariants [20][40] [41] [27][42J [43]. 

One way of producing knot invariants is to view the B matrices as "transition amplitudes" 

of conformal blocks, then defining an appropriate trace (Markov trace) on these amplitudes 

the resulting polynomials are, in fact, knot invariants. There is an alternative formalism, 

used in [40) and elaborated upon in [42](43) which dispenses with the need for a trace at the 

cost of introducing some new moves. With these new moves the knot invariant becomes 
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the transition amplitude for proceeding from the "null block" to itself with an intervening 

knot projection. We will present these results from our point of view using the formalism 

of the previous sections. 

Consider the planar projection of a knot from S3, e.g. 

A projection of a knot on a plane 

We assign a number to this figure by using the graphical formalism described above. 

For this, we label every line by a representation of a chiral algebra and also label the areas 

bounded by the lines by such representation. We assign factors of B to 

\ 
[ ~k .{ 1 

• J 

Graphical rules for computing a knot invariant 

The knot that we consider is a "framed knot." It looks like a ribbon and hence 

A non-trivial operation on a framed knot 

The operation in the figure corresponds to a factor of e21ri ll.. in the knot invariant. We 

also need to introduce two new operations on lines for pair creation/annihilation: 
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Pair creation and annihilation moves 

The factors for these operations are determined by requiring that: 

( I. ) / 
(1. ) / 
(3.) 

Consistency conditions on pair creation and annihilation 

We make the an~atz 

and deduce from the first consistency condition that 
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Since for a closed graph there is always an equal number of 0i and Pi, we can set, without 

loss of generality, OJ = Pi = ";~i' 

This result leads to a new interpretation of Deligne's condition discussed earlier. It is 

simply the requirement that the value of a circle is a trace. Hence it-.should be an integer 

in group theory. 

o r1. 
J 

cJ .. ~ R· 
J 

Deligne's condition 

E. 

In RCFT it is the relative dimension, as explained in the above. We will see below how 

this follows from the three-dimensional viewpoint . 

• Exercise 7.1 No more con&iltency conditionl. Show that consistency conditions (2) 

and (3) are automatically satisfied by using the polynomial equations discussed above and 

this value of A~k and elk' 

The non-trivial problem in knot theory is to prove that this procedure leads to a knot 

invariant. In other words, different projections of the same knot to two dimensions lead to 

the same result for the knot invariant. From the discussion in the previous sections and 

these exercises, it is clear that the polynomial equations guarantee this fact and we indeed 

find a knot invariant from every RCFT . 

• Exercise 7.2 Reidemeilter Movel. In the combinatorial approach to knot theory one 

must check the Reidemelster moves 
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I.) 
\ 

F / 
2.) )( 

~.) 

The three Reidemeister moves 

Check these using the above formalism. Note that the first move is only satisfied 

up to phase. This may be fixed by discussing framed links or by introducing the writhe, 

following Kauffmann [44]. 

The analysis can easily be generalized to graphs with vertices, which are the analogs 

of the fusing move of conformal field theory. Define fusing and defusing moves 

*. 1l. Jl'\ 

1 n k 

] f.~ k F [r}t ~ 1 
1 1~ P.. J 

, Fusing and defusing 
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• Exercise 7.3 Conllilltency conditionll on fulling and defulling. Impose the relations 

y 
Consistency conditions on fusing and defusing 

Derive ~/~j = ~[1 1 111e' Normalize the constants I such that if one of the lines 
vri FA:Ori iiJ 

corresponds to the identity representation, this line can be dropped from the graph and 

find the rules 

(7.1) 

= . [i k] (...!L)1/4 
Fn1 1m FiFIe (7.2) 

• Exercise 7.4 Another conllilltency check. Use the hexagon to show that 

. 
r 

1 
1 
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• Exercise 7.5 Simple calculation.,. Use the rules to compute the invariant of the 

graphs 

Two simple graphs 

Use exercise 6.6 to write the second graph as di;> when the conditions of that 
.jFiFjF. 

exercise are fulfilled. 

Using these rules one can compute invariants of knotted graphs. As in the case without 

the vertices, the polynomial equations guarantee the consistency . 

• Exercise 7.6 Gauge invariance. Show that the invariant of k.not without vertices is 

gauge invariant, i.e. it does not change if we rescale the CVO's and correspondingly the 

duality matrices. How do knots with vertices- transform under such a rescaling? Interpret 

it. 

It is convenient to pick the "good gauge" 

F [i i] = F!!iFj 
100 • • F 

J J 10 
(7.3) 

Write the fusing and the defusing rules in this gauge. Show that when the conditions of 

exercise 6.6 are fulfilled diilo = 1 in this gauge. Evaluate the two graphs in exercise 7.5 in 

this gauge. This gauge was used in [40][42] . 

• Exercise 7.7 Symmetrie., of F. Use the pentagon to show that 

[i i) [i k] [k k] [i i) Fno I I Fpi n I = Fpo I I Fnk I p (7.4) 

In the good gauge of exercise 7.6 this becomes 
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Define W pi [~ ~] = .J FiFpFpi [~ ~l and use the symmetries of exercise 3.5 to show that 

[ i i] [' m] W mn Ie 1 = W/c; n i 

[i 1] = W"m i Ie (7.5) 

[1 i] = Wnm Ie i 

These symmetries generate a tetrahedral symmetry generalizing the symmetry satisfied by 

SU(2) Racah coefficients. Use the results of exercises 7.5 and 7.6 to explain the origin of 

this symmetry . 

• Exercise 7.8 Proof of the lali equation on the toru.! 

The graphical formalism presented here is a very convenient tool in manipuiating the 

duality matrices using the fundamental equations. We'll demonstrate this fact now by 

showing that the definition (4.3) of Si;(p) in terms of Band F satisfies the last equation 

on the torus Sa = bS. Consider the graph 

Graph used to prove Sa = bS 

For simplicity, work in the good gauge. Use 

-i ... ~ JF;" [i i) [i i) Sij(p) = SlIo(O)e P FiFj ~Bpr i i (-)Bro i i (-) (7.6) 

to show that the graph has the value 

(7.7) 

Now, deform the graph to 
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k 

A deformation of the same graph 

which differs from the original graph by a factor of ei".(A. -Ad. Prove the identity 

. 
.} 1 

r 

L ·V 
F: F· 

d..e r 
rt ~J 

S ~ ) 

d 

and use it to deform the graph to 

I 

P 

s 

the original graph is equivalent to this graph 

Turn this graph upside down and evaluate it. Use the symmetries of F and the expression 

for S(p') to write it as 

(7.8) 

Now express the a monodromy 
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k 

1" r----'-__ t. 

> 

the general a monodromy 

and the b monodromy 

---~ s 

the general b monodromy 

in terms of F and phases. Equate the two different expressions of the same graph (7.7) 

and (7.8) and use the expressions for these two monodromies to show that 

Sa= bS 

Therefore, this expression for S satisfies the last equation on the torus. Hence, this equation 

can be dropped from our list of axioms and be replaced by this definition of S . 

• Exercise 7.9 more identitie, for graph,. Use the pentagon to show that 

I. 

1 1 

Ie 
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2. 
F [J k] 

}' ~ 1 .I.. 

In all the manipulations with knots in 53 we use only the polynomial equations on 

the plane. We do not need the torus equations. Therefore, quasirational as well as rational 

theories lead to knot invariants in 53. 

In the above discussion we have simply defined 5 ij (p) as a combination of certain 

duality matrices, exactly as in the axioms for a MTC. In order to see directly why, with 

this definition, 5 should be related to the modular group of the torus we must pause and 

discuss Witten's observation [27) that 2-dimensional duality (as axiomatized by the notion 

of a modular functor) is equivalent to 3 -dimensional general covariance. 

One recent application of the knot invariants arising in RCFT has been to the con

struction of invariants of three manifolds [27) [41 )[43) [45). These applications are simply one 

facet of the current interest in studying the geometry and topology of manifolds via quan

tum field theory, through the general notion of topological QFT's. These were introduced 

by Witten and recently axiomatized by Atiyah. In 2 + 1 dimensions the Atiyah-Witten 

axioms, which summarize the formal properties of path integrals for topological field the

ories, are closely connected to the notion of a modular functor. To see this recall that the 

Atiyah-Witten axioms are [46) [47), 

Axioms for a Topological Field Theory 

Data: 

1. A map from closed oriented d-manifolds to complex finite dimensional vector spaces 

~ --> 'H(E). 

2. A distinguished vector Z(Y) E 'H(E) associated to d + I-manifolds such that 

E = BY. (In particular if Y is closed Z(Y) is a complex number.) 

Condition3: 

1. Naturality. If f : El --> E2 is an automorphism there is an isomorphism 'H(f) : 

'H(Ed --> 'H(E2 ) satisfying 'H(h h) = 'H(h )'H(h). There is a similar naturality condition 

on the vectors Z(Y). 

2. Duality. 'H(E*) ~ 'H(Ej. 

3. Multiplicativity. 'H(EI U E2 ) ~ 'H(Ed ® 'H(E2 ). Moreover 'H(,p) ~ C. 
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4. Gluing. If Y and Y' are glued along a d-manifold ~ (with opposite orientations for 

~) to form Y then 

Z(Y) = (Z(Y), Z(Y')) 

The above makes sense since the opposite orientations of ~ allow us to pair a space with 

its dual. 

5. Completeness. The states Z(Y) for all Y with BY = ~ span 1i(~). 

(Note: Atiyah adds a sixth axiom that Z(Y*) = Z(Y)*, but we will not need this.). 

Clearly for the case d = 2 the above notion is very close to that of a modular functor, 

in particular in any attempt to pass from one to the other the vector spaces 1i(~) are 

surely the same. Nevertheless, there are some things to prove. The precise connection 

was worked out in [48) [49). To pass from a modular functor to a topological theory the 

main problem is to construct the vector Z(Y) from the data of the modular functor. This 

was done in [48)[49) by choosing a Morse function, using the data of the modular functor 

to define "transition amplitudes" between critical points of the Morse function and then 

checking that the choice of Morse function does not lead to ambiguities. To pass from the 

topological theory to the modular functor the main problem is to produce the finite set of 

labels (of "representations") and their fusion rule algebra, etc. An argument that this can 

be done is presented in [48). The labels are a basis for the vector space 1i(torus). 

The advantage of the point of view of modular functors and topological field theories is 

that for any system satisfying the axioms one can compute quantities for nontrivial graphs 

and nontrivial manifolds via the gluing axiom. In particular, one can compute various 

quantities using the notion of surgery. 

If 1i(~) is an n dimensional vector space, any collection of n + 1 vectors Zi E 1i(~) 

is linearly dependent; Le. there are coefficients ai such that Li aiZi = O. This leads to 

a linear relation between the invariants of different manifolds. Let Zi = Z(Yi) for n + 1 

different Yi. Then, 

L aiZ(Y;) = L ai{Z(Y), Z(Yi)) = 0 (7.9) 

where Y; is obtained by gluing Y to Yi along some d-fold ~. 

Rather than continuing in complete generality, we focus on the particular topological 

field theory corresponding to a RCFT. As explained above, the labels of the representations 

label II, basis of 1i(T2). The three manifold Y can have links carrying these labels (also 

links with vertices) and these links may terminate at the boundary of Y. For example, for 

Y a three ball with the link 

324 



J 

a link in a three ball 

we find a vector v E 'H.( Sljl.) where Sljk is a sphere with three labeled points i, j, k. By the 

correspondence of a topological field theory and RCFT, 'H.(Sljle) ~ ltijle and its dimension 

is Nij" (if Nijle > 1, we should specify the kind of coupling which is used in the vertex in 

the link). Continuing to assume for simplicity that Nijle = 0,1, the vector ii E 'H.(Sljk) 

corresponding to 

-- J 

another link in a three ball 

is proportional to the original one ii = zv. 

Now, consider a complicated three manifold Y with a link 

a complicated link 

k 

J 

Remove the three ball which looks like the previous figure (the dashed line) to obtain the 

three manifold Y. By the gluing axiom 

Z(Y) = (ii, Z(Y») = z* (v, z(fr») = z' Z(Y') 
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where Y' is the same as Y except that the ball is replaced by the simple link. This 

procedure simplifies the computation of Z(Y) by relating it to a simpler object Z(Y') . 

• Exercise 7.10 Interpretation 0/ previoul relultl. 

a.) Use this understanding to interpret the first relation in exercise 7.9. Express :z: in 

terms of the duality matrices. 

b.) Repeat this analysis for the sphere with four labels ij1cl. Show that the vectors 

a basis for 'H(Sl;lcl) 

for all p span 'H(Sl;IoI)' The vector of a given p corresponds in the RCFT to the conformal 

block with the representation p in the intermediate channel. The second relation in exercise 

7.9 expresses duality in RCFT. Interpret it from three dimensions. 

c.) Cut the tetrahedron graph (the first figure in exercise 7.5) along the lines i,j,l,n 

and express the invariant of the graph as an inner product of two vectors in 'H(Sljln)' Use 

part b of this exercise to explain why the tetrahedron graph is proportional to F. 

d.) Interpret the equations for the ope coefficients d as determining a metric on 1i as 

mentioned in the end of section 6. Use this fact to interpret the second graph in exercise 

7.5 as d;j. • 
../F;FjF. 

e.) Interpret the gauge invariance as a freedom in the normalization of the vectors in 

1i(E). 

This interpretation is more powerful when combined with the notion of surgery [271. 

First notice that 1l(T2) is spanned by Vi = Z(Mi) where Ali is a solid torus with a line 

with the label i around the non-contractible cycle. Consider a three manifold Y; with a 

closed line with the label i. Removing a solid torus Mi surrounding the line from Yi , we 

find the three manifold Y. By the gluing axiom, Z(Y;) = (Z(Y),Vi). Now consider another 

three manifold X obtained by interchanging the a and b cycles 1 on the boundary of Mi 

and tben gluing it back to Y. The relevant inner product is 

1 The a cycle is the contractible cycle inside Mi; however, there is an ambiguity in what 
we mean by the b cycle. We will return to this ambiguity shortly. 
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Z(X) = L Si;(Z(Y),V;) = L Si;Z(Yj) 
; 

As before, we succeeded to express Z of some manifold in terms of Z's of other (simpler) 

manifolds. Using this procedure it is possible to compute Z for every manifold [27J . 

• Exercise 7.11 Ambiguity in ~urgery. Show that the ambiguity associated with the 

choice of the b cycle corresponds to the application of T in RCFT. Therefore, it is related 

to the fact that the lines have to be framed. How does the framing remove the ambiguity? 

• Exercise 7.12 Some calculation~ u~ing ~urgery. 

a.) The invariant for two parallel nonbraiding (= "cabled") lines Wi, W; in S2 x SI is 

NOi;. Why? 

b.) Think of S2 x SI as two solid tori whose toroidal boundaries are identified via 

the identity map (0- 1 ,0-2 ) -> (0- 1 ,0-2 ). Change the identification to the transformation: 

S : (0- 1 ,0-2 ) -> ( _0-2,0-1 ). Show that the resulting three-manifold is just S3. 

c.) Suppose the two solid tori of part (b) contain lines Wi and W; respectively. Each 

line wraps along the noncontractible direction. Show that the resulting configuration in 

S3 is just: 

A configuration of lines in S3 

and therefore the invariant of this graph is S,;. 

d.) Using the graphical formalism described above, compute the figure in part (c) and 

rederive the formula 

Sji _ 

Soo -

( B [~ :l B [~ ~l ) 00 

FiFj 

we derived in a previous exercise. Notice that the graphical rules did not include an overall 

normalization factor of Soo for every graph in S3. This factor is natural from the surgery 

point of view if the invariant in part a of this exercise is normalized to be NOij. 

e.) Compute the invariant for two cabled lines Wi and W; in S2 x SI as before but 

this iime connected by a line with the label p: 
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a configuration in S2 x S1 

f.) Perform surgery as above using S(p) and turn this into 

the previous graph after surgery 

in S3. Compute this graph using our rules and derive equation (4.3). (Because of the 

framing, there is a phase ambiguity. The phase e-i>rA" is determined by consistency.) 

• Exercise 7.13 Verlinde', formula /rom Surgery. We outline a slightly modified proof 

of E. Witten of Verlinde's formula. 

a.) Consider the configuration: 

. . 

u~ 
A configuration used in the proof of Verlinde's formula 

Using the graphical rules and the above formula for S in terms of B show that this has 

the value: 

SijSjI. 

So; 

328 



b.) Rewrite the above as 

k: 

Use the identity F F- l = 1 and the braiding/fusing identity to rewrite this as: 

From this derive Verlinde's formula . 

• Exercise 7.14 a and b monodromie~ for the two point function on the torU$. Relate 

the graph 

graphical formulas for the b monodromy 

in S2 x SI to the b monodromy. Use surgery to relate it to the figure used in exercise 7.8. 

Find a graph in S2 x SI for the a monodromy and use surgery to relate it to the figure 

used in exercise 7.8. Thus making the previous proof of Sa = bS somewhat intuitive. 

We see that the information in surgery is equivalent to the information in the equation 

Sa = bS which in turn is equivalent to the formula for S(p) in terms of F and B. 
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We have seen that a RCFT defines a modular functor, which has been argued to 

give rise to a topological 2+1 dimensional theory. Recently L. Crane [45] has shown 

more directly that the data F, B, S can be used to construct invariants of framed 3-folds 

through the use of some theorems from combinatorial topology. For example, to identify 

the invariant associated to a closed 3-fold Y we use a "Heegaard splitting" whereby Y 

is represented as a glued pair of handle bodies YI , Y2 which have as a common boundary 

the surface E. YI is glued to Y2 via a nontrivial diffeomorphism t/J of E. Among the 

conformal blocks 1£(E) there is a distinguished (normalized) vector Xo defined by the 

condition that the trivial representation be present on all internal lines. Representing t/J by 

the duality matrix Z(t/J) we have the invariant Z(Y) = (Xo,Z(t/J)Xo). Since the Heegaard 

decomposition is not unique it is nontrivial that Z(Y) is an invariant. Using known facts 

about Heegaard splittings Crane shows that the axioms of an MTC guarantee that Z(Y) 

is unambiguous up to a factor of e21<ic/24. Yet another approach, due to Reshetikhin and 

Turaev [41] will be mentioned in the following section. 

So far the discussion was very general and did not depend on a particular three 

dimensional theory. In [27] Witten considered the Chern-Simons-Witten gauge theory in 

three dimensions. This is a topological field theory and therefore the general analysis in 

this section applies there. Moreover, this theory can be solved exactly [27] and explicit 

expressions for the duality matrices can be obtained. The study of this theory is the 

subject of sections 9 and 10. 

8. Quantum group solutions of the polynomial equations 

This section contains some remarks intended for those already familiar with basic facts 

about quantum groups. Thus we assume some familiarity with [50] [40]. A nice review of 

the subject is [51). 

If A is a Hopf algebra then the category ofits finite dimensional representations Rep(A) 

has a tensor product which may be defined by the comultiplication A. From the axioms 

satisfied by a comultiplication there will be an associativity constraint satisfying a pentagon 

consistency relation. In the previous terminology, the F matrix will exist and will satisfy 

the pentagon relation. In general there will be no commutativity constraint, i.e., there will 

be no analog of O. If A is a quasi triangular Hopf algebra (see [50), essentially it means 

that the comultiplication and opposite comultiplication are conjugate by a "universal" R 

matrix.) then there is a commutativity constraint, but in general 0 2 i= 1. In this case 

there will be two hexagon conditions. These hexagon conditions are equivalent to Drinfeld's 

formulae (A ® I)R = R13R23 and (1 ® A)R = R12 R23 • In this case Rep(A) is a braided 

monoidal category. In (41) a central extension of a quasitriangular Hopf algebra is defined 
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which these authors call a "ribboned Hopf algebra." The extra conditions specified for a 

ribboned Hopf algebra are such that in this case Rep(A) is a "compact braided monoidal 

category," which in our terms means that when F, B matrices are suitably identified with 

quantum group Racah coefficients (in a way precisely analogous to the discussion of group 

theory above) then the genus zero axioms of a MTC are fulfilled. (Except, perhaps, for 

the finiteness of the index set I.) Correspondingly, in [41J Rep(A) for a ribboned Hopf 

algebra is used to define invariants of knotted graphs 2 in m.3 • 

An important special case of ribboned Hopf algebras is provided by the quantized 

universal enveloping algebras Uq(Q) for a Lie algebra Q. Applying the machine of [41J one 

may obtain invariants of knots in S3 for any deformation parameter q. However when q 

is "rational," which means that qn = 1 for some integer n, something more remarkable 

happens. In this case one may truncate the set of representations to a set of 'good' or 'type 

II' representations [52J [53J, characterized as a minimal complete set of representations with 

nonvanishing quantum dimension, such that the truncated space of representations defines 

a modular tensor category. 

The most famous and well-known example of this phenomenon is provided by 

Uq(sl(2». In this case it has been shown that the braiding and Racah matrices for the 

case q = e2lri/(A:+2) are identical to those of the conformal field theory SU(2)k when we 

restrict the class of representations and invariant tensors to the "good" ones generated by 

irreducible representations of dimensions :s; k+ 1 and couplings satisfying the SU(2)k fusion 

rules. The proof of this statement may be obtained as follows. One first computes the 

braiding matrices for spin 1/2 operators [20J and notices the exact correspondence with 

the corresponding quantum group objects. In conformal field theory the other braiding 

matrices may then be obtained by successive use of the braiding/fusing relation. Then one 

proves that it is valid to truncate the quantum group braiding/fusing relation so that it 

only includes the good representations. Another argument, using properties of Hecke and 

TLJ algebras has been advocated by Alvarez-Gaume, Gomez, and Sierra [51J. With the 

coincidence of F, B matrices one may define S as in (4.3) and hence the restricted quantum 

group representation theory defines a MTC. Analogous statements exist for other Uq(Q) 

and full proofs for all cases have been published in [54]. The coincidence of F, B matrices 

has been widely noted and discussed. Just a few references include [20][54][15][55] [56) [57] 

[58] [51]. 

These observations allow one to give very explicit formulae for braiding/fusing matri

ces (which are more easily obtained by using quantum group technology). For example, 

very explicit formulae where written down in [40]. As a simple example we quote the well-

2 More precisely, invariants of colored directed ribboned tangles. 
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known result for a braiding matrix of two spin 1/2 fields. The relevant space of conformal 

blocks is two-dimensional corresponding to intermediate spins j ± ~ and we have 

B [!!] - 1/46 _ -1/4 .,jSrS• r. .. - q r,_ q S 
J J j 

where S· = sin ,..(2i+l) Alternatively this may be written J k+2 • 

B [t t] = __ 1_ ( _q-U+3/4) 
j j [2j + IJ Jq-l/2[2j][2j + 2J 

where [nJ = (qn/2 _ q-n/2)/(ql/2 _ q-l/2). 

Jq-l/2[2j][2j + 2J) 
qi+1/ 4 

In [41] Reshetikhin and Turaev represent 3-manifolds via surgery on links and use the 

surgery procedures of Witten to reduce the invariants of three-folds to those associated to 

links (or tangles). Their paper can be viewed as another construction of a three-dimensional 

topological field theory, starting from the MTC associated to the representation theory of 

Uq(sl(2)) for qk+2 = 1 (and, in principle, to other Uq(Q).) The link or tangle invariants are 

computed essentially as transition amplitudes of conformal blocks, along the lines described 

above. 

The fact that the type II representation theory of Uq(Q) for rational deformation 

parameters coincides with the MTC of a canonically associated RCFT is still something 

of a mystery. The statement of this fact has been formulated in a number of conformal 

field theoretic constructions [51][57][59] [60] but these descriptions make use of the fact 

rather than explain it. Another connection of CFT to quantum groups has been noted in 

[61]. In [27] Witten proposed one approach to this problem, which, if successfully brought 

to conclusion would yield an adequate explanation. More recently Witten has proposed 

a different explanation in [62]. In the remainder of this section we present an alternative 

interpretation of Witten's idea. 

We begin by noting that the quantum 3j symbols themselves may be seen to form an 

algebra. Namely, using the formalism of [40J we have 

J,-,It\ 

[ 
J 

YY1 

1 
J. ] 

m' 

Graphical representation of a 3j symbol with one line carrying spin 1. 
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which we will take to define the matrix elements of three operators Ta=_I,O,+I. By the 

very definition of Racah coefficients we may write 

J,~ 

j. I V\1. 

~ 
~ 1 J-

}~ A 1- d 1 
j,'M' :l,-. 

j, '('III -1.,,,,,-

where 

j=',(l j."" Y 

Y [ "1.-

-
(1. 

j ~', 0( 

3j symbol for coupling three spin 1 representations 

and we will denote the Racah coefficient by Aj. 

Clearly the above formula may be regarded as defining an algebra for the Ta operators, 

the structure constants being defined by the 3j symbols for three spin 1 representations 

and the Racah coefficient Ai' That is, we may write: 

[1 1 1] L af3'Y T{3T..., = AjTa 
(3 • ..., 

For example, for Uq (sl(2)) one may easily compute: 

q-I/2T+To - ql/2TOT+ = AjT+ 

T+L - T_T+ = (ql/2 - q-I/2)T; + AjTo 

q-I/2ToT_ - ql/2T_To = AjT_ 

for any value of q. This is precisely the algebra derived in [62]. The reason for this is that 

graphs are computed with quantum Racah or 6j symbols. But, upon analytic continuation 

away from iqi = 1 the 6j symbols have large .spin limits which are precisely 3j symbols. 

More precisely we have [40] 
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lim l" {a+a 1 ;} "-+00 I 
= t.ma._oo j a + I 

1 [1 i 
I ~ a] [2i + Ij1/2 -a I 

a.·H. 

Thus Witten's lassoing and limiting procedure produces the algebra of 3i symbols. 

9. Chern-Sirnons-Witten gauge theory - Quantization 

The discussion in section 7 was quite general. It can be made much more explicit in 

a particular field theory - the CSW theory[27]. This is a particular example (we will later 

mention a conjecture that this is essentially the only example) of a topological field theory. 

The theory is a gauge theory based on the gauge field A = A: Ttl dx" in some Lie algebra 

9 with action 

s =.!:.-. r Tr(AdA + ~A3) 
471'}y 3 

for a three manifold Y. For simplicity we limit ourselves here to SU(N) gauge theory with 

a trace in the fundamental representation (TrT"Tb = _5ab ). 

Clearly, the action is independent of the metric on Y. To prove that the theory is 

indeed topological, one needs to show that the measure of the functional integral is also 

independent of the metric. In what follows, we will assume that this is the case3 • 

Perhaps the easiest way to understand the theory is by canonical quantization. Sup

pose we have a Riemann surface ~ and consider the theory on the 3-dimensional manifold 

Y=~xrn.. 

If we canonically quantize the theory we obtain a space of physical states H(~) asso

ciated to the surface ~. Witten showed that these states have a natural interpretation in 

terms of the WZW model for g-current algebra at level k. Specifically: 

~={ 
surface pierced by 
Wilson line in =? 

Representations iI, ... in 

vector space of 
conformal block for 
partition function 
on ~ 

conformal blocks for n-point 
function on Hr.. for n fields 
in the representations: il ... in 

3 In [63] Witten showed that the existence of the central charge in two dimensions is 

related to some dependence on the metric on Y - the theory depends on the "framing on 

Y". 
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Moreover for 3-manifolds interpolating between two surfaces ~1 and ~2 the path integral 

gives a transformation H(~t} --+ H(~2)' Witten shows that these transformations are 

just the duality transformations on the space of blocks. Why is it true? We will explain 

these matters in a simple physical way. 

Choose Ao = 0 gauge: If ~ has no boundary then 

S = - f"TrA·-A· k f" d 
411" 'dt ' 

We then have a first order Lagrangian and therefore, the phase space is the space of gauge 

fields on ~. The symplectic structure on this space leads to the commutation relations 

where J 6(2)( z - w)~ z = 1. It is convenient to pick a complex structure T on ~ and to 

write 

The wave functions in holomorphic quantization are holomorphic functions of A., tjJ 

tjJ(AJ:)' The Hilbert space is the space of all these functions. The physical space is the 

subspace of the Hilbert space which is invariant under the Gauss law . 

• Exercise 9.1 Ga1£u' law. Show that 

1£(10) = ~ Tr(fF) 'k f 
411" 

generates an infinitesimal gauge transformation by 10: 

so 

[1£( f), Al = -Df 

[1£(fd,1£(E2)) = 1£([f1,E2)) 

By integrating 1£( f) the operator generating a finite transformation 9 = eE is 

U(g) = eU(E) 

Now how does it act on physical states? We certainly must have: 
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to find f, we impose the group law: 

U(h)U(g) = U(gh) 

and find: 

f(Ajgh) = f(Ajh) + f(Ahjg) mod 21Tik 

The solution is: 
ik J 1 1-f(Azjg) = 41T Trg- 8gg- 8g + kfwz(g) 

ik J -1 - . - 21T Tr(Azg 8g) == lkS(g: A.,O) 

So 

(U(g),p)[Az] = ei"S(g;A.,O),p[A~J 

This is the key equation. From it we may get the independent physical states as 

follows. 

Physical states are invariant under the Gauss law - so we are looking for linearly 

independent solutions to the equation 

Now, given any functional ,po we can generate such a solution by 

,pphy. = J DgU(g),po 

i.e. we can write: 

We will now carry this out for three examples: L: = T2, the torus; L: = S2 pierced by 

Wilson lines and L: = Disk. 

From general principles we expect that HE will be the space of characters of the affine 

Lie algebra. The easiest thing to do is choose a complex structure z = u 1 + TU 2 so we 

represent the torus by a parallelogram as usual. Define Az = TA/.:/,. So 

(In the equations above the factor ImT was in the definition of the delta function.) 

Now we use a basic fact: we can always gauge Az to the constant Cartan: 

with h in the complexification of the gauge group where a is constant in the Cartan 
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sub algebra. So - by the Gauss law it suffices to know the values ,p[az ) because ,p[Az ) = 
e-iA:S(h.o.O),p[a). Now if we take the family of testfunctions for J., where J is a constant 

in the Cartan subalgebra, 

then the corresponding physical states are 

where S(g, Az , AI) is the gauged WZW action: 

The value of this path integral is well-known, it is just 

where 
.u.uu o ' -ilmT 

,p>.(a) = e-'W X>.(f, -Ii-a) 

where X>. are the Weyl-Kac characters. Thus -oas we vary J we sweep out a space of states 

spanned by the characters . 

• Exercise 9.2 The Weyl Alcove. Consider quantization of the Chern-Simons-Witten 

gauge theory on the torus with a real polarization, that is, ,p = ,p[At{:e)). Take the gauge 

group to be connected, simply connected and simply laced. 

a.) Derive the Gauss law and show that ,p has support on those Al which are com

ponents of a flat connection. Thus the wavefunction is determined by its value for Al 

constant and in the Cartan subalgebra. 

b.) Show that the Gauss law for the gauge transformations preserving the constant 

Cartan force ,p to be a periodic delta function whose support is at A weight /W ~ IeAroot 

where Aweig"t (Aroot) is the weight (root) lattice and W is the Weyl group. The elements 

of this coset are in a natural one-to-one correspondence with the integrable highest weight 

representations of level Ie of the associated Kac-Moody algebra . 

• Exercise 9.3 Moduli Space of Flat Connection~ 
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a.) In his original paper Witten first imposed the constraints and then quantized 

the resulting phase space. Show that this phase space is just the moduli space of flat 

connections on 1:. 

b.) A flat connection is characterized by its holonomies, up to conjugation. Show that 

the real dimension of the resulting phase space is (29 - 2)dimG for the gauge group G on 

a surface of genus 9 > 1. 

c.) Use the WKB approximation to show that the number of physical states grows as 

k(g-l)dimG and compare with exercise 3.8. 

1:= 8 2 punctured by Wilson lines 

The Wilson lines for finite transition amplitudes are 

where the Wilson line carries some representation j and m" mk are states in the repre

sentation j as in the following figure 

two sphere's with Wilson lines 

Since the Hamiltonian of the theory is zero, finite time amplitudes are the same as 

overlaps of wavefunctions. So we see that the wavefunctions in the case with punctures 

are simply wavefunctionals valued in the tensor products of representations: 

m; 

We know how Wilson lines transform under gauge transformation, so it is clear that the 

action of the Gauss law is just: 

As before, we may use the basic fact that we can gauge away Az i.e. Az = -8zhh-1 Thus 

physical wavefunctions are completely determined by their value at Az = 0: 
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Now .,p~ is an arbitrary functional of the holomorphic current, so, by the holomorphic KM 

Ward identities we obtain a basis of physical states: 

From this example we see that the transition function given by the path integral for braided 

Wilson lines is indeed the appropriate duality matrix . 

• Exercise 9.4 Knizhnik-Zamolodchikov equation". 

a.) From the discussion of wavefunctions above write the Gauss law for the case of 

the sphere with sources as: 

u(e) = 4~ J TreF + LTte"(Pd 

We would like to see how the wavefunctions change as the positions Pi of the sources 

change. 

b.) Show that 
8 

[O,U(f)J = 8z; u(e) 

c.) Writing physical states as path integrals show 

For simplicity (and WLOG) take "fo to be a constant tensor. 

d.) We must define the singular product of operators at Pi. We do this by point 

splitting, then making an appropriate subtraction, which will be uniquely determined from 

self-consistency. Use the conformal field theory operator product relation (for a proof see 

[23J.): 

J"(()Pi(T")g-I(Zi,Zi) = (~iz; + (k + h)8;g-l(z;,z;) + 0(( - z;} 

where h is the dual Coxeter number and Ci = C2(lli;) is the Casimir of the representation 

llii, to deduce that we must define the singular product of operators by 

: p;(T")J"(z;)p;(g-1 (z;, i;)) : == ~~ [P;(Ta)J"(()P; (g-I(z;, z;)) 

- 1 C;_ - h8;9-I(Zi,Z;)] 
~ - Zi 

e.) Plugging in this definition and using the Kac-Moody Ward identities for J show 

that physical states satisfy the Knizhnik-Zamalodchikov equations [23J 
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~=Disk=D 

Finally, we consider the case of ~ with a boundary. In the case where ~ is a disk, HE 

is the chiral algebra of the theory[27] . 

We consider the path integral on D x IR.. Let us try to "evaluate" the path integral 

J DA is --e 
vol G 

In order to do that we must decide on the appropriate boundary conditions. These are 

determined by demanding no boundary corrections to the equations of motion: 

8S = ~ r Tr(oAA) + ~ r Tr(oAF) 
471" J8DxR 271" JDXR 

So we choose Au = 0 on the boundary. The gauge group appropriate for these boundary 

conditions is G = {g : D x IR. -> GIgl8DxR = I} 

Now let's decompose A into time and space components: 

A = Au + A 

so 

k! ( -I) - ) k! ( -- -2) S = 471" Tr A I)t A dt + 271" Tr Au dA + A . 

Next, do the integral over Au giving 

We ~an solve this to get 

for U : D --> G, since D is simply connected. 

Moreover, one can argue that there is no Jacobian 

DAo(F) = DU 

• Exercise 9.5 No Jacobian. Show that in the change of variables 

J DAo(F)O(A) = f DUO( -U-1dU) 
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for gauge invariant functionals O. 

Finally, we plug A ::= -dUU-1 back into the Lagrangian to get: 

8DxR 

where ffJ is the angular coordinate on the rim of the disk, and r stands for the Wess-Zumino 

functional. As is well known, this does not depend on the values of U on the interior - so 

we can divide out the volume of the gauge group to get the path integral 

where 

U : fJD x lR --> G. 

Quantization of this system is well-known to give the chiral algebra of the W ZW 

model [2] . 

• Exercise 9.6 A Di3k with a 30urce. Work out the analogous change of variables for 

the case of a disk with a source in a representation).. Represent the source by a quantum 

mechanics problem with the action [64] 

J dtTr).w-1(fJo + Ao)w(t). 

Integrate over Ao to find a constraint on A. Show that the holonomy of the fiat connection 

around the source is determined by the representation of the source. Find the effective 

action on the boundary of D x lR. Its quantization leads to the representation). of Kac

Moody [65J. Use this Lagrangian to find the set of). 's which lead to inequivalent effective 

field theories and hence to the set of integrable representations of Kac-Moody . 

• Exercise 9.7 Two 30urce3 on 52. Repeat the analysis of the previous exercise for this 

case and prove that the Hilbert space is one dimensional if one source is in the conjugate 

representation to the other source and it is empty otherwise. 

From these remarks we see that we can also learn about descendents from the 2 + I 
dimensional viewpoint. Moreover, note that the quantization on the disk allows us to 

define a 2 + 1 dimensional analog of a chiral vertex operator. Consider the following solid 

pants diagram threaded by three Wilson lines joined together with an invariant tensor a: 
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Solid pants diagram 

The different boundaries are meant to reflect corresponding boundary conditions on the 

gauge field. From the above exercises we see that the path integral defines an operator 

from 7-£; ® 7-£1e to 7-£i. Moreover, from general principles of CSW theory this operator has 

the braiding and fusing properties of a chiral vertex operator. Thus it is natural to suppose 

that it i., a chiral vertex operator at some canonical value of z, but this has not yet been 

demonstrated. 

Not all aspects of RCFT have been understood from the 2 + 1 dimensional viewpoint. 

We end with the following exercise, part (c) of which is an open problem: 

• Exercise 9.8 Nontrivial Modular Invariant8 

a.) Show that the natural inner product on quantum wavefunctions for CSGT with 

connected and simply connected gauge group defines a pairing of representations corre

sponding to the diagonal modular invariant. 

b.) Give the 2 + 1 dimensional interpretation of the unitarity of the matrix S. 

c.) Find a natural interpretation of the nontrivial modular invariants especially exer

cise 6.5 from the 2 + 1 dimensional viewpoint. 

10. Chern-Simons-Witten gauge theory - Other RCFT's 

In the previous section we saw how KM theories can be reconstructed from connected 

and simply connected gauge groups in three dimensions. It is therefore natural to ask if 

other RCFT's can be similarly related to CSW theory for different gauge groups. Here we 

will show that all known examples of RCFT arise from CSW theory for some gauge group. 

Among the other known RCFT's there are three kinds: 

1. Extended algebras. Examples include the rational torus, chiral algebras of Dn 

modular invariants(W-algebras), and other modular invariants obtained by orbifolds of 

WZW theories. 

2. Coset models. Examples include various discrete series 

3. Orbifolds of the above. 

The holomorphic part of each of these theories can be given a CSGT interpretation: 

342 



1. Extended KM algebras 

Most chiral algebras include high spin fields. Some of them can be obtained by adding 

extra holomorphic operators to a KM algebra. Theories not finitely decomposable in terms 

of KM or Virasoro representations might be finitely decomposable with respect to this 

larger algebra. For example, to form extended algebras one usually uses the "spectral 

flow" transformation associated to automorphisms of extended Dynkin diagrams. Thus, 

if we wish to extend level kg-current algebra we begin with (J E Center(G) arid write 

(J = e27f1' for some weight vector p. (For simplicity we take G = SU(n), the discussion can 

be generalized.) The integrable level k representations are given by the points in the Weyl 

alcove 

The transformations..\ -> )'+kp is equivalent, via the affine Weyl group to a transformation 

). -> p(..\) of highest weight representations. For example for SU(2) level k the spin j 

representation transforms by j -> k/2 - j. 

Equivalently, we may consider the change in the currents obtained when the boundary 

conditions are twisted by the multiple-valued "gauge transformation" 

(10.1) 

which acts by 

(10.2) 

In modes we have: 

(lO.3) 

Ln ~Ln + (JiH~ + ik(J20n,o 

(E,H correspond to simple roots and Cartan elements, respectively) and in the special case 

of SU(2) this becomes: 
3 3 k 

I n -> I n + 26no 

J~ -> J~±l (lOA) 

13 k 
Ln -> Ln + 2Jn + 26no 

In general, for any subgroup Z C Center(G) we can "mod out" by this action thus 

obtaining the extended chiral algebra 

A well known example is the rational torus. The toroidal c = 1 model with a boson 

cjJ ~ cjJ + 27rR has a U(l) KM symmetry generated by J = BcjJ when R2 = fq is rational 

there are extra holomorphic fields generated by 
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which generate a large algebra. 

It can be shown that this process of extension of the algebra: 

corresponds in CSW gauge theory to a change in the gauge group. Namely we can have 

an Abelian gauge field with action 

s = ik fAdA 
811" 

but it makes a big difference if the gauge grQup is JR or JRjZ = U(I). 

If the gauge group is JR, the allowed gauge transformations are A -> A - d((x) where 

€ : Y -> fit is a well-defined function. In that case: 

1.) We can scale k out of the action 

2.) The observables in the theory are the Wilson lines 

Recall that the value of a defines a representation - this corresponds to a continuously 

infinite set of representations in eFT. 

3.) No two Wilson lines are equivalent. 

On the other hand, if the gauge group is U(I) then around non contractible cycles € 

is only well-defined modulo 271", and this leads to some consequences: 

1.) The theory only makes sense for k = 0 mod 4 

2.) The observables are 

3.) Two Wilson lines can be equivalent 

• Exercise 10.1 Level Ie U(1) Current Algebra 

a.) ComputeexpliciUy the expectation values of Wilson lines in S3 for the abelian 

case: 

where ill;; is the linking number. ill;; is ambiguous-but may be regularized and defined up 

to an integer. 

b.) Show that the cross terms are invariant under the change n -> n + ~. Show that 
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the invariance of the self-linking number requires k = Omod 4. 

c.) Perform a (singular) gauge transformation A ---> A + dif> where if> is an angular 

variable around some Wilson line. Show that this changes Wn ---> WI. This illustrates 
n+2k 

how changing the gauge group from lR to U( 1) = lR/ll brings about an identification of 

Wilson lines. 

d.) If k = 4N we refer to the corresponding eFT as U(l)N, "level N U(l) current 

algebra." Show that the conformal field theory is just the holomorphic part of the rational 

torus R2 = p/2q where pq = N. 

e.) The Wilson line W~ which is a non-trivial operator if the gauge group is lR , 
behaves like the identity operator when the gauge group is U(l). The reason for this is 

the following. In the U(l) theory one needs to sum over U(l) bundles. The non-trivial 

bundles can be characterized by an insertion of an 'tHooft operator [66J in the functional 

integral of the lR theory. Using part c of this exercise, show that the 'tHooft operator is 

equivalent to W ~. Since we have to sum over the insertions of such operators, the value 

of the functional integral is not modified if we add another one. Hence, this operator 

behaves like the identity operator. The two dimensional analog of this is the fact that the 

representation ~. eztend., the lR KM chiral algebra. This field becomes a descendent of the 

identity operator (under the larger chiral algebra) and its conformal blocks are the same 

as those of the identity. 

f.) Show that the above considerations extend to any even integral lattice. 

g.) Quantize the theory by canonical quantization on T2 as in the previous section. 

Find the different states as the different representations of U(l)N and write their wave 

functions in terms of theta functions of higher level [67J. 

h.) Quantize the theory on a manifold with boundary. Find the extended chiral 

algebra by quantization on the disk (hint: because of the boundary conditions, there are 

non-trivial bundles corresponding to the insertion of ~ in the lR theory) and the different 

representations by quantization on a disk with a source. 

i.) Show that the center of A(U(1)N) is simply 1l/2Nll. (Hint: We normally think 

of the gauge group of a U(l) gauge theory, which is generated by 

U(e) = e* J .(:z:)F(:z:) 

for smooth functions e as an abelian group. However we now allow functions like ep ~ if> 

for if> an angular coordinate centered at any point P. Show that 
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50 that the group becomes nonabelian. Note that the elements of the center are in one-one 

correspondence with the representations of the rational torus chiral algebra.) Interpret the 

existence of this center from the two dimensional point of view (hint: the chiral algebra 

contains charged fields) . 

• Exercise 10.2 G = SO(3) = SU(2)/712 

a. Show that the only representations which survive have odd dimension. Show 

moreover that to avoid global anomalies, or to have the extending Wilson line be invisible 

we must have k = Omod4. 

b. Show that by the singular gauge transformation we can prove equivalence of the 

Wilson lines 

c. Show that the Wilson line Wk / 4 is in fact not the simplest operator in the theory, 

rather we have IVk / 4 = 0+ + 0- where the operators o± cannot be simply expressed in 

terms of Wilson lines. 

d. Find an expression for o± in terms of SU(2) theory. (Hint: consider a three point 

vertex of Wilson lines with one in the representation k /2.) 

Quite generally one can show that all known extended algebras are obtained from 3 

dimensional CSW gauge theories by changing the gauge group by 

G -> G/Z 

where Z is a subgroup of the center of G. 

In going from G to G = G/Z, three changes in the possible representations take place: 

a. Selection rule: of the representations of G current algebra only those which are 

invariant under Z should be kept. 

b. Identification: different irreducible representations of G related by the spectral fI 

ow operation are combined into one G irreducible representation. 

c. Fixed point: if the spectral flow has a fixed point, there are different (; representa

tions which are the same as G representations. 

These three rules generalize the three parts of the previous exercise . 

• Exercise 10.3 The three ruleJ from canonical quantization. Derive these three rules 

from canonical quantization on the torus. Hints: 

1. Rule a follows from gauge transformations which wind around one cycle 

2. Rule b from gauge transformations which wind around the other cycle. 
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3. Rule c is the most subtle. Twisted bundles on the torus are labeled by the subgroup 

Z used to divide the universal cover to obtain G. These bundles may be defined by cutting 

out a disc and using the transition function g(rjJ) = e i .p8 where rjJ is an angular coordinate 

and (J is a weight vector. The flat gauge fields which are sections of the associated ad( G) 

bundle are characterized (68) by conjugacy classes of solutions of 

(10.5) 

where A, BEG describe holonomies of the flat gauge field. 

As a simple example, consider first the nontrivially twisted SO(3) bundle on ~I. 

Without loss of generality we may rotate B into the maximal torus, taking B = ehi"T'. 

Then A must be of the form wAI where w is in the Weyl group and Al is in the maximal 

torus. By conjugating with elements of the maximal torus we may set Al to one. Show that 

there is exactly one solution, :z: = 1/4 up to conjugacy. Thus the moduli space of twisted 

flat gauge fields consists of one point, and quantization gives one further state. Recall that 

in the conformal field theory there are two representations 'H;/4 of the Ak(SO(3» chiral 

algebra. Only one of these was accounted for from the quantization in the untwisted sector, 

the other comes from the twisted sector. Compare these two different irreducible repre

sentations with o± in exercise 10.2. As an example, show that A(SO(3)4) = A(SU(3)d 

and recognize the two different representations of the SO(3) theory as 3 and 3 of SU(3). 

These remarks generalize to arbitrary groups. Twisted bundles with transition func

tion ge have one flat connection for the conjugacy class of each (discrete) solution x, w of 

wxw- I + (J = xmodArt where x is in the Cartan subalgebra and w is in the Weyl group. 

Using the conjugacy freedom we can require that x is in the positive Weyl chamber, show 

that this equation then becomes exactly the condition for a weight x = >./ k to be fixed 

by the spectral flow /.L8. Thus, the states arising from quantization on the discrete set 

of points in the moduli space of twisted flat bundles exactly correspond to the different 

irreducible representations 'Hi arising from the representations fixed by subgroups of the 

spectral flow. 

Using these considerations we can easily find new quantization conditions on k in 

the non-simply connected case (generalizing the k = Omod4 in the U(1) theory). The 

conformal dimension of the extending representation must be an integer. From the three 

dimensional point of view, this condition is the statement that there is no dependence on 

the framing of the 'tHooft operator which is used to described the twisted bundles - no 

global anomalies. The conformal dimension of the representation>. is 6~ = ~\~~~). If 

the spectral flow is generated by the representation /.L, the extending representation is k/.L 

and its dimension is 6k,. = k~\k:++h~P). The condition on k is that this number should be 
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an integer. The same result has been obtained by other considerations in [69J. 

2. Coset models G j H 

They may be obtained as follows: we take gauge fields 

A", A ii fLie( G) Ii denote directions in Lie( G) j Lie( H) 

and action 

We must be careful to take the gauge group (G x H)jZ where Z is the common center of 

H embedded in G. 

To see that this prescription is correct consider the quantization on the disk D x JR, 

and let us reconsider the boundary conditions. Variation gives 

oS = :: J Tr(oAA) - :: J TroEE + bulk terms 

8DxR 8DxR 

One possibility is to choose Ao = Eo = 0 which leads to a G x H theory. However, when 

H C G and k2 = lk1 (l is the index of the embedding) we may choose instead the boundary 

conditions: 

{ A~ = E" 
Ao = 0 

Performing the change of variables we had before we write (we have chosen f. 1 for 

simplicity) 

A = -dUU1 

E = -dVV-1 

and get, as before 

J D>..DUDV exp [ikSwzw(U) - ikSwzw(V) 

+ik J Tr>"(8<pUU- 1 - 8<pVV- 1 )] 

where>.. is a Lagrange multiplier enforcing the boundary condition A" = E". 

Making the change of variables U ---+ gV, -8",VV- 1 ---+ a"" and>" ---+ at we get the 

path integral J dadgeikS(g,,,~,".) 
which is the gauged WZW model, which is well-known [70J to be the path integral repre

sentation of the coset models. Actually, it is quite easy to see why this must be so. The 

phase spaces are the coadjoint orbits of the pair of G and if representations (A, >..): 
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(LGjT) x (LHjT)* 

which, upon quantization give the space of states: 'HA ® 'Hi. Now we may impose the fird 

cla6IJ constraints: 7I"H(8.UU- 1 ) - 8. VV- 1 ('II"H is a projection from G to H) which is an 

H-current algebra with Ie = 0 to obtain the physical states: 

where the final symbol is the space of states in the coset model, defined by the decompo

sition 1tA = fIh.1tA,). ® 1t).. 

• Exercise 10.4 Ezample 0/ a COlet 

a.) Show, using CFT, that the coset model U(I)N x U(I)MjU(l)N+M for the case 

that N,M have no common .factors is equivalent to the rational torus U(I)L for L = 

NM(N +M). 

b.) Consider the expectation values of Wilson lines in S3 for the action: 

N jAdA+ M jBdB _ N +M jCde 
2'11" 2'11" 2'11" 

where A, B, C are three abelian gauge fields. Show that the expectation value is consistent 

with the result of part (a). 

c.) Show that the quantization of this theory on T2 leads to the correct answer only 

if the gauge group is U(l) xui:)XU(1). In implementing our prescription, we have to view 

the chiral algebra U(I)N as non-abelian. See above, exercise 10.1.g. 

• Exercise 10.5 The N = 0,1 di,crete ,erIe, and the role 0/ the center. Study the 

coset SU~&(;)~~,(2lr For 1 = 1 this is the Virasoro discrete series and for 1 = 2 the super 

discrete series. The 3d gauge group is SU(2)XS~~2)XSU(2). The representations are labeled 

by three spins illh,ia corresponding to the three SU(2). Use rule a above to show that 

it + h + i3 must be an integer. Use rule b above to show that the representation (it ,i2,h) 

is identified with the representation (~ - i}' 4 - il, ~ - i3)' Use rule c to show that if 

both Ie and I are even, there are two different representations labeled by (~, 4, ~). Rule 

c applies in the superdiscrete series (I = 2) when Ie is even. What is the difference between 

the two representations in this case? 

• Exercise 10.6 c = 7/10 This conformal field theory can be represented by a coset 

S~~~~2. Notice that in the coset we use U(2) rather than SU(2) x U(I). Why? What 
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are the irreducible representations of U(2)2? What is the three dimensional gauge group? 

(Don't forget the common center.) What are the irreducible representations of the coset? 

• Exercise 10.7 Witten', Triple Co,eb. In (63) Witten proposed a generalization of 

the coset construction. Recall that in the coset construction the fields in the chiral algebra 

A(G/ H) are all the fields in A(G) which commute with the fields in A(H). In particular, 

A( G / H) is a sub algebra of A( G). Thus, if we have a triple of inclusions K c H C G then 

we may consider the fields in A(G) which commute with the fields in A(H/K). Witten 

defines this subalgebra of A( G) to be the triple coset algebra A( G / H / K). In this exercise 

we show that the construction of these algebras do not involve any new constructions other 

than those described above. 

a.) As a warmup consider the explicit triple SU(N - Ih c SU(Nh c S'U(N + Ih

Using the Frenkel-Kac construction of level one current algebra in terms of free scalar fields 

show that the triple coset is just S'U(N - 1) x U(1)N(N+I)/2. 

b.) More generally, show that A( G / H / K) always contains the subalgebra A( G / H) x 

A(K). Moreover these have the same central charge and are unitary theories. Thus 

A(G/H/K) may be expected to be at most an extended algebra of A(G/H) x A(K). 

Show that this is indeed the case by decomposing characters: 

G ~ GIH H 
XO = L..J XO,lI Xli 

II 

~ HIK K GIH = L..J XlI,p Xp XO,lI 
lI.p 

~ HIK ~ K GIR = L..J XlI,p L..J X"(p)XO,,,(lI) 
[lI,p] I'eC(.A(H»nC(.A(K» 

where [..\,p) denotes equivalent pairs in the coset module. Thus, in particular, the character 

of the chiral algebra is just 

'" K GIH L..J X"(O)Xo,,,(O) 
"eC(.A(H»nC(.A(K» 

which is a finite extension of A(G/ H) x A(K). 

c.) Show that this theory may be obtained from 2+1 dimensions using the (schematic) 

action CS(G) - CS(H) + CS(K) with gauge group (G x H x K)/Z and Z is generated 

by (9,9,1) for 9 E C(G) n C(H) and by (1,9,9) for 9 E C(H) n C(K). 

3. Orbifolds 

The MTC of rational orbifolds is fairly complicated in general. In the special case of 

a rational orbifold obtained from a theory with a trivial MTC, the rational orbifold MTC 
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has a rather beautiful description given in [l1][71J. If the finite group G is the orbifold 

group, the index set I consists of pairs (g, a) where g is a conjugacy class in G and a is 

an irreducible representation of the centralizer subgroup of the conjugacy class. The basic 

data of the MTC can be described in terms of group cohomology 4. In particular, the 

fusion rules are elegantly described as a multiplication law in the equivariant K-theory of 

G. Fortunately, one can demonstrate by rather general arguments that the holomorphic 

half of any rational orbifold model can be obtained from a 3D CSW gauge theory based 

on gauge groups which are not connected 5. 

Let G be a connected group with a discrete automorphism group P. Then one can 

construct the semi-direct product group P ~ G. Quantizing the system on the disk and 

repeating the steps above, we find that the effective action is the WZW action for a field 

U on the boundary which takes values in G. The phase space is LGIG and leads to A(G), 

but because of P gauge invariance, the Hilbert space has to be truncated to the P invariant 

states (the states are in representations of P because P is an automorphism of G). This 

can be seen by considering the CSGT on D x 51. The functional integral in this case 

leads to the trace over the Hilbert space (since the Hamiltonian of the 3D theory vanishes, 

this trace is infinite). In the functional integral we need to sum over P bundles. This sum 

projects out the states which are not P invariant. Therefore, A(P ~ G) = A( G)I P. This is 

the chiral algebra of the orbifold constructed as G I P. By quantizing the system on other 

two surfaces with boundaries we obtain the other representations of the orbifold model. 

Orbifolds and cosets are very similar in both two and three dimensions. In 3D we 

reduced the chiral algebra of the G theory by enlarging the gauge group. In 2D both 

theories are obtained by considering a G theory and gauging either a continuous subgroup, 

HIZ (to obtain GI H) or a discrete automorphism group, P (to obtain G I P). Finally note 

that the gauge group (G x H)IZ of the coset CSGT can also be written as (HIZ) ~ G 

which is the same as the prescription for orbifolds. In the classical limit of these theories 

the integral weight fields have a closed ope. Therefore, there should be a one to one cor

respondence between these representations of the chiral algebra and representation spaces 

of some group. This group is the gauge group of the 3D theory. 

4 This is also true of theories with "abelian fusion rules" as explained in appendix E of 

[15J. 
5 Initial work with E. Witten first suggested that 0(2) would reproduce the rational 

orbifold. This work motivated the general construction for orbifolds. 
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• Exercise 10.8 The rational orbifold from 0(2). Check that the 0(2) CSW gauge 

theory on T2 leads to the correct number of representations. First use conformal field 

theory to find that for the rational orbifold of level N there are N + 7 representations. 

When quantizing on T2 the Hilbert space has several sectors. Show that from topologically 

trivial bundles (those which can be considered to be 50(2) bundles) there are N + 1 states. 

Find six twisted 0(2) bundles leading to six more states. Hence, the total number of states 

is N+7 . 

• Exercise 10.9 A more complicated orbifold. Study the orbifold SU(2)./Z2 x Z2, where 

we take the quotient by 1800 degree rotations around orthogonal axes. Unlike the previous 

exercise here two interesting subtleties arise. First, some of the twisted components of the 

Hilbert space have more than one state. Second, some of the twisted components in fact 

contribute no quantum states for some k's, because of a global anomaly in the appropriate 

sector. Show that the number of quantum states is (llk+32)/2 if k is even and (llk+11)/2 

if k is odd. Derive the same result by the two dimensional considerations of [111. 

The lesson that we learn from this is that all known RCFT's are equivalent to some 

CSW gauge theory for some compact gauge group. An arbitrary compact group may be 

disconnected (the quotient of G by its connected component being some finite group) and 

in turn the connected component may have a finite-sheeted cover consisting of a product 

of tori and simply connected simple factors. From the previous constructions we see that 

this full level of generality is needed to order the zoo of known rational conformal field 

theories. 

When working with arbitrary compact gl'oups a further subtlety arises which is ana

lyzed in detail in [69]8. In order to write the Chern-Simons action in the form 

k 1 2 S = -4 Tr(AdA + _A3 ) 
'II" Y 3 

one needs a trivial G-bundle over the three-manifold Y. By definition, the path integral for 

theories with G not connected and simply- connected include nontrivial G-bundles and one 

must find another defillition of the action. This problem was solved in [69]. The upshot 

is that the appropriate data needed to specify the action is an element of the cohomology 

group>. E H4(BGj Z). For a connected, simply-connected, simple group, H4(BGj Z) = Z 

and>' is simply the integer, usually called k, multiplying the Chern-Simons term. For 

arbitrary connected compact groups the data is equivalent to a non degenerate symmetric 

8 We thank Dan Freed for very useful discussions on these matters. 
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invariant bilinear form on the Lie algebra, needed to define the notion of a trace. In the 

disconnected case there can be torsion and one must express the data as an element of 

In conclusion, the MTC's of all known RCFT's are organized by simply specifying the 

pair (G,.\) where G is a compact gauge group and.\ is a cohomology class in H 4 (BG;7L.). 

11. Conclusions and Conjectures 

In these lectures we tried to formulate RCFT in an axiomatic way. We were led to 

define certain axioms which have - rather remarkably - an analog in the TK approach to 

group theory. Even more remarkably, it is known in the group theory case that a single 

additional axiom: F i- 1 E 7L.+ defines the representation theory of an algebraic group. (To 

obtain a compact group one has to say a bit more.) Moreover this crucial integrality 

condition has an analog in RCFT. Thus we conjectured that by adding some axioms to 

the polynomial equations on F, B, S we will define RCFT purely axiomatically. Making 

further progress from this point on is difficult: We know that reconstruction will be subtle 

because there exist nontrivial chiral algebras with one representation and no holonomy (e.g. 

those obtained from even self-dual lattices of dimension 0 mod 24). This raises a serious 

question as to how good the notion of a modular functor or a modular tensor category is 

at identifying a RCFT. Based on the absence of counterexamples we may hope that the 

only ambiguity comes from tensor products with c = 24 purely holomorphic CFT's. 

Another difficulty is that it is not exactly obvious what we should say about Fi- 1 • 

There should be some physical reason based solely on the defining axioms of conformal 

field theory for why these numbers should take on special values but no one has succeeded 

in elucidating such a reason 7. Moreover, it is not obvious that there are not additional 

axioms with no group theoretic analog (just as-there are additional polynomial equations 

with no group theoretic analog). Nevertheless it ought to be clear from our discussion 

that RCFT defines some mathematical structure generalizing group theory. Of course, 

reconstruction is much easier if you know what it is you are trying to reconstruct! 

We saw in sections nine and ten that three-dimensional CSW gauge theories can be 

used to define the MTC of all known RCFT's by taking an appropriate compact gauge 

group (perhaps neither connected nor simply connected) and action (defined by an appro

priate symmetric invariant nondegenerate bilinear form, or, more precisely, by an appro

priate class in H 4 (BG; Z)). Taking account of the general structure of compact groups we 

7 It has been pointed out by many authors that F;-l is an index for inclusions of finite 

von Neumann algebras. This is clearly the most fruitful interpretation from which to 

embark on an investigation of the analog of Deligne's condition. 
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saw that the full generality is needed to describe CFT's and that the extension from the 

case of simply-connected simple groups is not entirely trivial. Based on these observations 

one naturally guesses that the object we are trying to reconstruct is none other than com

pact CSW theory, and therefore that all RCFT's are equivalent to some compact CSW 

theory. 

The equivalence between compact CSW theories and RCFT's is not one to one. First, 

there are CSW theories which do not correspond to any RCFT. For instance, if we repeat 

the G / H construction with H which is not a subgroup of G or with the two coupling 

constants, kG for G and kH for H which are not equal (or not proportional according to 

the index of the embedding) then the resulting theory does not describe the MTC of the 

holomorphic half of a RCFT. Also, different CSW theories might lead to the same RCFT. 

For instance, it is known that the same RCFT can sometimes be described as a coset in 

two different ways. Other identifications arise for low levels, for example SU(2h is the 

same as U(lh. According to the philosophy of this paper, these isomorphisms should be 

viewed as the CFT version of the isomorphisms in the Cartan classification of Lie algebras 

for algebras of small rank, e.g. 8u(2) ~ 80(3), 8u(4) ~ 80(6), etc . 

• Exercise 11.1 A Sampling of Isomorphisms. In the literature on CFT there are often 

several different realizations of the same theory. Identify the following isomorphisms: 

a.) SU(Nh ~ JRN - 1 / Art where Art is the root lattice. 

b.) U(lh ~ 0(2h. 

) SU(2)NXU{1)_N "" SU(N),xSU(N),xSU(N)_2 
c. Z. - ZN 

d.) SO(3)4 ~ SU(3h 

e.) (SU(3)/Z3h ~ SO(8h 

f.) SU(2),xsu£1,XSU(2)-. ~ (Esh x (ES)l x (ES)-2 

) SU(2)axSU(2hxSU(2)_4 ~ SU(3hxSU(3hxSU(3)_2 
g. Z2 - Za 

There is, at present, no general point of view on how to classify these isomorphisms. 

The relation between the three dimensional and the two dimensional theories arises 

in two related ways. The Hilbert space of the theory on a manifold without a boundary is 

the space of conformal blocks. In this case one can study the dimensionality of the vector 

space and the action of the duality matrices. A more detailed connection between the 

theories arises upon quantization on a manifold with a boundary. Then all the states in 

the chiral algebra and in all its representations can be realized. 

As we have mentioned, it is sometimes the case that two different theories have the 

same duality matrices. However, the structure of the representations is different. For 

354 



instance, if we tensor a theory based on a c = 24 self dual lattice with any theory C the 

duality matrices are those of the theory C. The only difference is in the structure of the 

chiral algebra and its representations. 

Correspondingly we may formulate a weak and a strong version of the conjecture 

alluded to throughout these lectures. The weak version states that the duality properties 

are reproduced by some CSW theory with compact group. More formally, we may state 

Conjecture 1: The modular functor of any unitary RCFT is equivalent to the modular 

functor of some CSW theory defined by the pair (G,oX) with G a compact group and 

oX E H 4 (BG; Z). 

Let us make some remarks about this conjecture. First, as discussed at the end of 

section ten, if G is connected then oX may be thought of as the data needed to specify the 

normalizations of the traces in the Chern-Simons action. Alternatively, from the quantum 

group point of view, oX specifies the appropriate roots of unity required for various quantum 

deformations of relevant simple groups. Second, we expect that the gauge group must be 

compact for a simple reason. In the WKB approximation one obtains one quantum state 

for each unit of volume of phase space. The moduli spaces of noncompact groups are 

noncompact and hence quantization will lead to an infinite number of quantum states, 

that is, an infinite number of conformal blocks, so the corresponding two-dimensional 

theory cannot be rational. Recent work of H. Verlinde [72] suggests that this reasoning 

might be too naive at strong coupling, and that noncompact phase spaces might actually 

lead to finite dimensional spaces of states. Nevertheless, rational conformal field theories 

which do seem to be related to noncompact groups also have a description in terms of 

compact groups. Third, we limit our considerations to unitary theories because CSW 

theories, which are simply quantum mechanical systems with a finite number of degrees of 

freedom, are automatically unitary. Every known example of a unitary RCFT fits in with 

conjecture 1. The situation for nonunitary RCFT's is much less well understood, although 

there is some preliminary evidence that the correct organizing principle may be found in 

the theory of compact supergroups [73]. 

We have taken pains to state conjecture 1 precisely because it is the conjecture we 

understand best and in which we have the most confidence. Further conjectures in this 

section will be stated somewhat more loosely. We hope we have convinced the reader 

that there are substantial reasons for believing conjecture 1 is correct. As we have dis

cussed, one might imagine a proof to proceed along lines very similar to the theorems of 

Deligne and Doplicher-Roberts. On the other hand, it would be fascinating if there were 

examples of "sporadic" modular tensor categories arising from conformal field theories. In 
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the introduction we pointed out that an alternative statement of the conjecture says that 

all RCFT's have already been found. It was probably first stated by Emil Martinec [7J 

that the nontrivial RCFT's are essentially exhausted by the coset construction, and this 

was repeated in [9). It has been reiterated many times in private by Bazhanov, Frohlich, 

Gawedzki, Goddard, Reshetikhin, and perhaps others. 

Conjecture 1 is a weak conjecture in the sense that it's truth would only classify 

modular functors of RCFT's. One may hope that a stronger version of the conjecture is 

true, namely 

Conjecture 2: The chiral algebra of any unitary RCFT is the physical Hilbert space for 

canonical quantization of some CSW theory for an appropriate choice of compact gauge 

group, symmetric bilinear invariant nondegenerate form, and boundary conditions. 

Obviously there is no counterexample to this conjecture, but there do exist some 

examples of chiral algebras which remain to be interpreted along the lines sketched above. 

Most notably, the chiral algebra of the Monster module remains uninterpreted 8 • 

• Exercise 11.2 Open Problem. Obtain the chiral algebra of all known c = 24 theories 

with trivial monodromy from quantization of some CSW theory on D x lR . 

• Exercise 11.3 Dual of a RCFT. Consider a RCFT with F, 5, fl, 6, c. Show that 

since F, 5, fl satisfy the polynomial equations so do F' = F-1,S' = 5- 1 ,11' = 11- 1 • 

The conformal dimensions of these two solutions are related by 6' = -6modl and c' = 

-cmod8. Sometimes there exists a RCFT with F', 5', fl' (remember, a solution of the 

polynomial equations does not guarantee that there exists a RCFT with these duality 

matrices). We define this theory as the dual of the original one. 

a.) Show that a theory with one primary field is self dual. 

b.) Show that the coset of a self dual theory by the chiral algebra A is a RCFT which 

is dual to the RCFT based on A. 

c.) Construct a self dual theory by appropriately coupling a theory and its dual. 

d.) Use the self dual theory based on E(8h x E(8h and part (b) of this exercise 

to show that the Ising model is dual to E(8h. A more sophisticated example of this 

phenomenon was studied in [74J where it was shown that a certain exceptional modular 

invariant of F(4) KM is dual to 5U(3h. Using part c a new self dual c = 24 theory can 

be constructed. 

8 We would like to thank W. Nahm for pointing this out to us. 
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e.) Show that the duality matrices of the dual theory can be obtained from three 

dimensions by reversing the sign of the action - reversing the orientation. Since exercise 

10.2 is still an open problem, it is not clear if all the states in the chiral algebra and in its 

representations for every theory (in particular for the F( 4) theory of [74)) can be obtained 

from three dimensions. 

Another conjecture, related to those above was posed by E. Witten [75) 

Conjecture 3: All three dimensional topological field theories are CSW theories for some 

appropriate (super)-group. 

As we have seen, any modular functor defines a three dimensional topological field 

theory so that the truth of conjecture 3 may be expected to imply that of conjecture 1, 

assuming there is no surprising need to resort to noncompact groups or supergroups. 

Finally we should note that there has recently been much progress in abelianizing 

WZW theories [76) [77) (78) [79) [80) (81) (82) (83) and there has been related progress 

on abelianizing certain coset models. From this work one is naturally lead to wonder if 

Kadano{f's old idea that all CFT's are related to the gaussian model might in some sense 

be correct. More precisely, taking into account some of the recent bosonization results, 

reference [80) states 

Conjecture 4: The chiral algebras and representations occuring in RCFT may always be 

expressed as cohomology spaces for sequences of Fock modules, and all CVO's of RCFT's 

may be expressed through free field constructions. 

The ultimate reduction of RCFT to free field theory would not be in contradiction 

with the group-theoretic interpretation. Indeed, it is well-known that one can construct 

representations of groups with harmonic oscillators. 

We hope that the truth or falsehood of these conjectures will be established in the 

near future. Looking beyond the subject of RCFT there are several horizons emerging 

involving various generalizations, extensions, .and applications of the concepts we have 

used above, but which we have not even mentioned. It is not our intention to discuss these 

future directions here, should they bear fruit there will be no lack of opportunity for future 

discussion. 
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I. Introduction 

It has been known for some time that the possibilities for quantum statistics in 1 and 2 space 

dimensions are more general than in the familiar 3 dimensional world. There has recently been 

much interest in the 2 dimensional case where, besides the usual Bosons and Fermions there can be 

particles with intermediate statistics. 

These are characterized by how their wavefunctions change when particle positions are ex

changed. The wavefunction for indistinguishable particles must change by a phase. In the Bose 

case the phase is 1. In the Fermi case it is ei .. = -1. In 2 dimensions there can be particles for 

which this phase is eiac where the real number ac depends on the path C through which the 

particles are interchanged and needs not be an integral multiple of 7r. Both time reversal and 2 

dimensional parity reverse the orientation of C and change the sign of ac. Therefore the statistics 

can be unconventional only in quantum systems where both parity and time reversal invariance are 

broken or else where there are two kinds of particles with opposite statistics which transform into 
each other under parity and time reversal. 

Exotic spin and statistics may play an important role in several condensed matter phenomena. 

There are speculations about exotic parity and time reversal violating states of matter confined 

to 2 dimensional spaces. These are particularly important to the phenomenology of the fractional 

quantum Hall effect where parity and time reversal symmetries are broken by an external magnetic 

field l . They have also recently conjectured to have something to do with high Tc superconductors2. 

In this Series of Lectures I shall discuss the fundamental reasons why exotic spin and statistics 

can occur in 2 dimensional quantum mechanics. The emphasis will be on possible physical realiza

tions of this phenomenon and in particular the connection between spin and statistics. For the most 

part this will be a review. I believe that some of the discussion of the relationship between a many

body quantum theory with fractional statistics and a U(l) gauge theory with a Chern-Simons term, 

some of the material on superconductivity and also the emphasis on the spin-statistics connection 

in a Chern-Simons gauge theory is original. 

* This work is supported in part by the Natural Sciences and Engineering Research Council of 

Canada. 
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Historically this subject began with the work of Skyrme, Finkelstein and Rubenstein who rec

ognized that topological effects in quantum field theory can lead to quantum states with unusual 

statistics and spinS. There, solitons in a nonlinear th~ry of scalar fields can behave like Fermions. 

Under certain circumstances the wavefunctionals of the field theory can be odd under exchange of 

soliton positions and the soliton states themselves can have the odd spin-parity characteristic of 

Fermionic states. Some of these ideas were generalized to quantum mechanical problems defined on 

multi-connected configuration spaces by Laidlaw and De-Witt4• There the essential ingredients of 

present day formulation of fractional statistics problem were given. 

In 1 dimension the notion of statistics degenerates. Fermions have antisymmetric wavefunctions 

and Bosons have symmetric wavefunctions. However, a system of noninteracting Fermions on a line 

is equivalent to a system of Bosons with a short ranged hard core interaction. Also, spin can only 

be defined by helicity and there is no spin-statistics connection. In 1 space and 1 time dimension 

the Coleman-Mandelstam constructionS, and the vertex operator construction which is its natural 

generalization, make an explicit mapping between field theories with particles of differing statistics. 

If the idea of exchange statistics is to be meaningful we require at least 2 space dimensions. 

There the spin of a particle is a rotation scalar and in a relativistic theory it is the time component 

of a 3-vector. The angular momentum algebra is abelian and does not constrain the eigenvalues of 

the angular momentum operator in the same way as in 3 and higher dimensions. This leaves open 

the possibility of fractional angular momentum and spin. 

As we shall see later fractional statistics can arise from the rich homotopy of the configuration 

space of a gas of identical particles on a 2 dimensional space. 

It was Liennaas and Myrlheim6 who first noticed that particles in 2 space dimensions can have 

exotic statistics. They observed that if one considers bound states of charged particles and flux 

tubes the wavefunction for this system accumulates Bohm-Aharonov phases when the composite 

particles are transported around each other. 

In a parallel development gauge field theories in three spacetime dimensions were found to 
have an interesting topological structure not found in their four dimensional counterpart. There 

the Chern-Simons three-form can be added to the action of the gauge theory7,8. In an interesting 

series of papers Deser, Jackiw and Templeton8 showed that this term gives the photon, or gluon, a 

mass. They also showed that in non-Abelian theories, gauge invariance forces a quantization of the 

coefficient of the Chern-Simons term. 

Some of this structure was also noted in the mathematics literature. Schwarz9 showed that 

if one considers a gauge theory where the ordinary Maxwell or Yang-Mills kinetic term for the 

gauge fields is absent and the action and there appears only a Chern-Simons term the Fadeev

Popov determinants involved in fixing the gauge in this theory contained interesting mathematical 

quantities. The relationship between knot theory, intagrable models, conformal field theory and 

three dimensional Chern-Simons gauge theories is presently an active area of research in both 

mathematics and physics. This was first studied in a beautiful series of papers by Akutsu, Wadati 

and coliaborators10 . The work of Schwarz was later generalized by Wittenll to get a very interesting 

relationship between this model with nondynamical matter and conformal field theory and integrable 

models in two spacetime dimensions. This complements earlier work on the relationship between 

integrable models and knot polynomials. 
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In the physics literature, Wilczek and Zee12 identified fractional statistics as induced in a 2+1-

dimensional U(I) gauge theory where the gauge field has a Chern-Simons term. Also, its relation 

with the representation theory of the braid group was first studied by Wu13 . 

Recently there has been much work in this field. The relationship between spin and statistics in 

a Chern-Simons theory was examined by Polyakov14 , in ref. 15 and 16 and by Dunne, Trugenberger 

and Jackiw17• A mathematical construction of a quantum field theory which exhibits particles with 

exotic statistics has been given by Frohlich and Marchetti18 • They demonstrate that the vortices 

in the 3 spacetime dimensional Abelian Higgs model, which are topological solitons, correspond to 

asymptotic fields of the theory which have both fractional spin and exotic statistics. An important 

feature is the use of a gauge theory where the gauge field has a Chern-Simons term in the action. 

II. Exotic Spin and Statistics in 2 Space Dimensions 

The possibility that particles in a quantum mechanical system can have noncanonical spin and 

exotic exchange statistics is related with the connectivity of the rotation group and of the quantum 

mechanical configuration space respectively. For a system of N identical particles in a d dimensional 

space 'R-d the quantum mechanical probability measure 

(2.1) 

is a mapping from the space of positions of particles 'R-dN to the real numbers 'R-. It has a domain on a 

smaller set than the full position space. We shall call this set the quantum mechanical configuration 

space C such that 

Since identical particles are indistinguishable, p must be a symmetric function of its arguments. * 
If the system also has a Pauli exclusion principle the probability measure should vanish whenever 

the positions of 2 or more particles coincide. This is a property of conventional Fermion wavefunc

tions which must be antisymmetric and therefore vanish when any 2 or more position arguements 

* Particles are identical if the Hamiltonian has a permutation symmetry 

where 1', ... ,N' is a permutation of 1, ... ,N. Energy eigenstates should carry a representation of 

the permutation group SN and the probability measure should be symmetric. 
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are equal. It is also a characteristic of wavefunctions for particles with any exchange statistics which 
are not symmetric. 

We construct C as follows: We first consider the position space of a gas of N particles moving 

on 'R,d , 'R,Nd with points labelled by the vectors (ql, ... , qN). Anticipating an exclusion principle 

[otherwise we could only get Bosons] we subtract from this the diagonal subspace 

to get 

Then we take into account the fact that particles are indistinguishable by factoring this space by 

the group of permutations SN to get 

e = (2.2) 

The permutation symmetry of the probability measure implies that the wavefunction must 

change by a phase when the positions of 2 or more particles are interchanged 

(2.3) 

If this phase is nonzero, the wavefunction must vanish when qi = qj. 

A given configuration of the system corresponds to a point on e. To define the exchange of 

two particles we must specify a continuous path which is in fact a closed loop on e and represents 

an element of the fundamental group IT} (e). Compositions of successive interchanges of particles 

induces the multiplication of IT} (e) as the composition law for the phases eiXii which must therefore 

form al dimensional unitary representation of IT} (e). which is the universal cover of R2_ q}, •.• , qN 

This in turn implies that the wavefunction must carry this representation and that it lives on 

the universal cover of the configuration space, i.e. the smallest simply connected space e such that 

e elITde) 

If d ~ 2 , e is connected, i,e, 

ITo (e) = 0 . 

Then e can be constructed in the following way: We first choose a basepoint pO on e and take 

the set of all curves with one endpoint Po and other endpoints anywhere on e. Then we identify 

all curves which have the same endpoints and which are equivalent under homotopy. [This set of 

representative curves of the equivalence classes is sometimes referred to as a standard grid.] 

This construction produces e. We can define a projection from e to e by associating each 

representive curve of a homotopy class with its endpoints. Thus e together with this projection is 

a fiber bundle with base e and fibers IT} (e). 
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Wavefunctions are single-valued functions on C which project to multivalued functions on C. 

Since in d ~ 3, 

we have 

(2.4) 

which has only totally symmetric or totally antisymmetric 1 dimensional unitary representations. 

Thus in greater than 2 dimensions wavefunctions for identical particles can be either symmetric or 

antisymmetric and we find conventional Bose and Fermi statistics, respectively. 

On the other hand in 2 dimensions 

(2.5) 

which is an infinite discrete nonabelian group19 , the Nth order braid group of the plane 'R,2. It 

has an interesting 1 parameter family of 1 dimensional representations which are carried by the 

following function from C to the circle 8 1 

(2.6) 

Here e (qi - q;) is the multi-valued angle between the vector qi - qj and a fixed reference direction. 

* fa is a multivalued function on C and a single valued function on C. On the latter space it can 

be defined by integr~tion along the representative curves which define C, 

fa carries a 1 dimensional unitary representation of the braid group. It changes by the phase 

2ai (11' + 211'n) when the positions of 2 particles are interchanged. The additional 211'n depends on 

* This angle is related to the Green function for the 2 dimensional Laplacian: 

1 1 
g(x) = _V2 c5(x) = 211' lnJllxl 

where JI is an inf~ared cutoff. e has the property 

and is independent of JI. It satisfies the Laplace equation and is not differentiable at the origin, 

We remind the reader that in 2 dimensions the exterior product of 2 vectors is a scalar. 
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the number of other particles whose positions are linked by the exchange trajectory, with sign deter

mined by the orientation of the trajectory. The function f 01 (ql, ... , qN) can be used to characterize 

the wavefunction of a gas of particles with fractional statistics. 

Not unrelated to the possibility of fractional statistics is the fact that the rotation group in 2 

space dimensions is multiconnected 

III (SO(2)) = Z 

with universal covering group nl , the translation group of the real line. Wavefunctions carry 

representations of universal covering groups of symmetry groups. This implies that the eigenvalues 

of angular momentum need not be quantized as integers but can have values which are any real 

numbers. This is intuitive as the rotation group on 2 dimensions has only 1 generator so the 

algebraic constraints which restrict the spectrum of the generators in higher dimensions are absent 

there. 

A way to characterize this possibility is by the spin parity which is defined by the change of 

phase of a wavefunction under a rotation through angle 21l'. For example, for a single particle 

wavefunction the spin parity I is defined by 

(2.7) 

This change in phase leaves the probability density (2.1) invariant. 

We can use the representation (2.6) to construct a wavefunction with exotic statistics from a 

wavefunction with Bose or Fermi statistics, 

(2.8) 

where 'I/J."mm is a symmetric function of ql, ... , qN. If, for example, we consider a ideal gas with 

Hamiltonian 

" 1 2 H = L.J 2mPi 
t 

(2.9) 

the transformation (2.8) can be used to map the free system onto a system of interacting Bosons 

with Hamiltonian 

" 1 2 H = L.J - (p;+ A (qi)) 
. 2m 
• 

The statistical gauge potential is given by 

This vector potential is single valued, * it obeys the Coulomb gauge condition 

a -a . A(qi) = 0 
qi 

(2.10) 

(2.11) 

* Note that even though the angles 8(qi - qj) are multivalued functions their derivatives are 

single valued. 
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and has the magnetic field 

B(qi) = 411'0Lc52(Qi-qj) (2.12) 
#i 

which vanishes on the configuration space C. Thus each particle sees the other particles as being 

attatched to a magnetic flux tube with flux 20. Exotic statistics arise from the holonomy of the flat 

connections in (2.11). Physically it can be thought of as originating in the Bohm-Ahoronov effect 

of charged particles moving in the presence of each other's magnetic flux. 

The Hamiltonian (2.10) follows from canonical quantization of the system with classical action 

(2.13) 

(2.14) 

For a periodic trajectory, the final term in (2.14) is the sum of the linking numbers of the 

trajectories of the particles. 

An interesting generalization is to add to the action (2.14) the self-linking number of the particle 

trajectories. This quantity has various definitions. One sufficient for our purpose is to split the 

point particle into two points with infinitesimal separation, give some definition for the direction of 

the separation as the system evolves in time and to consider the linking number of the trajectories 

of the two points. The mathematical term for this proceedure for defining self-linking number is a 

framing of the trajectory. 

Adding the self-linking number to the action has the obvious effect of altering the spin of 

particles. To see this, consider the Feynman path integral for a single particle and assume that 

the action contains the self-linking number of the particle's trajectory with coefficient 211'7. H we 

consider a trajectory where the frame of reference rotates adiabatically through angle'211' the self

linking number changes by 1 - the rotation puts 1 additional twist in the framing of the trajectory. 

Thus the wavefunction of the particle changes phase by 211'7 under this rotation, i.e. it now has spin 

parity 7. * 
A similar argument for a gas of particles with action (2.14) [before the self-linking numbers 

are added) would produce and extra phase of -211'0N(N - 1) under the adiabatic rotation where 

N (N - 1) are the number of p~rs of particles. The self-linking numbers would contribute an extra 

211'7N so the total spin parity is 211' (N7 - N(N -1)0). We will see this in a different way later. 

* The point split definition ofthe angle 9(Qi - (Qi + f)) when included in the function JOt in (2.6) 

as 

exp {h ~ 9(Qi - (Qi + fi))} 

where f; are the infinitesimal point splitting vectors. This modifies the spin-parity of wavefunctions. 

For example a single-particle state obtains spin-parity 7. 
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IT we adjust the coefficient of the self linking number to be 'Y = -a the action S can be obtained 

by introducing a statistical gauge field A,. and 

where 

j"(z) = ~ J d~/tT63 (z - q'(T» , 
(2.16) 

where tit ( T) is the trajectory of the if,. particle, and T is the curve parameter. Performing the Gaus

sian integration in (2.15) obtains the action (2.14) [with < replaced by $ in the final summation). 
To see this we note that the solution of the field equation 

in the Coulomb gauge 

is 

which upon substitution in (2.15) gives the action in equation (2.14) with the self-linking numbers 
included. 

Note that this possibility of representing exotic statistics using a statistical quantum gauge field 

requires a spin-statistics connection: both the statistics parameter and the spin parity are given by 

the parameter a. The self-linking number of trajectories themselves are not unambiguously defined 
by the model but depend on the regularization. However, the spin parity, which is the change 

in the self-linking number under a 211' twist, is unambiguous. This fact has been seen before in 
theories with nondynamical matter and also in the context of topologically massive gauge theory 

with dynamical charged matter fields16 and will be reviewed in Section IV. It is associated with the 
ultraviolet regularization which is needed for precise definition of the field theory in (2.15). 

The shift of the spin of particles can be seen in the canonical formalism. Consider the gauge 

invariant angular momentum operator corresponding to the many particle theory (2.14), 

(2.17) 

This operator generates a rotation and a gauge transformation which compensates the gauge variant 

rotation property of a wavefunction. The result is a gauge invariant rotation for the many-particle 

wavefunction. The final term can be written as 

L L ~2 q·-qi = CIIROR. + L..J aq.· ( . _ .)2 
. . q, qJ 
',J 

(2.18) 
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where the self-interaction terms have an implicit point splitting interaction and the canonical rota

tion generator is 

L ... "o" = Eqi x Pi 
i 

After symmetrizing the sum (2.18) becomes 

(2.19) 

The resulting operator obviously commutes with the Hamiltonian. This shows that the spin parity 
ofthe N-particle wavefunction is aN2. 

If in A(qi) we did not include the self-linking contribution the N2 in (2.19) would be replaced 
by N(N - 1), the number of pairs of particles. Thus we see that there is angular momentum a 
stored in the mutual interaction between each pair of particles. With the spin-statistics connection 

appropriate to the Chern-Simons theory there is also angular momentum a stored in the interaction 

of each particle with its own magnetic flux. We can think of this latter angular momentum as spin. 

Finally, note that this large shift in the spin could be important in a realistic system where the 

quasiparticles have fractional statistics. If one couples an external magnetic field to the N-particle 

system by adding the term 

(2.20) 

to the action, where 

it is the gauge invariant angular momentum operator which couples to the magnetic field through 

the interaction 

e 
Hi", = -L . Bed. 

me 
(2.21) 

and whose eigenvalues give the total magnetic moment of the system. It is intruguing that the spin 
component of the total angular momentum scales like the square of the number of paticles. This 

implies that the orbital part should also scale like the square of N so as to compensate. Otherwise 
the total magnetic moment would not scale correctly in the thermodynamic limit. This would also 
tend to minimize the kinetic energy which contains L2. This in turn implies that the wavefunction 

is a rapidly varying function of angles. 
In fact this is just the properties of Landau level wavefunctions which we would obtain by 

considering a set of electrons in an external constant background magnetic field with total flux 

aN. This sort of mean field theory has been suggested by Laughlin and collaborators2• It maps a 

perfect gas of particles with fractional statistics onto a quantum Hall effect problem. There is an 

interesting recent conjecture that such a system has a superconducting ground state2. 

In the following we shall discuss a generalization of the ideas presented in this Section to consider 

a quantum field theory of charged particles whose conserved U(1) current couples to a statistical 

gauge field as in (2.15). 
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III. Many Particle Systems and Quantum Field Theory 

In the last Section we saw that a quantum mechanical system of fractional spin and statistics 

particles could be described by a particular hybrid of a quantum field theory and point quantum 

mechanics where the field theory was a Chern-Simons gauge theory coupled to the particle currents. 

It is useful to consider a generalization of those arguments to a system where the charged particles 

are the elementary quanta of a quantum field theory. 

We expect that, in the thermodynamic limit of N particle quantum mechanics, the large wave

length behavior can be described by a continuum Landau-Ginzburg theory and it is very reasonable 

that the statistical gauge field survives with a Chern-Simons term and couples to complex fields 

there. One would expect, by applying semiclassical arguments, that in the resulting quantum field 

theory the quasi particles have exotic spin and statistics. It has been established by rather convinc

ing arguments using the canonical Hamiltonian formalism of a field theory that this is indeed the 

case. In this Section, we shall review some of those arguments. 

It is most straightforward to begin by constructing a second quantized version of the many par

ticle quantum mechanics. For this we promote the Hamiltonian operator of the quantum mechanical 

system to a second quantized operator which has the same eigenvalues as the original operator in 

the N-particle sector. We begin with operators which create and annihilate particles at point q, 

,p(q) and,pt (q) respectively with the commutator algebra 

[,p(q),,pt(q')] =62(q_q') 

[,p(q), ,p(q')] = 0 = [,pt (q),,pt (q')] 

so that the state with N particles occupying positions ql, ... , qN is 

(3.1a) 

(3.1b) 

(3.2) 

where the vacuum 10 > is the state with no particles. The state is a symmetric function of ql, ... , qN. 
* The wavefunction of the N particle quantum mechanics is recovered from the wavefunction of 

the second quantized sytem I" > by 

,p(ql, ... ,qN) =< ql,· .. ,qNI" > 

On the states (3.2) the charge density operator defined by 

jO(q) = ,pt(q),p(q) 

has the eigenvalues 

(3.3) 

(3.4) 

(3.5) 

• We could consider an analogous construction for Fermions using anticommuting operators and 

find a state which is a completely antisymmetric function of the position arguments. 
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which is the classical charge distribution of the N-particle system where the number density is 
concentrated at discrete points. 

The wavefunction (3.3) is a symmetric function of the particle positions. To find wavefunc

tions which exhibit exotic exchange statistics we consider the following construction: Define the 

multi valued field operator 

ti;(q) = eia J 8(q-q')jO(q').,p(q)eia J 8(q-q');0(q') 

ti;t(q) = e-iaJ dqI8(q-q/)jO(q').,pt(q)e-ia J dq'8(q_q/)jO(q') 

Here we have used the disorder operator 

(3.6a) 

(3.6b) 

with the multivalued angle introduced in equation (2.6) and (2.8) to alter the statistics of the 

operator .,p. 
For now, we shall be cavalier about the possible short distance singularity of this operator 

product. In order to make the particle spin well defined we shall have to split the points in 

the operator product in (3.6) - a proceedure analogous to framing the particle trajectories in the 

single particle quantum mechanics. There is another problem that the charge density in second 

quantization need not be concentrated at points but could be distributed. * Then the exponent in 

the disorder operator would be the multivalued angle function smeared over a continuous region -

a quantity which does not exist as a differentiable function wherever the charge distribution has 

support. For the moment, we define the disorder operator by its action on states where the particles 

have fixed positions and the charge density is therefore concentrated at points and the exponent is 

well defined as a multi valued function: 

exp{2ia: f <PqI 9(q-ql)jO(ql)}.,pt(ql) •.. .,pt(qN)10> = 

= exp { 2ia: ~ 9(q - qi)}.,pt (qt} ... .,pt (qiv) 10 > (3.7) 

This will be sufficient to render the operators in (3.6) well defined when we consider systems with 

finite numbers of particles since it defines their action on a complete set of basis vectors. Some 

additional care is needed in the thermodynamic limit. We will return to the issue of regularization 

later. 

The state created from the vacuum by the operators (3.6) has the property 

(3.8) 

* In fact, if the ground state is translation invariant its charge density must be uniformly 

distributed. 
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(3.9) 

so that 

(3.10) 

which contains the mapping between symmetric and multi-valued wavefunctions which we found 

in equations (2.6) and (2.8). [As stated earlier, the i = j terms in the exponent are defined by 

point-splitting regularization.] 

We can use (3.8) and (3.9) to compute the commutation relation of the multivalued fields. 

The product t$(q)t$(q) and t$(q)t$(q) can be related only when we specify a trajectory on the 2 

dimensional space which interchanges q and q'. This trajectory is a loop which is the composition 

of the curve Gggi along which q is taken to q' and the curve Gqlg along which q' is taken to q. Then 

from (3.8) and (3.9) and using the identity 

9(q - q') - 9(q' - q) = 11' mod 211' 

we deduce 

t$(q)t$(q') = t$(q')~(q)e2io/('Ir+2'1rfl) (3.11) 

where n is the number of particle postions linked by the loop. It can be given by the integral of the 

charge operator over a disc with boundary the loop 

n = L d2xjo(x) 

and the matrix elements of the charge operator are given by the eigenvalues in (3.5). 

To construct a Hamiltonian which describes a perfect gas of particles with fractional statistics 

it is necessary .to find a second quantized operator which for a fixed number of particles has the 

same eigenvalues as (2.10). For this we use the gauge field derived from the disorder operator 

A(q) = exp { -2ia J dq'9(q - q')jO(q')} ~ ;q exp {2ia J d2q'9(q _ q')jO(q')} 

= 2aJd2q,i.9(q _ q')jo(q') 
8q 

(3.12) 

[Here the gradient operator commutes with the integration when the number of particles is finite and 

the charges are concentrated at points.] This opera.tor, when opera.ting on the sta.tes Iq}, ••• , qN > 
defined in (3.2) has eigenvalues 

A ,,8 
A(q)lqt, ... , qN >= 2a L." a9 (q - qi)lqt, ... , qN > 

i q 
(3.13) 

This eigenvalue is just the classical gauge field which was a solution of the field equations for the 

Chern-Simons gauge theory in (2.15). Using this fact we construct the second quantized Hamiltonian 

(3.14) 
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where the ordering of the gauge field and the matter field in the covariant derivative IS defined 

symmetrically, 

The Hamiltonian (3.14) has the same eigenvalues as the first quantized Hamiltonian in (2.12). 

(3.15) 

Note that the ordering of operators in (3.14) has to be chosen appropriately. Also, to define the self

interaction term in the classical gauge field in h, there is an implicit point splitting regularization 

of the product of the fields TfJ and A. 
The gauge field A has the property 

o (3.16) 

and has the operator valued magnetic flux 

(3.17) 

To make the connection with a gauge theory we could treat A(q) as an independent field which is 

to be determined from the constraint (3.17) and the gauge fixing condition (3.16). The condition 

that the constraint (3.17) commutes with the Hamiltonian fixes the algebra of the gauge fields, 

[A;(q), Aj(q')] = 2oifij62(q - q') (3.18) 

In fact these are the Coulomb gauge condition, the Gauss' law constraint and the Dirac bracket 

commutator arising in the canonical formalism for the quantum field theory with action 

(3.19) 

When restricted to states with fixed numbers of particles this quantum field theory therefore de

scribes a many-particle quantum system where the particles have fractional spin and statistics. The 

essential feature is the coupling of the statistical gauge field to the conserved U(I) charge of the 

system and the Chern-Simons kinetic term for the gauge field. 

It is very reasonable to generalize this idea to realtivistic quantum field theory. Possible dif

ficulties lie in the thermodynamic limit and in ultraviolet divergences introduced by the gauge 

interactions. When the kinetic term for the gauge field is only a Chern-Simons term, the gauge 

interactions introduce no additional dimensional parameters in the theory, and themselves have a 

dimensionless coupling constant. The gauge interaction is therefore strictly renormalizable and the 

field theory should be defined with an ultraviolet cutoff. 

Notice that for the quantum field theory the constrained canonical quantization proceedure is 

not complete without an additional operator ordering prescription which fixes the way the operators 

A(q) and TfJ(q) are ordered in the Hamiltonian after the constraint equations are solved. This 
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operator ordering affects the self-interactions of the particles and therefore the spin parity of particles 

in the theory. In (3.14) we have chosen a particular ordering which reproduces the canonical 

spin-statistics relation. However, it is possible to choose other orderings which give different spin 

parity than that expected from the spin-statistics connectionl5 • It would be desirable to find an 

unambiguous way of finding the spin-statistics connection which does not depend on an ad.hoc 

choice of operator ordering. 

It has been shown that one way of doing this is to regulate the ultraviolet structure of the field 

theory by adding an Maxwell term to the action, 

1 F F/-III 
- 4e2 /-III 

and later taking the limit e2 -+ 00 of the dimensional parameter e2 which acts as a cutoff here. 16 

In the Hamiltonian formalism of the resulting topologically massive gauge field theory the operator 

ordering is unambiguous and the correct spin-statistics connection is obtained. We review this 

developement in the following Section. 

IV. Canonical Quantum Field Theory with Exotic Spin and Statistics 

In the last Section we learned that a system with a finite number of particles with fractional 

spin and statistics is described by a U(1) gauge theory where the kinetic term is a Chern-Simons 

term. Once we have constructed the Lagrangian, it is natural to consider the thermodynamic limit 

of the system. There it is very likely that the structure survives. One would still expect that the 

Chern-Simons term endows the charged quasiparticles with fractional spin and statistics. In this 

Section we shall argue that this is indeed the case. 

There are several problems to be addressed in taking the thermodynamic limit. First, the charge 

of the ground state goes to infinity, with finite charge density. [In a relativistic field theory even 

the charge density goes to infinity.] Furthermore, the set of states of the system where the charge 

is concentrated only at points is no longer a good basis for the eigenfunctions of the Hamiltonian. 

It is therefore not clear that considerations based on the assumption that states with point-charge 

distributions were complete still apply there. These important points must be addressed in the 

following. 

We shall consider a quantum field theory with a conserved U(l) charge which we couple to a 

gauge field which has a Chern· Simons kinetic term 

(4.1) 

The Maxwell equations which follow from this a.ction 

(4.2) 
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contain the constraint 

(4.3) 

where 

(4.4) 

is the magnetic flux density which in 2 space and 1 time dimensions is the charge density corre

sponding to the topological current 

[The Bianchi identity is 8p E'III), Fv )' = EVP),8p8vA), = 0.] 

The total magnetic flux is 

(4.5) 

(4.6) 

The Maxwell equation here is not an equation of motion but rather an equation of constraint 

which connects the particle charge current with the topological current. 

To see this more clearly we can solve the Maxwell equation in the Coulomb gauge 

V,A, = 0 

There the Maxwell equations take the form 

The first equation can be solved using the gauge condition 

. 1 ° Ai = EOijV) V2 j 

Then the second equation reads 

and has the solution 

Oijr7'A _ (c.. ViVj).j 
E v) 0 - CJI) - ~ ) 

1 .. 
Ao = 47ra-fo' ·VI )·) V2 I) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

( 4.11) 

(4.12) 

Here we see that the field equations are solved by relations between the gauge fields and the charged 

current which are stictly local in time. This is a typical feature of equations of constraint. The 

equation of motion simply impose relations on the field configurations at a fixed time rather than 

determining their time evolution. Furthermore, the solution of Maxwell equations exhausts the 

gauge field degrees of freedom. 

If the charges were classical point charges with worldlines the curves ii;(t) so that 

jO(q, t) = I)(q - qi(t)) , J(q, t) = L ! ii;(t)8(q - qi(t)) 
i 

(4.13) 
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when the solutions (4.lO) and (4.12) are substituted in the action (4.1) the result is the topological 
term which appears in (2.14). In the following we shall generalize this result to the case where, 

instead of classical point particles the charges are due to quantized fields. 

To begin, we consider the example of a charged scalar field: 

(4.14) 

The coupling constant 0 in the coefficient of the Chern-Simons term is dimensionless and e2 has 

the dimension of mass. The Maxwell term is irrelevant in the low energy, e2 -+ 00, limit. We 

are nominally interested in this theory where the Chern-Simons term is absent. Here, we have 

introduced it for the purpose of ultraviolet regularization. Furthermore, there is no symmetry to 

prevent its generation by quantum corrections. Even if it is absent at the tree level it is generated 

by radiative corrections2o and it is therefore unnatural to set it to zero. 

With a Maxwell term the gauge degrees of freedom are massive with tree level screening length 

~. In the infrared limit e2 -+ 00 and the propagating degrees of freedom of the gauge field are 

irrelevant. Only the statistics altering Chern-Simons term remains. The Maxwell term dominates 

the large momentum behavior of the theory where it cuts off the linear and logarithmic ultraviolet 

divergences. Thus we expect that at long wavelengths the fields which solve the model have altered 

statistics due to the Chern Simons term22 whereas the fields which solve the ultraviolet limit of the 

theory have canonical statistics. The distance scale where the statistics changes is given by ~. It 
has been shown that in the absence of Fermions this parameter recieves no quantum corrections20,21 • 

For canonical quantization we identify the canonical momenta, 

11". = D~ = (Do,p)* , 11" = Do,p 
D,p 

11"0 ~ 0 

(4.15a) 

(U5b) 

(4.15c) 

According to Dirac's classification, since they have vanishing bracket with each other equation 

(4.15b) and (4.15c) are first class constraints22• The Hamiltonian is 

where 

H = J Rx {11".11" +,p. (v + iX) . (V - iX),p + m2,p.,p_ 

-Ao (;0 + 210B + e12 ViFOi) + 2!2F~i + 2!2B2} 

is the electric charge density and 
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is the magnetic field. Conserving the first class constraint (4.15b) requires {7I"0, H} I':; 0 which leads 
to 

(4.19) 

Equation (4.19) is Gauss' law. It is this constraint which is ultimately responsible for the exotic 

statistics of charged particles in this model. For gauge invariant states it requires that charge density 

is accompanied by magnetic flux. The distributions of charge and magnetic flux differ only within 

the screening length of the gauge field. As a consequence, the motion of charged particles with 

spatial separation greater than !t in each other's magnetic fields produces Bohm-Aharonov phase 

factors in multi-particle wavefunctions. These phases can be considered either as a. consequence of 

the dynamics where they appear in the time evolution of wavefunctions or, alternatively, they can 

be taken into account by a singular gauge transformation leading to multi-valued wavefunctions. 

This induced multi-valuedness on the confuguration space results in exotic statistics. 

Equations (4.15b) and (4.19) contain two first class constraints. Thus, we are required to impose 

two additional gauge fixing conditions22 , which we choose as 

(4.20) 

The quantum mechanical commutator for the gauge field and its canonical momentum is obtained 
from the Dirac bracket as 

(4.21) 

and the Hamiltonian is 

(4.22) 

Here both the gauge field and its canonical momentum are transverse, V . iT = 0 V . 1f = 0 and the 
longitudinal part of 'if is explicitly taken account in the Coulomb interaction term. 

The Coulomb interaction term is finite only if B = -20jO over large distance scales. To see this . 
note that the Coulomb potential is given by 

(xl~ly) = -2. ln l'lx-YI 
_V2 271" 

(4.23) 

where I' is an infrared cutoff. The cutoff appears in the Hamiltonian (4.22) in the term 

p~~\ - :: (In 1') {J d2x (jO + ;0 B) r 
The energy is independent of this cutoff only when 

(4.24) 
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[Otherwise the energy is logarithmica.lly infrared divergent as we put ~ ~ 0.] This together with 

Gauss' law (4.19) implies that the electric charge is screened 

(4.25) 

This also implies that the in the presence of matter field charge Q = J tPxjO there is magnetic flux 

o 
~=--Q 'If (4.26) 

where ~ = +,; J tPxB and the spatial components of the gauge field therefore have a long range 

vortex-like component which gives the statistical interaction. With the gauge condition V . A = 0 

the asymptotic form of the gauge field is 

,J 0 r j 
lim Ai (f') = -~ fOi;;;2 = -Q fOi;;tj 

1i1 .... oo r 'If r 
(4.27) 

ThuB the asymptotic gauge field contains magnetic flux proportional to the total charge of the 

system. The sca.lar fields couple to this long-range gauge field by minimal coupling in (4.22). * 
This long-ranged component of the interaction can be removed by a redefinition of the scalar fields 

in terms of the multi-valued operators 

~ (x) = exp {i:'If J tPy9 (x, ii)jO (ii) } </J (x)exp {i :'If J tPy9 (x, ii)jO (ii) } 

ft (x) = exp {i2: J tPy9 (x, ii)jO (ii) } 'If (x) exp {i :'If J tPy9 (x, ii)jO (ii) } 

~·(x) = exp{ -i:'If J d2y9(x,ii)jO (Y)} </J·(x)exp {-i:'If J tPY9(x,ii)jO(ii)} 

ft· (x) = exp{ -i:'If J d2y9(x,ii)jO (Y)} 'If. (x)exp {-i:'If J tPy9(x,ii)jO (Y)} 

where 
9 (x, ii) = arctan (X2 - Y2) 

Xl - YI 

(4.28a) 

(4.28b) 

(4.28c) 

(4.28d) 

(4.29) 

is a multi-valued function giving the angle between the vector x - ii and the Xl-axis. It has the 

property that V9 is single-valued and 

(4.30) 

Also, 

Vi9 (x,y) = -fOijVj In~lx - YI (4.31) 

* Also, we observe that in the limit e2 ~ 00 finiteness of the energy would require screening to 

arbitrarily short distance sca.les, jO = --/,B and magnetic flux is rigidly tied to the matter charge 

density. This is similar to the effect of the statistical gauge field in the quantum mechanical case 

(2.12). 
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When jO represents an assembly of point charges the phase transformation in (4.28a-d) is 

f d2y9 (x, if) jO (i) = f d2y9 (x, ii) ~ t5 (ii - iii) ei 
I 

= E9(x,iii)ei 
i 

(4.32) 

However, when the charge has a continuous distribution some care must be ta.ken to define the 

integral. Here it should have the properties 

(4.33a) 

and 

(4.33b) 

The property (4.33b) can also be expressed in integral form 

i dr. V f d2y9 (x,ii)jO (fi) = 21r f fv ~zjO (x) (4.34) 

where the closed curve C is the boundary of the disc V. This is most easily achieved by defining 

the integral as the continuous limit of a Riemann sum 

f d2y9(x,if)jo(fi) = !~~f29(x,ff;)jO(iii) 
I 

(4.35) 

where iii form a lattice embedded in the plane R2 and with spacing f and jO (iii) is the value of 

the charge density on the lattice sites. IT jO (fi) has compact support then the sum (4.35) has a 

finite number of terms. It also has the requisite properties (4.33a-b) and (4.34). It can be shown 

that the continuum limit of (4.35) retains the property (4.34) when jO has compact support and is 

continuous and once differentiable. 

Using the identity 

exp {-i~ f d2y9 (x,fj)jO(y)} cP(Z)exp {i~ f d2y9 (x,y)jO(y)} = 

= exp {i~9(X - Z)} cP(Z) (4.36) 

we see that the operators in (4.28a-d) obey the graded commutation relations 

~(x) ~(i) - exp {i~a} ~(YJ ~(x) = 0 

~(x)~· (i) - exp {i~a}~. (if)~(x) = 0 

~(x)*(i) - exp {i~a} *(YJ~(x) = 0 

(4.37a) 

(4.37b) 

(4.37c) 
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(4.37d) 

with the multi-valued phase 

~ = 0 (x, fi) - 0 (y, x) = 7!' mod 27!'n (4.38) 

The multi-valued nature of this phase factor is essential to the consistency of (4.37a-d). The graded 

commutation relations are indicative of exotic statistics. For example, when (J = 7!' the variables 

anticommute and therefore behave as Fermions. 

The operators ~, 1r, ~. and 11'* are not yet candidates for interpolating fields of asymptotic 

states. This is because they upset the condition that the states have finite energy (4.26). This can 

be remedied by augmenting them with an operator which creates magnetic flux, 

u(x) = exp {-i~! d2y (ii'(y). V + 41(JA(Y) x V) 0(X,y)} 

Then, the operators 

~(x) = u(x)~(x) 
1i'(X') = u(x)lr(x) 

~*(X') = ut(x)~·(X') 

1i'*(x) = ut(x)~*(x) 

(4.39a) 

(4.39b) 

(4.39c) 

(4.39d) 

commute with the constraint (4.26) and create states with finite energy and fractional spin and 

statistics when operating on other states with finite energy. We thus identify them as candidates 

for interpolating operators for the asymptotic fields of the theory. They have the algebra (4.37). 

As yet, little is known about concrete field theory representations of this algebra. 

V. Fractional Spin 

In order to examine the spin of particles in this model we must analyze its spacetime symmetries. 

Consider the gauge invariant, symmetric energy-momentum tensor 

Tp" = 4>* ('8 p + iAp) (8" - iAII) 4> + 4>* (a" + iA,,) (8p - iAp) 4>-

-YP" (4)* (as +iAS) (9s -iA8) 4>-m24>*4» - :2 Fp),F,/, + 4~2gp"F),pF),P (5.1) 

This energy-momentum tensor is obtained by introducing a background 3-metric, covariantizing 

the action, taking a functional derivative with respect to the metric and then setting the metric flat 

and orthonormal. Note that the Chern-Simons term is convariant without reference to the metric 

and therefore does not contribute to the energy-momentum tensor. 
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From the energy and momentum densities 

Too = 11"*11" + 4>* (v + iA) . (V - i!) 4> + m24>*4> + 2!2F6; + 2!2B2 (5.2) 

To; = 11"* (V; - iAi) 4> + 4>* (Vi + iA;) 11" + :2EOijFOjB (5.3) 

where we have used the temporal gauge condition Ao = 0, we construct the generators of the 

Poincare group 

H = J d2xToo , Pi = J d2xTOi , L = J d2UO;jXiToj , K; = J d2xXiToo (5.4) 

Using the Dirac bracket (4.21) the commutator of electric fields is 

4 

[FOi (x), FOj (17)] = -i :0 EO;j8 (x - 17) 

Using this commutator it is straightforward to verify the relation 

[K;,Kj] = iEijL 

of the Poincare algebra. The angular momentum operator is 

(5.5) 

(5.6) 

L = J d2x {1I"*f'X V4>+ f'x VtP*1I" - i1l"*f' x AtP+ itP*f' x A'll" - e12X;Fo;B} (5.7) 

It can be written as a combination of the canonical generator of rotations, an operator containing 

the Gauss' law constraint (4.19) and a surface term31 

L = J d2x {'II"*f' x VtP + f' x 'i1tP*1I" + 11";(1" x 'i1 Ai + EOijAj) } + 

+ J ~x1" x A C12 'i1;FOi + jO + 21(JB) + J d2x'i1;. ('II";f' x A) (5.8) 

When we impose the constraint (4.19), use the asymptotic form of the gauge field (4.27) and the 

fact that the electric field is screened (4.25) we obtain 

L = Lcanonical - ~ (Q + :o~) (5.9) 

The full angular momentum operator differs from the canonical angular momentum operator by a 

term proprotional which can be regarded as an operator-valued induced spin. However, because it 

is operator-valued the rotation of the scalar field tP(x) does not close, 

eiwLtP (x) e-iwL = exp(iw~)tP(A(w)x) (5.10) 

In this sense the single-valued operators tP (x) do not represent the rotation group. The magnetic 

flux should be considered an operator on the same level as the electric charge. (5.10) indicates that 
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the angular momentun does not generate a pure rotation of <p. On the other hand the multi-valued 

operators ~ (i) defined in (5.28) represent the rotations with a phase 

This is a result of the anomalous rotation property of the phase operator, 

e""L exp {i~ / JAyS (i, wjO (w} e-i",L = exp {i~ / d2y9 (A(w)X', wjO (Y) } = 

= e-ifQ", exp {i~ / d2y9 (A(w)X',y)jO (Y)} 

(5.11) 

(5.12) 

Note that when the statistics of ~ are Fermionic, i.e. when U = 11', (4.11) implies that ~ also has the 

odd spin parity of Fermions. * Thus, the multi-valued fields have exotic statistics and spin-parity 

both characterized by the phase exp {iU}. ** 

VI. Discussion 

We have reviewed the arguments which show that topologically massive electrodynamcis is 

solved at long wavelengths by multi-valued quantum fields which create quantum states with exotic 

spin and statistics. The essential feature which arises is the modification of the angular momentum 

by an induced spin containing the magnetic flux and charge operators. As a consequence the canon

ical fields do not represent the rotation group. Furthermore, the anomalous transformation of the 

multi-valued phase makes the multi-valued operators represent the rotation group with anomalous 

spin parity. The multi-valued fields have the graded anomalous commutators which are expected 
of fields which create multi-valued states. Both the anomalous commutators and the induced spin 

are characterized by the phase ei!- . 

Finally, there is an interesting lattice regularization of the models considered here which incor

porates fractional statistics in a natural way and evades problems with ultraviolet regularization23 • 

Although it is not completely clear that it corresponds to the latticization of a gauge theory with 

Chern-Simons term it is a promising new approach. 

* This differs from the result of ref. 15 where the field ~ had spin zero in the canonical theory with 

no Maxwell term. In that case, even though the statistics were independent of operator ordering 

and therefore regularization, the spin did depend on the prescription chosen. Here the ultraviolet 

divergences of the theory are regulated by the Maxwell term and the spin is unambiguous. It is 

intriguing that this regularization gives this generalized spin-statistics connection. 
** Note that we could form a field which has interpolating statistics by the transformation 

where F(i,Y) -+ e (X', y) when Ii - ill > ~ and F (X', Y) = 0 for Ii - ill « ~. However it would 

not give a representation of the rotations. 
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YANG-BAXTER ALGEBRAS, INTEGRABLE THEORIES 

AND QUANTUM GROUPS 

Abstract 
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Laboratoire associe au CNRS UA 280 
Universite Pierre et Marie Curie 
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4, Place lussieu 
75252 Paris Cedex 05 - France 

The Yang-Baxter algebras (YBA) are introduced in a general framework 
stressing their power to exactly solve the lattice models associated to them. 
The algebraic Bethe Ansatz is developed as an eigenvector construction based 
on the YBA. The six-vertex model solution is given explicitely. 

It is explained how these lattice models yield both solvable massive OFT 
and conformal models in appropiated scaling (continuous) limits within the 
lattice light-cone approach. This approach permit to define and solve 
rigorously massive OFT as an appropiate continuum limit of gapless vertex 
models. 

The deep links between the YBA and Lie algebras are analyzed including the 
quantum groups that underly the trigonometric/hyperbolic YBA. Braid and 
quantum groups are derived from trigonometric/hyperbolic YBA in the limit 
of infinite spectral parameter. 

To conclude, some recent developments in the domain of integrable 
theories are summarized. 

I. YRNG-BRHlER HLGEBRRS 

A Yang-Baxter (YB) algebra consists of a set of operators T(8). They 
depend on the complex variable 8 (the spectral parameter). Each operator 
T(8) acts on two vector spaces, say 89. and qr. This means that they have 
two couples of indices of different kind, in general. The best way to work 
with Yang-Baxter algebras is to use graphical notation. It is defined as 
follows : 

a) a line of different type is associated to each vector space 

--- = 89., ~ ~ ~ ~ ~ ~ = qr, etc. 

Fig.1 To each type of line is associated a vector space. 

Physics, Geometry, and Topology 
Edited by H. C. Lee 
Plenum Press, New York, 1990 
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b) The intersection of two lines is associated to an operator T(9) 

where 9 is the angle between the two lines. 

OL 

.x,' 
Fig.2 A YB generator is associated to the intersection of two lines. 

c) There is summation over all states in the vector spaces associated 
to the lines between two vertices ["internal lines"]. 

0( 

9, 

b _-..1.-+-__ 

2:= [ T ac ( 9 1 ) lap [ T bd ( 92 ) lpy 
p 

Fig.3 There is a summation over the 

states of internal lines. 

d) Left to right order in the formulas correspond to up to down in the 
pictures ( see fig. 3 ). 

This definition originates in two dimensional vertex models where 
the links can be in different states spanning a vector space, say qr Here we 
consider the general case when the lattice is formed by different types of 
bonds (they are associated to vector spaces 8'l-, qr, ... ). 

Let us call iJ the set of all vector spaces where the YB algebra (YBA) 
generators act 

iJ = {Vi} 

iJ is also the set of different types of lines. The basic equation that 
characterizes the YBA is 

T(K,I)( 9 - 9' ) T(K,J)( 9 ) T(I,J)( 9') = T(I,J)( 9') T(K,J)( 9 ) T(K,I)( 9 - 9' ) 

(1 .1) 

for all spaces Vi, VJ , VK E 0'1. Eq. (1.1) is called Yang-Baxter equation (YBE) 
or triangular relation or factorization equation. It can be represented 
graphically as 

ol. 

/G 
e -e' 

B 

~ f 
Fig.4 The Yang-Baxter equation (YBE) in its general form. 
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Here -- = Vi, - - - - - ~ = VJ , - - - - - = VK. We used repeatedly the 
rules of Fig. 2 and 3 to write down Fig. 4. Eq. (1.1) writes putting all indices 
explicitly 

L [TBC(K,I)( 0 - 0') lad [TCG(K,J)( 0) laB [Tdf(I,J)( e') lBi3 
C,d,S 

L [Tah(I,J)(e') lay [TBD(K,J)(O)lYi3 [TDG(K,I)(O-O')lhf· (1.2) 
D,h,y 

As one sees in fig. 4 the YBE says that one can displace any line 
through the intersection of other two provided the angles are kept fixed. 
This is called sometimes Z-invariance since it leaves the partition function 
unchanged [see belowj[1l. That is, we have invariance under parallel 
displacements in the lattice. Eqs.(1.1 )-(1.2) [or fig. 4] shows the general 
YBE. 

Eqs.(1.1) or (1.2) hold for all values of the external indices 
( a, B, /3, f, G and a) and all values of the spectral parameters 0 and 0'. 

The YB generator associated to the intersection of two lines of the 
same type is called a R-matrix : RI(O) '" T(I,I) ( 0) , 

Fig.S The R-matrix. 

In the particular case when two of the vector spaces are identical, 
say Vi = VK = ~ and VJ = 'If', eqs. (1.1 )-(1.2) become 

LRabCd(O-O') [Tcg(O)]ao [Tdf (O')]o/3 
c,d.1i 

L [ T ac ( e ') lay [T bd( 0) lY/3 Rcdgf( 0 - 0' ) . 
c,d,y 

This can be rewritten in a more compact way as[3l 
R( 0 - 0' ) [T(O) ® T(O')] = [T( 0' ) ® T( 0 ) ] R( 0 - e') (1.3) 

where we use tensor product notation 

and 
T(O) = T(I,J)( 0 ) . 

In eq. (1.3) an operator product in the space 'If' is understood. The ® means 

tensor product of the space ~ multiplied by itself. R acts in ~ ® ~ as a 
matrix. The R-matrix associated to the space V 0 of lowest dimensionality in 

.9 as called the fundamental R-matrix. The fundamental R-matrix 
characterizes the YB algebra. 

A YB algebra is then, generally speaking, a set of operators T (K,I)( 0 ) 
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fulfilling eq.(1.1) identically. Usually, this is an infinite set. Non-trivial 
examples of such algebras exist and simple cases will be considered below. 

Let us see why VB algebras are connected deeply with integrable 
theories. Eq. (1.1) can be written as 

T(K,J)( 9) T(I,J)( 9') = {T(K,I)( 9 - 9' )}-1 T(I,J)( 9') T(K,J)( 9) T(K,I)( e - e') 

(1.4) 
Taking the trace of eq. (1.4) in the space VK ® V' yields 

tK(9) t,(9') t,(9') tK(9) (1.5) 

where we use the cyclic property of the trace and 

Here an operatorial product in the space V J is understood. We denote by t,(e) 

and tK (9) the transfer matrices 

TrVI( T("J)) = 2: T aa(9)(I,J) (1.7) 
a 

(1.8) 

t,(9) and tK(9) are operators acting on VJ. They form a set of families of 

commuting transfer matrices 

[ t,(9) , tK(9')] = 0, 'It 9,9' £ G , 'It I, K £ 3 (1.9) 

Moreover, series expanding in e yields an infinite number of commuting 
operators acting on vJ . 

(1.10) 

Here cn' are the expansion coefficients of t,(9) or log t,(9) in powers of e. 

The existence of an infinite number of commuting operators is the necessary 
condition to have a quantum integrable system with an infinite number of 
degrees of freedom. Actually, only in the thermodynamic limit this number of 
degrees of freedom is attained. In addition, the hamiltonian of the system (H) 
must commute with. t,(9) . Actually, H often expresses itself in terms of 
t,(9) either as the logarithmic derivative at 9 = 0 (spin chains, see eq.(2.13)) 

or in terms of log t,(9) at some special value of 9 (field theories in the light 

cone approach, see sec.lV). 
Since the operators t,(9) are mutually commuting for all 9 and V', one 

can expect to be able to diagonalize all of them simultaneously. This is 
actually possible through the algebraic Bethe Ansatz (BA). Moreover, in the 
BA, the eigenvectors and eigenvalues can be constructed using the VB algebra 
itself. This is probably the main application of VBA. They permit to built 
eigenvectors and eigenvalues of all t,(9) and operators c,,' derived from them 

in a purely algebraic framework. 
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A specially important YB equation follows when the three vector 
spaces in eq. (1.1) are equal: Vi = VJ = VK = 89.. In this case eqs.(1.1 )-(1.2) 

can be written as 
[ 1 ® R( 9 - 9' ) ] [ R( 9) ® 1 ] [ 1 ® R( 9' )] = 

= [ R( 9') ® 1 ] [ 1 ® R( 9 ) ] [ R( 9 - 9') ® 1 ] 
In explicit notation this reads 

2: Rcda2a,( 9 - e') Rb,ea3c( e) Rb2b3ed( 9') 
1sc,d,esq 

= 2: Rmna3a2( 9') RPb3na,( 9) Rb,b2mp( 9 - 9') 

1sm,n,psq 

where q '" dim89. . This equation can be depicted as 

ct, 

Fig.6 The YBE for the R-matrix. 

(1 .11 ) 

(1.12) 

L.., 

b:z. 

We see that eq. (1.11) or (1.12) is a system of q6 equations ( q = dim 89. ) with 

q4 unknowns (the functions Rabcd (9), 1 ~ a, b, c, d ~ q). That is, one finds a 

heavily over-determined set of equations. The existence of a solution is 
clearly a necessary condition to have a YBA. Actually it is also a sufficient 

condition since one can define a YB generator acting on 89. ® 89. as ( see fig. 5 ) 

(1.13) 

It obeys 

which just follows by rewriting eq. (1.12) with the help of eq. (1.13). 
The most remarkable fact in integrable theories is that eqs. (1.11) or 

(1.12) do admit a rich set of non-trivial solutions. Actually each solution 
exhibits some invariance which probably explains its very existence. That is, 
thanks to the presence of an in variance the number of actual independent 
equations is largely reduce from q6. 

A YB algebra is invariant [see eq. (1.3)] under a transformation 9 e ~ 

in 89. 

T ab(9) ~ 2: 9ac T cb(9) (1.15) 
c 

provided [4,5] 

[g ® g , R( 9)] = 0 , V 9 d~ , V g E g- (1.16) 
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This can be proven as follows from eq.(1.3). Let us multiply eq.(1.3) by 9 ® 9 
from the left. We find 

(g ® 9 ) R( 6 - 6' ) ( g-l ® g-l ) [gT(6) ® gT(6') 1 = 
= [gT( 6' ) ® gT( 6 ) 1 R( 6 - 6') 

Therefore gT(6) obey a YB algebra with the same R(6) as T(e) provided 

( 9 ® 9 ) R( e - e' ) ( g.l ® g.l ) = R( e - e') , 

which is just eq.(1.16). This is clearly a sufficient condition of invariance. 
More generally, we find 

[ gl ® gJ ' T(I.J)( e ) 1 = 0 , 't;f e £ G , 't;f 9 £ ~ (1.17) 

where gl and gJ are the representation of 9 E ~ acting on the vector spaces Vi 

and VJ respectively. For an infinitesimal transformation 

gl = 1 + i £ SI gJ = 1 + i £ SJ 

where £« 1 and SI and SJ are the generators representation in Vi and VJ 

respectively. Hence eq. (1.17) yields 

o (1.18) 

The invariance of a YB algebra under a group ~ can be formalized as 
follows : 

Let us define the transformed YB operator T 9 (I.J)( e) as follows : 

Tg(I.J)(e) _ gl T(I.J)(e) gJ-1 (1.19) 

This definition includes an additional transformation 
space compared with eq.(1.15). In this way T 9 (I.J)( e ) 

g-l in the vertical 
also obeys the YBE 

(1.1). This is easy to check . taking into account that 
gl T(I.J)( e) gJ- 1 = gJ-1 T(I.J)( e) gl (1.20) 

There exists a direct connection between the kind of symmetry group 
~ of the YBA and the functional dependence on e. This connection is displayed 
in table I. This is a first hint about the deep connection between YB algebras 
and Lie algebras and their deformations (quantum' groups). 
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TRBLE I 

Correspondence between the symmetry group of the 

Yang-Baxter algebras and the functional dependence of 

the YB operators on the spectral parameter e. 

~ : symmetry group e-dependence in Rab cdr e) 

discrete: Zq elliptic 

continuos abelian: U(1)Q trigonometric or hyperbolic 

continuous non-abelian: U(q). O(q),.... rational 



Another important invariance of YB algebras is the shift invariance. 
That is, if T(9) is a YB generator, so it is 

T( 9 - a) 
with fixed a. A look to eq. (1.3) shows that this is true since R depends on the 
difference 9-9', a must be the same so it drops. 

Let us now discuss the most important property of YBA : the 
reproduction property. It can be stated as follows : if t(9) obeys the YBA 

R( 9 - 9' ) [ t(9) ® t(9')] = [t(9') ® t(9) ] R( 9 - 9' ) 

with horizontal space ~ and vertical '11', so does 

N 

T ab[Nl(9) = 2:: taa1 (9) ® ta1a2 (9) ® ..... ® taN_1b(9) , 
al, .. ·aN_I=1 

(1.21) 

with the same R-matrix. The auxiliary space for T ab[N)(9) is also ~, the 

vertical one being 

In order to show that T ab[N)(9) [eq.(1.21)] fulfils the YBE (1.3) , the 

best is to use graphical methods. 

e' ......... 

e 

Fig.? The YBE for the YB generator (1.19). 

We must show that the equal sign holds in fig. 7. Remembering fig. 4, 
we can push one by one to the left the wavy lines in the Ihs of fig. 7 through 
the R-matrix vertices leaving the expression invariant. After displacing all 
vertical wavy lines, we precisely get the rhs. This ends the proof. Of course, 
it can be also done analytically inserting eq.(1.20) in the Ihs of eq.(1.3) and 
using eq.(1.19) repeatedly. 

For N = 2 eq. (1.19) can be considered as a way of multiplying YB 
generators yielding new YB generators. This can be called a coproduct and 
shows that we have a HopI algebra structure. More generally, if the YB 
generators are invariant under a group ~ [eq. (1.15)-( 1.17)] we have as 

generator in .iJ, ® 'II' N, 
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N 

T ab(NJ(O,~ ,g) = L [g1 t(0-111 )Jaal ® [ g2 t(0-112)(a1a2 ® ..... ® [ gN t(9-I1N)JaIHb 
a,,. .. aN_'=' (1.23) 

It obeys the YB eq. (1.3) for any fixed transformations g = (g1' ... , gN) and 

jl = (111"'" I1N)' with gi E ~ ,l1i E 8 , 1 :s;; i :s;; N. The introduction of the 

parameters l1i leads to integrable inhomogeneous vertex models[6]. 

There exists in addition, another coproduct multiplying the generators 
from right to left 

N 

f ab[NJ(9,~ ,h) = L [h1 t(9-111)Jal b ® [ h2 t(9-112)]a2al ® ..... ® [hN t(9-I1N)]aaN_I 
a ,,. .. aN_'=' (1 .24) 

That is, f ab[NJ(9, ~. ,h) obeys the same YBA [eq. (1.3)] as tab(9) does. 

As we see, YBA are not Lie algebras since the sum of two generators 
T(9) is not a YB generator. However, one finds for the YBA the analogous for 
most of the features of Lie algebras. The YBE (1.12) plays the role of the 
Jacobi identity in Lie algebras. The fundamental R-matrix being the analogue 
of the structure constants. There exists for YBA an "adjoint representation" 
[eq. (1.13)] provided by the R-matrix. We also have a "Cartan algebra" formed 
by the commuting transfer matrices 1:1(9) [eq. (1.7)]. A representation theory 

for YBA has been developped. That is, the construction of T(9) for different 
spaces (.119-,0/) given a fundamental R-matrix[31. 

Actually there exist more general commuting transfer matrices than 
(1.7). It follows from eqs. (1.1) and (1.17) that the following operators on VJ 

1:91 (9) = TrV1( gIT(I,J») = L (gl)ab T ba(9)(I,J) 
a,b 

( 1.25) 

commute 
(1.26) 

Notice in eq. (1.24) that the transformation g E ~ is the sam e in both 
transfer matrices. 

It is legitime to call T(9, g, ~) [eq. (1.23)] a gauge transformation of 

T(9) [eq. (1.22)]. We apply in eq.(1.23) a group symmetry transformation (gi' 

l1i ,i = 1, .... ,N ) that depends upon the site. This is a one-dimensional local 

gauge transformation on the lattice. Since the gauge transformed operator 
(1.22) or (1.23) obeys a YB algebra, these gauge transformations respect 
integ rabi Iity[71. 

Actually, a YB gauge transformed generator under ~ can be related 

with the untransformed one as follows [41. Let us call g,9!l. and go/ the group 

element representations acting on the horizontal and vertical spaces 
respectively and we set (Xi = 0 , i = 1, ... ,N. Then eq.(1.20) implies 
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(1.27) 

Now, we recognize in the I.h.s. of eq.(1.27) each of the operator factors in the 
r.h.s. of eq.(1.23). Inserting eq.(1.27) in eq.(1.23) yields after a little 
calculation: 

where G(1 and Gj here act on the i-th vertical space with 

N 

and J = n gj 
J=l 

(1.28) 

That is, the gauge transformed T ablN)( e , g) can be obtained from the 

untransformed T ablN)( 9) by a similarity transformation ® JIlIN G j on the 

vertical space plus a right transformation J on the horizontal space. Hence, 
the gauge transformed transfer matrix, 

t(9, g) L Taa(9, g) (1.29) 
a 

can be written as 

t(9,g) (1.30) 

where K == ®J(i(N Gj • 

tJ (9) is precisely the generalized transfer matrix introduced by 

eq.(1.25). As we shall see in sec. II, it corresponds to twisted boundary 
conditions. The matrix J defines the twist in the vertical space [see 
eq.(2.2)]. Eq.(1.29) has a deep implication : local gauge transformations only 
affect the physical operators like the transfer matrix and the spin 
hamiltonian (generated by it) through a twist J on the boundary conditions 
and a similarity transformation K. 

When 9 = 9' eq. (1.3) naturally suggests that R(O) is a multiple of the 
unit matrix in .Il9- ® .Il9-. When this happens the corresponding R-matrix is called 
regular. That is 

R(O) = c 1 (1.35) 
where c is a numerical constant. This property can be represented graphically 
as follows (cf. fig. 5) 

(1.36) 

This property plays a key role in the theory of integrable models. 
First, it implies that the transfer matrices t(e) built from R-matrices are 
generating functionals of local laftice operators. That is, those t(e) following 
from eqs. (1.7) and (1.21) when t(9) is given by eq. (1.13) (see eqs. 
(2.12)-(2.13)). 
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Secondly, the unitarity properties of T(e) follows from eq. (1.35). Let 
us consider the VB equation (1.1) when a) Vi = J&, VJ = VK = qr and b) Vi = ell' . 

VJ = VK = J&. This gives respectively 

b 6' b. 
e 

and 

.r \ (1 (l 

Now, if we set 8 = 0 in (1.37) and (1.38), we find 

and R'V'(8), 

MCXPaf(8) Oay = 0cxp MIiYaf(-8) 

MCXPad(8) abc = Bad MCXPbd-8) 

Here, 

Eq. (1.39) shows that 

C 

(!. 
(1.37) 

y 

:! 
(1.38) 

using eq. (1.35) for R31, (e) 

(1.39) 

(1.40) 

(1.41) 

where p(-8) = p(8) is a c-number function. Eq. (1.37) is actually an operator 
product on two vector spaces J& and qr Keeping in mind this double matrix 
product, we find 

T(8) T(-8) = p(8) 1 (1.42) 

where 1 stands for the unit operator in qr ® J&. We have found that all VB 

generators possess an inverse provided their R-matrix is regular in the sense 
of eq. (1.35). That is 

T-1 (8) = [1 I p(8) 1 T(-8) 
fullfils 

T(8) T-1 (8) = T-1 (8) T(8) 
The antipode generator is defined by 

TA(8) ;:; T-1 (8)t 

where t means transpose in J&. That is 
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(1 .45) 

The antipode is an automorphism of the YB algebra. It follows from 
eqs. (1.3) and (1.43) that 

R( 9 - 9' ) [ TA (9) ® TA (9')] = [TA ( 9' ) ® TA ( 9 ) ] R( 9 - 8') 

(1.46) 
The YB algebra possess therefore a Hopf algebra structure with 

antipode. Since the coproduct [eq. (1.21) for N = 2] is non-commutative as well 
as the usual product of T(9), we have a non-commutative and 
non-cocommutative Hopf algebra. Actually there are many choices for the 
coproduct [eqs.(1.23)-(1.24)]. 

We shall consider in these lectures YB algebras and their applications 
to statistical models and quantum field theory. YB algebras also describe 
classically integrable field theories. That is integrable non-linear PDE[2,Sl. 
Let us just derive the classical version of the YB algebras from the quantum 
one [eq.(1.3)]. Let us consider an infinite dimensional vertical space (If' (a 

Hilbert space) where a classical limit can be defined when some parameter h 
goes to zero. The horizontal space ~ is taken to be finite dimensional. Then, 

in the classical limit, we assume the Bohr correspondence principle to hold: 

[Tab(8) ,Tcd(8')] ih {Tab(S) ,Tcd(S')) (1.47) 

h -+ 0 

where {A, B) stands for the classical Poisson bracket. 
When h == 0 , this conmutator vanishes and we find that we can set 

R(8) = P [as defined by eq.(1.30)]. For small, but non-zero h ,one can 
assume 

R(8) = P [ 1 + h r(9) + O(h2) 1 (1.4S) 

where the matrix r(9) is called classical r-matrix. Inserting eq.(1.44) and 
(1.4S) in eq.(1.3) yields to first order in h 

{ T ab( 8) ,T cd( 8' )) = r( 8-8') aC,ef T eb(8) Tfd((:J') _ 

Tae(8) Tcf(8') r (8 - S' )ef,bd 

or, in a more compact notation[2,Sl: 

{ T ( 9) ®, T( S' ) 1 = [r( 9-9') , T(9) ® T(9') 1 

where, 

{A ®, B lac,bd == {Aab, Bcd} 

(1.49) 

(1 .50) 

Inserting eq.(1.4S) in the YB equation (1.11) yields to order h 2 the so 
called classical YB equation for the r-matrix 

[r12 ( 9-9'), r13(9) 1 + [r12( 9-9'), r23(9') 1 + [r13( 9), r23(9') 1 = 0 

(1.51 ) 
where rij (9) is r(9) on q!' i ® q!' j and the unit matrix in q!' k (j"* k "* i ; i,j,k = 
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1, 2, 3 ). Notice that R(e) as given by eq.(1.2S) identically verifies the YBE 
(1.11) to order hO and h1 

II. PHYSICAL REALIZATIONS OF YANG-BAHTER ALGEBRAS 

In this section we shall describe YB algebras in two-dimensional 
statistical models, field theories and S-matrix theory. 

We associate in sec. I a vector space Vi to each type of lines and a YB 
generator T(i·J)(8) to a pair of lines (I,J) intersecting with an angle 8. This 
can be immediately applied to a two-dimensional lattice of lines [fig. 8] 
intersecting at the sites. The vector spaces describe the possible local states 
of the bonds and the t(8) describe the statistical weights of the different link 
configurations. 

"" M-I--~~--------------~~ 

~ 

~ -'~r---------------~-r-

Fig.8 A N x M two dimensional lattice. The local states of horizontal 
(vertical) bonds belong to the vector space A. ( V ). 

+--<. 

"'-- b 

Fig.9 The local statistical weights w ( ex p a b ) depend on the states of 
the four bonds joining at a vertex. 

That is the matrix element [tab (8)]ap defines the probability for the local 

configuration depicted in fig. 9. The product of the local weights over all 
sites in the lattice yields the probability for such configuration of the whole 
system. Finally summing over all possible configurations gives the partition 
function Z. When periodic boundary conditions are used in both horizontal and 
vertical directions, Z expresses as 

Z = Tr'\l' [ 'tce)M] (2.1) 
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Actually eq. (2.1) holds irrespective of the YB equations. 

The transfer matrices 'tg(9) [5] [eq. (1.22)] correspond to twisted 

boundary conditions. That is, when the operators at sites N+ 1 and 1 are 
related by the transformation g : 

(2.2) 

Here g acts in the appropriate representation of ~. Then, 't9A (9) is the 

transfer matrix. If we also impose twisted b.c in the vertical direction with 
a twist h'V, Z writes 

(2.3) 

Eq. (2.1) and (2.3) show how important is the knowledge of the 
eigenvalues of 't(9). Actually, just the largest eigenvalue I\[N1 MAX (9) gives the 
free energy in the thermodynamic limit 

f = - lim ( 1 / NM ) 10gZ = - lim {(1/N ) log I\[N1 MAX (9)} (2.4) 
N,M-'~ 

(The dependence on the b.c. drops in the N = M = 00 limit). 

The lattice model here described is called a vertex model. It is 
homogeneous but not isotropic since horizontal and vertical lines are of 
different nature. Horizontal bonds live in states of the space 81 and 
vertical bonds in states of the space 'lJ'. One can even generalize these 
integrable vertex models taking lines at arbitrary intersection ang les[9). 
Also taking inhomogeneous weights g3l.(x) h'V(y) t( 9 - a(x) - [3(y) that 

depend upon the horizontal (x) and the vertical (y) coordinates. Moreover, 
one could take the lattice lines from all possible vector spaces Vi E .'l at 

will. All these models are integrable and solvable although inhomogeneous 
and anisotropic. 

Let us now study the transfer matrices 't(9) as generating functionals 
of commuting local operators on the lattice. This is the case for R-matrix 
models (where 81 = 'lJ') when R is a regular R-matrix [eq. (1.30)]. We find 

from eqs. (1.13) and (1.30)-(1.31) 

Then for a N-site transfer matrix as defined by (1.7) and (1.19) 

N 

't(O)[Nla I b = cN n °a"bi + 1 

i ~ 1 

(2.5) 

(2.6) 

where bN+1 == b1 . Here we assume periodic boundary conditions (PBC). The 

operator in the rhs of (2.6) is just the lattice unit shift operator to the 

right. Therefore, we can define the momentum operator as 
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i Log[ c-N't(O)[N) 1 (2.7) 

Let us now show that the logarithmic derivative of 't[NI(9) at 9 = 0 
gives an operator coupling nearest neighbors. 

Using eq. (1.31), Tab[NI(O)cld and 't[NI(O)cld can be drawn as follows 

(2.8) 

(2.9) 

Similarly •. 

~ll ~d~ ~d~ . ••....•...... ~ dN 

eN Cit Cz.. C"_I 

(2.10) 

Now. if we compute d/de '("(e) from eq. (1.19) we obtain N terms. each one 
containing d/de t(h)(e). 1 ~ h ~ N and the others t(t) (t"# h» not derived. 

Hence. setting e = 0 yields 

~ [NI(O) = 1-h ~ ..... ~S + ~ Lh ~ ..... t; + ... + 
"2 3 11/ ":2 J... N 

~ ~ ~ .... ~ Klh K~ •••• ~ + 
1. Z IV 

Here Lh stands for R (0) 
(2.11 ) 

It is now very simply to perform the product '(" [NI( 0 )-1 ~ [NI(O) just 
combining eqs. (2.10) and (2.11) with the result 

'" I< I( -t , 

[dNj[oll-1 ~ lNItO) = Z X (2.12) 

K:= I K K + I 

Therefore ,("[N)(Ot l ~[NI(O) is a sum of terms each one acting as an operator 
on two neighboring sites. Now. putting all factors 

N 

H = 0109 log 't[N)(9) 19=0 = L hn•n+1 (2.13) 
n=1 

where the matrix elements of hn•n+ 1 read 

(2.14) 
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Notice that ,,(e) , -e (e) ] o since [" (e) , ,,( e')] = 0 , 'rj e, e'. 

Therefore, 
0/08 log t[Nl(8) -e(e) ,,-l(e} = ,,-1 (e) -e(e} . 

More generally the nth derivative of log ,,(e) at e = 0 is an operator 

that couples (n + 1) neighboring sites[10]. 
The previous derivation. generalizes easily for the twisted transfer 

matrices (1.25) with 9f I = 9f (N) [eq.(1.22)] and 9f J = 81 We find in this 

case N-1 

tg(O)[Nlalb cN n lia;,b;+, gaNb, (2.15) 

and 
{"glNJ(On-1 -c glNJ(O) = 

~ ~ 1 "i=1 

'-i-lI·····1 + 
+ .. -

Z.} ., 

2. } 't 
N-I tV , 

+ III 1,4l 
t{-} /J J (2.16) 

Only the last term differs from the PBC case (2.12). This last term is 
actually hN,N+1 describing the interaction of the site N with the next one. 

In the PBC case (2.12) we set N+ 1 == N . In eq.(2.15) we have indeed the 
h N,N+ 1 as given by eq.(2.13) provided we make the identification (2.2) for 

the operators acting on 9f 1 and 9f N+ 1 . The factor gaNb, in eq.(2.15) has the 

same explanation. It is equivalent through eq.(2.2) to Ii b aN N+' . 
The operator H can be interpreted as a one-dimensional quantum 

hamiltonian. It is an operator coupling neighboring q-component "spins". The 
word spins only applies, rigorously speaking, when the fundamental R-matrix 
corresponds to the six or eight vertex model. That is, the underlying Lie 
algebra in A1 and we have true SU(2) spins. Otherwise one finds SU(q) spins, 

O(q) spins, etc. Eq. (2.12) suggest that a may be the imaginary time variale. 
This possibility has not been fully explored yet. Anyway it must be noticed 
that t(8) "# eSH . 

Let us expand the gauge transformed transfer matrix t(a,g) [eq.(1.29)] 
around 8 = 0 . We find: 

N 

t(O,g)Q.\':= cN n (gi)aH,bl 

i= 1 

a. 
(2.17) 

where ~ = gc : 9f b ~ 9f a· A calculation analogous to that from 

eq.(2.10)-(2.11)· yields for t(e,g) [7] 

N 

H[g] = 0/08 log t[NJ(e,g) 19=0 = 2:: (g-1)n+1 hn,n+1 gn+1 (2.18) 

n=1 
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We see from eq.(2.18) that the way 9 = (g1 ....... gN) acts on the spin 

hamiltonian can be considered as a gauge transformation on the lattice. From 
the analysis in sec. I for t(9.g) we conclude that H[g] is. up to a similarity 
transformation K. identical to H[1] with boundary conditions twisted by 
J = n Hi(Ngj [4}. 

One can decide to expand t(9) around a point 9 = 90 * 0 to generate 

commuting operators. The trouble is that these operators are in general 
non-local. That is. they couple all sites in the line. Only when t(90 ) is the 

shift operator (2.6) the logarithmic derivative of t(9) at eo is local and the 

higher order derivatives multilocal. It is nevertheless interesting to expand 
or around 9 = 00 • Besides the quantum group generators [see sec.V]. this 
expansion yields non-local integrable hamiltonians. 
To conclude this section. let us sketch the classification of the known VB 
algebras. That is. solutions of eq.(1.1). All known solutions posses 
symmetries in the sense of eq.(1.1S) [see table I]. Probably. the presence of 
such symmetries is the basic reason why a so heavily overdetermined set of 
equations [ see eq.(1.12) ] has non-trivial solutions. 

Elliptic solutions depend on three continuous parameters e (spectral 
parameter), y (anisotropy parameter). and k (elliptic modulus). The 
trigonometric and hyperbolic solutions depend upon two parameters: 9 and 
y. They can be obtained from each other by "Wick rotation": y --+ i y • 

9 -t i 0 . The degenerate limit k -t 0 (k --+ 1 ) of the elliptic solutions 
yield trigonometric (hyperbolic) solutions. Trigonometric/hyperbolic 
solutions associated to all simple Lie algebras are known in vertex 
lang uage[4,46.63 .641. 

The trigonometric/hyperbolic solutions are not invariant under the full 
Lie group ~ [in the sense of eq.(1.17)] but only under its Cartan subalgebra. In 
addition they are invariant under the corresponding quantum group as we 
discuss in sec. V. The rational VB algebras follow from the 
trigonometric/hyperbolic ones in the isotropic limit y --+ O. Besides these 
continuous parameters (k. y. 0) • the VB operators are labeled by the 
representation spaces Jl9- and 0/ where they act. As. we have seen. each 

T(Jl9-·o/)( 0) defines an inequivalent physical vertex model. Actually there is a 

set of physical models attached to each T(Jl9-· 0/)( 0): a vertex model. a spin 
hamiltonian. a conformal theory and a massive quantum field theory. The last 
two cases are exposed in ref.[4] and sec. IV. 

Algebraic Bethe Ansatz solutions for a significant number of vertex 
models are known[17-22] and we believe that such constructions should exist 
for any solution of the VB equations. In sec. 3 we describe the simplest case : 
the six vertex model solution. Further algebraic Bethe Ansatz constructions 
(for richer models) can be found in refs.[4.17-22]. Let us recall some 
important features of the BA solutions. 

The vertex (and spin hamiltonians) turn to have a non-zero gap in the 
elliptic and hyperbolic regimes. This gap is identically zero in the 
trigonometric and rational regimes. Therefore. interesting scaling limits 
exist in these gapless regimes. Two inequivalent continuous limits exist : a) 
a massless limit yielding conformal invariant models b) a massive limit 
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leading to integrable massive quantum field theories. These scaling behaviors 
are reviewed in refs.[4]. Let us just recall that all (known) conformal field 
theories derive from some integrable model in the continuous limit. The 
anisotropy parameter appears in the conformal dimensions (which vary 
continuously in general) but not in the central charge. Both depend on the YB 
algebra considered as well as on ,i! and 0/. The spectral parameter turns to be 
irrelevant (in the sense of crical phenomena) for this massless continuous 
limit. For massive scaling limits (yielding QFTs) the spectral parameter 
undergoes a dimensional transmutation and generates the mass scale together 
with the lattice spacing. The anisotropy parameter provides the (single) 
continuos coupling constant. The elliptic modulus vanishes and leaves no 
trace in the scaling limits[22] 

We consider here solutions of the YB algebra where the operators 
T(,i!· 0/)( 9) depend on a single argument 9. More generally. they can be 

functions of a pair of variables 9 and 9' associated to each of the lines 
intersecting at the vertex. respectively. In refs.[23] there has been found 
solutions of such type associated to higher genus curves. These solutions are 
actually related to the YB algebra associated to the six vertex model[24]. For 
YB solutions of genus zero or one depending on (9.9') there always exist 
parametrizations where the dependence becomes on 9 - 9' and hence reduces 
to the one variable case treated here[1]. 

Besides the symmetry transformations (1.19) leaving invariant the YB 
algebras. one can also look for transformations not involving linear 
combinations of YB operators like 

(2.19) 

Let us analyze these abelian transformations for the R-matrix. 

Rabcd ( 9) -+ ~abcd( 8) = exp[Fabed(8)] nabcd( 8) (2.20) 

in the trigonometric/hyperbolic cases where 
a + b = c + d (2.21) 

due to the U(1) symmetry(ies). One can seek for F abed(e) an expansion of the 

type 

Fa la2a3a4 (e) = L ai fi(e) + L ai aj fij(e) + ......... . (2.22) 

1siS4 1si.jS4 

Inserting eqs.(2.34)-(2.36) in eq.(1.12) and requiring ~ ab cd( e) to be also a 

solution of the YBE (1.12) leads to a set of constraints on W:l). fij(e) ...... We 

find after a long but straightforward algebra 

F abed(9) = 119 ( a + c - b - d) + v ( a + d - b - c) + co ( ab - cd ) + .... (2.23) 

where 11. v and co are arbitrary parameters and we used also eq.(2.35). 

These transformations has been given in refs.(25) where they are called 
'symmetry breaking transformations'. The reason of the name is that these 
transformations map R-matrices with P and T invariances [eqs.(2.30)] to 
R-matrices (Fl) where P and T do not hold. 

403 



III. THE SIH UERTEH MODEL UNO ITS OESCENOUNTS 

The six vertex model corresponds to the trigonometric and hyperbolic 
solutions of the YBE (1.11) for q = 2 . That is, 

a(9,y) o o o 

o c(y) b(9) o 

R(9) o b(9) c(y) o (3.1 ) 

o o o a(9,y) 

We have here three different regimes, 

I) a(e,-;() = sh(-;( -e), b(e) = she, c(-;() = sh-;(, -;( > e > 0, -;( > 0 in the 

antiferroelectric reg ime. 

II) a(e,-;() = sin(-;(-e), b(e) = sine, c(-;() = sin-;(, 0 < -;( < TT, 'J'> e > 0 in the 

trigonometric regime. This regime is critical (gapless) and antiferroelectric. 

III) ate ,-;() = sh(e + -;(). b(e) = she, c(-;() = sh-;( , e > 0, -;( > 0 in the 

ferroelectric regime. 

The parameter -;( describes the anisotropy of the model. The character 

of regimes I, II and III will be clear from the ground state and excitations 
obtained below. 

This model enjoys the following symmetry group ~ (in the sense of 

eq. (1.15)] 

~ = { exp( i ex uz ) ,0 ~ ex < 2lt ; U x } (3.2) 

That is ~ = U(1) @ Z2' When -;( = 0 this group enlarges to SU(2). This 
point corresponds to a Kosterlitz-Thouless type transition as we will see 
below from the explicit solution. 

It is called six vertex model, since the non-zero elements of the 
R-matrix, eq.(3.1) define six allowed configurations. The integrable 
eight-vertex model will not be considered here[11. The state of a bond in the 
six-vertex (and eight-vertex) models is usually characterized by the sense 
of an arrow. This corresponds here to the values 1 or 2 of the vertical and 
horizontal indices. In fig. 10 the allowed configurations and their respective 
statistical weights are depicted. 

It must be recalled that the trigonometric regime of the six-vertex 
model (II) describes the critical (zero gap) limit of the eight-vertex 
model[11. As it wi" be clear from the solution one describes a critical line 
when -;( varies from 0 to rr. As as-matrix eq.(3.1) for regime II describes 
the scattering of a particle and its antiparticle with a conserved U(1) 
charge[12]. The crossing symmetry (2.23) writes here 

[P R(9) ]tl = (1 ® u ) P R( - 9 - y) ( 1 ® u ) (3.3) 
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+++ 
(1) (2) 

a.. 

(3) 

10 

+++ 
(4) 

b 

(S) 

c 

(6) 

c 

Fig.10 Allowed configurations in the six-vertex model and their statistical 
weights ( see eq.(3.1) ). 

where o ;: r 0 -1 1 
l1 0 J 

The VB generators read here (for one site) 

til (8) = r a(8;y) 

l 0 

o 1, 
b(8) J 

o 
a(8;y) J (3.4) 

The YB generator Tab[NJ(8) for a N-sites line follows from eq. (1.19) 

where one inserts the tab (8) given by eq. (3.4). One can then set 

T ab[Nl[e) r A(8) , B(8) 1 
l C(9) , D(9) J (3.5) 

The one-dimensional quantum hamiltonian associated to the 
six-vertex model is the XXZ Heisenberg hamiltonian. One finds from eqs. 
(2.12)-(2.13) and (3.1) 

h = [ cosy + Ox ® Ox + 0y ® 0y + ~ Oz ® Oz ]I( 2 siny) 

where ~ = - cosy .Then 

N 

Hxxz = -~ 2: (oxa ® oxa+1 + Oya ® Oya+1 + ~ oza ® oza+1) (3.6) 
a=1 

where we droped the terms proportional to the unit operator and redefined H 
by a factor - siny . 

The six vertex model enjoys gauge invariance (see sec.l) under the 
symmetry group (3.2). That is we can perform U(1) transformations 
ga = exp( i Ila oza) at each site a of the line and T(8,g) will continue to 

obey the VB algebra. In particular, the gauge transformed XXZ Heisenberg 
hamiltonian reads from eq.(2.18) and (3.6)[7] 
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HXXZ[ j:i ] -1 L exp( -i lla+1 oza+1 ) ( oxa ® 0xa+1 
1sasN 

+ ° a ® a a+ 1 + Y Y 

(3.7) 

where Jl 
+ d oza ® oza+1 )exp( i lla+1 oza+1 ) 

( Jll' ..... , Jlr J. 
As discussed in sec.1I , the expansion of t(9) around any point 

9 = 90 '# 0 yields non-local operators. Nevertheless, expanding around 

90 = 00 leads to interesting objects : generators of the SU(2)q quantum 

group as we shall see in sec.VI ( q = exp(iy) or exp(-y) ). Let us start to 
expand A(9,j:i) and D(9,j:i) around 9 = 00. We find in the regime ,[5] 

where 

and 

A(9,j:i) = yN exp( ySz - u ) [ 1 + Q+( j:i ) 1 y2 + 0(1/y4) ] 

9 -7 00 (3.8) 

D(9,j:i) = yN exp( -ySz - u ) [ 1 + Q_(j:i) 1 y2 + 0(1/y4) ] 

9 -7 00 

N N 
y;: 1exP( 9 + y/2) , u;: L Ila' Sz = 1 L oza . 

a d l a=l 

b-1 

sh2y L a_a exp(lla + lib) n exp(±y ozC) o± b 

c=a+1 

N 

- ~ Lexp(2Ila) [coshy- shy oza ] 
a=1 

(3.9) 

For simplicity we have set g = 1 in eq.(1.23). 
The operator 

(3.10) 

belong to the infinite sequence of operators generated by the transfer matrix 

tJ,l(9) = exp( -y Sz + ill) A(9) + exp( ),Sz - ill) D(9) (3.11) 

since 

and 
[tJ,l(9) , tJ,l(9') ] = 0 [tJ,l(9) ,QJ,l( j:i )] = 0 

These operators simplify in the isotropic limit y -7 0, Ila -7 KaY, 

9 -7 "( ').. . We find from eqs.(3.9)-(3.10) 

QIl (j:i) = -1 N cOSIi 

"(-70 

4( Sl + S/) ] cOSIi 

N 

- "( v cOSIi + 2i sinll Sz ) - i "(2 [ 3N + L: K a2 

a=1 

+ "(2 sinll h(K) + 0 (-(3) 

where v = u/ "( for "( -7 0 and h(K) is the hermitean operator 
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N 

h( K) == ~L sign(a-b) ( eZij o} Ojb) - L Ka oza (3.12) 
1~a~b~N a=1 

Here i,j = x, y, e123 = +1 and K = (K1' KN)' h(K) can be 
interpreted as a non-local Ozialozhinski-Moriya interaction hamiltonian plus 
a coupling with an external magnetic field va pointing in the z direction. 

That is a magnetic field varying from site to site on the line. The properties 
of h(K) are analyzed in ref.[5]. This exactly solvable hamiltonian can 

describe disordered systems since the Ka are completely arbitrary. For 

example they can follow some probability distribution. 

The Y8 algebra defined by the R-matrix (3.1) yields some number of 
bilinear algebraic relations between the T ab[NI(8). Let us just write down the 

more useful ones for the subsequent derivations 
A(8) 8(8') g( 8' - 8) 8(8') A(8) - h(8' - 8 ) 8(8) A(O') (3.13) 

0(9) 8(9') g( 8 - 8') 8(9') 0(8) - h(9 - 8' ) 8(0) O(e') 

8(9) 8(9') = 8(8) 8(9') (3.14) 

[ C(8) , 8(8')] = h( 8 - 8' ) { A( 8' ) O( 8) - A( 8 ) O( 8') } 

where g (e) = a(e,-;r) / b(e) and h (e) = c(-;r) / b(e). 

Let us now proceed to construct the exact eigenvectors and 
eigenvalues of 

't[NI( 8) = Tr.¢l. T[NI( 8) = A( 8 ) + O( 8 ) (3.15) 

using the algebraic 8ethe Ansatz[17J. We shall assume N to be even. One 
notices that the ferromagnetic state 

[~J ® [~J • (3.16) 

is an eigenvector of A(e) and O(e) 

A(8) I 11> a(9,y)N I 11> 0(8) I Q> (3.17) 
In addition 

C(8) I Q> a (3.18) 

whereas 8(e)IO) is non-zero and not proportional to 10). The algebraic 8ethe 

ansatz consist in looking for eigenvectors of 'l (e) with the form 

(3.19) 

Here, the complex number e I , ...• et'" will be determined by requiring 

that '¥(9 1, ... ,8r) is an eigenvector of 'l(e). 
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In order to do that one applies A(e) + o(e) to the r.h.s. of eq. (3.20) 

and pushes A(e) + o(eJ through the 8(6) with the help of eqs. (3.13). After 

using eqs. (3.13) r times. AWJ and O(eJ reach I 0> where their action is 

known from eqs. (3.17). These operations produced a lot of terms. Let us first 
write down explicitely those generated by the first term in eqs. (3.13) : 

r 

A(8) 'l'(01 ....• 0r) = a(O.y)N n g( OJ - 0) 8(°1) 8(8 2 ) ........ 8(8 r) I 1b + 
j= 1 

(3.20) 

+ unwanted terms = I\. +(0) '¥(01 ..... 0r) + unwanted terms 

and an analogous formula for D(O) '¥(01 ....• 0r). The remaining terms are called 

"unwanted" since they are not proportional to '¥(01 ....• 0r) and hence they 

must finally cancel in order that 'l' (01 ..... Or) be an eigenvector of 1."" (e J. 
Now. let us concentrate in terms containing the vector 

They originate when the second term in eq. (3.13) is used to express 

A( 0) 8 (0 1) and the first term for the rest when A(O d is pushed through 

8(Oj) (2:5:j:5: r). Hence. one finds 

r 

- h(B 1 - 0) a(01.y)N n g(Oj - °1) 8(B) 8(02) ........ B(Br) I!b + (3.21 ) 

j = 2 + other types of terms. 

It is now very easy to determine the remaining coefficients since 

'¥ (01 •...• 0r) is a symmetric function of ° 1 •.... Or due to eq. (3.14). Therefore 

one can permute e 1 by 6 J in eq. (3.21) with the result 

where 

and 

r 

I\. +(O.01.···.0r) '¥(01.···.0r) + L I\. k +[0.01.···. 0rJ '¥k(8.8 1.··.8r) 
k=1 (3.22) 

'¥k(0.01.····.0r) - 8(0) n 8(ej) I rb 
1 sjsr .j",k 

r 

a(o.y)N n g( OJ - ° ) 
j= 1 

I\. k +(O.01.···.0r) = h(Ok - 0) a(Ok.y)N n g(8e - 8k) 

(3.23) 

(3.24) 

One analogously finds 

r 

I\.Je.o1.···.OrJ 'l'(01.···.0r) + L I\.k-(O.01.···.0r) 'l'k(O.01.··.8r) 
k=1 (3.25) 
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where r 

/\. J9.91 .···.9rl b(9)N n g( 9 - 9j ) 
j= 1 

/\. k -(9.91.···.9rl = h(9 - 9k ) b(9k)N n g(9k - ge) 

1 ~e ~r.e .,k 

(3.26) 

Now. in order to get an eigenvector of 'd B l we must require 

(3.27) 

This yields a set of r algebraic equation in 9k (1:,; k :,; r) usually called 

Bethe Ansatz equations (BAE). Notice that the dependence on 9 drops in 
eq.(3.27) thanks to the fact that h(9) is an odd function. This could be 
expected since the commutativity of t(9) for different 9 suggest that its 

eigenvectors can be chosen a-independent. More explicitely these BAE read. 

[ sh( Aj + i r 1 2 ) 1 sh( Aj - i r 1 2 ) ]N 

r 

n [sh( Aj - Ak + i r) 1 sh( Aj - Ak - i r )] 
k=1 

[ sin( Aj + i y 1 2 ) 1 sin( Aj - i r / 2 ) ]N 

r 

= - n [sin( Aj - Ak + i y) 1 sin( Aj - Ak - i Y )] 
k=1 

(3.28) 

regime II 

(3.29) 

regime I and III 

Here we have introduced A j " I(Bj + ~ /2), for regime III and 

A j " - i (e r~ 12) for regimes I and II. 1 :,; j :,; r. Once the A j are found by 

solving eqs. (3.28) or (3.29) the eigenvalues /\. (B l of t(9) follow from 

eqs.(3.24) and (3.26) as 

(3.30) 

We can assume I Re A j I ~ TT/2 in regimes I and III. whereas 

-00 < Re Aj < +00 for regime II. The r.h.s. of eq. (3.30) would seem to have 
poles at B = + i A j + ~ / 2. However the corresponding residues identically 
vanish due to eqs. (3.28)-(3.29). Actually one can use this property as a 
short-cut to derive the BAE when the construction of the explicit 
eigenvectors is more involved. 

Eq. (1.18) gives for the six-vertex model symmetry (3.2) (rotations 

around z) 
[ A(9) • Sz] = [ D(9). Sz] = 0 

(3.31 ) 
[ Sz. B(9) 1 = - B(9) [Sz • C(9) 1 = c(e) 

N 

where Sz" ~ La=, CT za acts in the vertical space. Therefore B(9) [C(e)] 
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lowers [raises] the z-component of the spin in one unit. 
In particular we find that the state (3.19) is an eigenvectors of Sz 

(3.32) 

This algebraic BA construction of the eigenvectors of t(6) has some 
analogies with the angular momentum states obtained from the maximal 
weight state applying lowering operators S_. Here I!l> is also a maximal 

weight vector for the total spin and B(6) lowers the spin by one unit 
[eq.(3.31 )]. Nevertheless, to obtain exact eigenvectors of t(6) the arguments 

e1 ..... er must fulfil the BAE (3.28)-(3.29). This notion is absent in Lie algebra 

constructions of eigenvectors. 
The resolution of the BAE (3.28)-(3.29) is possible analytically for 

small rand N. For large rand N this is a formidable task. Only in the N 
= 00. r = 00 limit. things become easier since the roots become closer and 
closer for large N. The separation is O(1/N) between neighboring Aj in the 

real axis. The density of roots is defined as 

p( Aj) = lim 1/[ N (Aj+1 -Aj)] (3.33) 
N-+oo 

This function obeys a linear integral equation that follows from 
eqs.(3.28)-(3.29). Since it has a difference kernel. it can be solved in closed 
form by Fourier integrals or Fourier series. Once p(A) is known, the 
calculation of physical quantities like I\[e) (eigenvalue of t(IJ) ) reduce \0 

quadratures. That is 

where 
q,(/\,<x) 
q,(/\,<x} 

lim (1/N)I\(e) = Id/\ 1jJ[/\+ie;;(I2) p[/\) (3.34) 
N-+-

i Log ( sin( /\ + i<x ) I sin[ /\ - i <X) } , regime 
I Log ( sinh( /\ + i<x ) I sinh( /\ - i <X) } , regime II (3.35) 

Besides real roots the BAE posses complex roots (see, for example 
refs.[26l). There' exist an important literature on numerical' solutions of the 
BAE[271. Moreover, it is possible to solve the BAE asymptotically for N 
large but finite using the method proposed in ref.[28] , extended and 
generalized in ,refs.[29-33]. The finite size corrections turn out to be 
exponiantially small in N for regime I and power like in the gapless regime 
II . 

In the OFT associated to vertex models, the vacuum (ground state) 
corresponds precisely to the antiferroelectric ground state. Let us 
concentrate on this state and excitations around it from now on. The 
operators B(ej ) play here the role of creation operators of excitations over 

the bare vacuum 10 >. That is pseudo-particles or "bare" particles. The 
antiferroelectric ground state is the analog of the filled Dirac sea for free 
fermions. However. the pseudo particles are here not free, they interact 
through two-body interactions. The functions q, (/\ i - 1\ J' ',( J describe the 

two-body phase-shift associated to such interactions. These functions are 
equal to 7t when 'Y = 7t/2 in regime II : the free fermion (or Ising) case. 
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The BAE (3.28)-(3.29) can be rewritten as 

exp i[ N <l>[Aj' 't' 12)-L <l>[Aj - Ak' 't' ) 1 (3.36) 
k .. j 

The first term in the exponent. N<\l [ A j. 't' /21. is just the momentum of the 

jth pseudoparticle times the number of sites. That is the phase for a free 
particle moving around this ring of length N. The second term can be 
interpreted as the phase shifts induced in the wave function of the jt h 
pseudoparticle by the (pair) interaction with the rest of them. In other 
words eq. (3.29) ensures the periodicity of the "wave function" when turning 
aroung the ring. This interpretation of the BAE extends for more general 
models[41. 

This concludes our exposition of the Bethe Ansatz solution of the 
six-vertex model. A more general Bethe Ansatz construction provides the 
eigenvectors of the eight-vertex model[17.341. It has been shown recently 
that these eight-vertex eigenvectors become the six-vertex eigenvectors in 
the limit where the eight-vertex weights become those of the six-vertex 
model[351. 

The Bethe Ansatz has been also generalized for multi-state vertex 
models. That is when dim~ and/or dim 'V' is larger than two. The resulting 
construction is a set of nested Bethe Ansatz. It is reviewed in ref. [4] 

IU. THE LIGHT-CONE LRTTICE RPPRORCH 

This approach starts by discretizing the two-dimensional Minkowski 
space-time in light-cone coordinates x ± = x :!: t. Space time is thus 
approximated by a diagonal lattice. This discretization scheme turns to be an 
useful regularization method for quantum field theories ( integrable or not ) 
since they become naturally connected with vertex models in their scaling 
limid43 -441. 

The sites in the light-cone lattice (fig. 11) are considered as world 

x 

Fig.11 Discretized Minkowski space-time. Sites are world events joined by 
world lines of the bare particle propagation. 
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events. Each site (event) is joined by light-like links to its four nearest 
neighbours along x+ and x_ . There diagonal links are possible world lines for 
the propagation upwards in time of "bare" massless particles. Particles on 
right-oriented (R) and left-oriented (L) links are called respectively right 
and left-movers. 

One then associates microscopic amplitudes to each site (world event) 
where two oppositely oriented world lines cross. These amplitudes describe 
the different processes that can take place, and must verify general 
invariance properties like unitarity. 

Let us start for the simplest case where each link describes only two 
different configurations. The general case of any number of states per link is 
considerezd later on. We assume that these two cases correspond to the 
presence or absence of a bare fermion without internal degrees of freedom. 
In general, there can be 16 different amplitudes per site corresponding to 
the 16 configurations (occupied/empty) of the four links joining there. Only 

U(1) invariant microscopic amplitudes will be considered here such that the 
number of particles is conserved at each site. U(1) transformations act on 
the link states by 

10> .... eir- 10> 
11 > .... e -ir- I 1 > (4.1 ) 

where I 0 > = (empty) and I 1 > = (occupied). Therefore, there are only six 
non-zero amplitudes as depicted in fig. 12. The correspondence witt> the 
general (non-symmetric) six-vertex model is evident. 

x x x x x x 
1 :: 1 0 > _ 1 empty> ; .. :: 11 > :: 1 occupied> 

Fig .12 The six non-zero microscopic transition amplitudes. They coincide 
with the weights of fig.10. 

Of course, space-time translational invariance implies that the 
amplitudes are the same in all sites of the lattice. It is natural (and causes 
no loss of generality) to set the nothing-to-nothing amplitude to be 1. 
Unitarity then requires 

n nt = 1 [2 = (4.2) 

While w 3 and w 4 are naturally interpreted as amplitudes for free 
propagation (being therefore related to kinetic energies in the continuum 
limit), w 5 and w 6 play the role of mass terms since they couple right and 
left movers. 
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Symmetry under parity transformation holds if 

b e (4.3) 

This corresponds now to an integrable six vertex model. Unitarity now reads 

I b j2 + Ic j2 = 1 be + be = 0 (4.4 ) 

One can organize these microscopic amplitudes at a site into a 4x4 unitarity 
"bare" S-matrix 

a c 

b d 

r1 000) 

I 0 c b 0 I 
lOb col 
lOOOwJ 

(4.5) 

where w;;; W2 and (K, 13, (K', 13' take the values 0 or 1 for empty or 

occupied links like in eq. (1.1). 

The amplitude for a global process, from a given state at t = to to 

another given state at a later time, is obtained by summing over the 
amplitudes of all allowed vertex configurations compatible with initial and 
final conditions and with boundary conditions. Each of these is given by a 
product of microscopic amplitudes W j. It clearly corresponds to the sum 

over all possible paths of an arbitrary, but constant in time number of 
particles. At any instant, a particle can move to the left or to the right at the 
speed of light. We are thus dealing with a discretization of Feynman path 
integral for fermions. 

It is convenient to parametrize band c following the constraints 
(4.4) as 

b = b(S,y) = shS / sh(S-iy) 
o<S<oo 

c= c(S,y) = shy / sh(S-iy) 
O<y<1t (4.6) 

This makes (4.5) identical the six-vertex model R matrix (3.1) up to an 
overall factors sh( e - I-;() and a redefinition of e --> Ie when W = 1. 

Actually W = 1 corresponds to a six-vertex model in an external field. 

Let us now describe the operator formalism for the light-cone 
approach[431. The unit evolution operators in the light-cone direction (R or L) 
are given by simply juxtaposition of the microscopic S-matrices (4.5) at the 
same horizontal level. That is 

12345678 2N·1 2N 

x x x x • 1 •• 1 II" 111"" I I. I x (4.7) 
2N 1 2 3 4 5 6 7 2N·2 2N·1 
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1 2 3 4 5 6 7 8 2N·l 2N 

X X X X •• I •• ' 1111 ••••• 1. I'" X (4.8) 
23456789 2N 

where the numbers 1, 2, 3, ... ,2N label the sites. Here time evolves upward, 
according to rule d) of sec. I. Here N is assumed to be even and cr j+N :; cr J' 

Notice that there are no summations in eq. (4.7)-(4.8). One can now define the 
two light-cone lattice evolution generators as 

H ± P = (2 i I a ) Log U RL ( e ) (4.9) 

where Hand P stand for lattice hamiltonian and momentum and a is the 
latttice spacing. 

Eq. (4.9) is extremely suggestive since it provides a lattice version of 
field-theoretic Hand P in terms of lattice vertex transfer matrices UR and 
UL • The natural question is now to find the eigenvectors of them. It will be 
shown now that this is possible using the techniques of sec. III and IV (and 
their generalizations) provided R[e) verifies the YB algebra (1.12)[43]. 

Let us consider the row-to-row transfer matrix "( [N] Ie, IX.] of 
eq. (1.23) [with 9 I gN = 1] with the particular choice of 
inhomogeneities (recall N = even) 

Ilj = (-1 )j+1 e 
6 = [+ e, -e, + .......... , + e ,-e) 

It then follow from eqs.(1.23) and (1.35) using eq. (1.13) that 

"((e,6J - UL[eJ 

"((-e,6) = URle)t 

Let us check (4.12). Setting (4.10) in (1.13) and (1.23) yields 

L 8<><171 8 71 0-1 R(e)"'27 372 0'2 ....... 8"'N-ll'N_l 81'NO'N_l 

71, .. ·.l'N 
NI2 n R[e)"'2j."'2j>1. . 

o 2j-l,0 2j 
j= 1 

after using eq.(1.35) repeatedly. 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

The key relations (4.9), (4.11 )-(4.12) connect the lattice Hand P with 
the row-to-row transfer matrices whose eigenvectors and eigenvalues can 
be constructed by the algebraic Bethe Ansatz developed in sec. III and IV. The 
light-cone or diagonal-to-diagonal transfer matrices result to be particular 
cases of the inhomogeneous row-to-row transfer matrices. The 
commutativity property (1.9) gives in addition : 
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[ ,,([A,6) 

[ ,,((A,6) 

o 
o • [ UL[e) • uR[e]t ] o (4.14) 



One can consider the infinite sequence of commuting operators 
(O~K<co) 

(4.15) 

They all commute with UL(e), uR+(e) and with each other. 

Let us now consider the continuum limit (a --+ 0) of the lattice models 

through eq. (4.9). The antiferroelectric ground state (regimes I and II) of 
'('[1\, e) corresponds just to the physical vacuum (filled Dirac sea) of the 

OFT defined by Hand P. The bare vaccuum is the ferromagnetic state In>. 
The physical vaccuum follows here by BA by filling the bare one [eq.(3.19») 
with interacting pseudoparticles (their phase shift is given by $(}'-j-Aj'Y» 

and not free particles as for the free Dirac field. Only when Y = 1£12 the phase 

shift is a constant (1£). 
The particle states follow from the lowest excitations. Since a factor 

a-I appears in H ± P [see eq. (4.9») only gapless models yield finite energy 

states in the scaling limit. Moreover, in order to compute the energy and 
momentum in the scaling limit it is enough to know the eigenvalues of 
1:' ( :!: e, e) close to the bottom of the spectrum. The low-lying excitations are 

associated to holes and complex solutions with lar-ge (real) rapidity. 
Moreover, their eigenvalues normalized to the vacuum ones [as in eq. (3.55») 
are independent of the inhomogeneities 

Let us start by the fermion model (with w ~ 1) associated to the 

six-vertex models (eqs. (4.1)-(4.6». We need the eigenvalues A(!:!) of the 

transfer matrix 't(O). The solution of the six vertex BAE derived in sec.1I1 
yields for the excited states in the thermodynamic limit 

lim A(8,$) 1 Ao(!:!) = exp[ -ig(8,$) ] (4.16) 
N--7~ 

where g(8,$) reads for hole excitations 

g(!:!,$) = 2 arctg[expn($+iO)/y] (4.17) 
and $ is the hole position. Combining eqs.(S.16)-(S.17) with eqs.(4.9)-(4.t2) 
yields 

e: ± P = - (1/a) g(-iv) , v£~ (4.18) 

Let us start by a hole excitation. We find for large v from eq. (3.55) 

and (3.61) of ref.[4] 

g(±iv) = ±2 exp[ ± 1£0h/y -1tv/y) + O(exp[ - 21£v/yJ) (4.19) 

v ~ +00 
after discarding an irrelevant 1t (It does not contribute to the eigenvalue of 
'('tel since the holes appear always by pairs). We find a relativistic spectrum 

provided v ~ +00 when a -+ 0 keeping fixed the renormalized mass 

m = (4/a) exp[ - 1tv/y] (4.20) 

The dispersion law results 
e: = m cosh( 1£0h/y ) 

P = m sinh (1t8h/y) (4.21) 
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So, lt8 h/y is the physical rapidity of the particle [see eq. (2.14)]. The 

particles in eq.(4.21) correspond to the fermion or antifermion in the massive 
Thirring model or the sine-Gordon solitons. Besides these holes one finds 
complex solutions of the BAE disposed as strings (that is, with imaginary 
parts equally spaced by y or It-Y). They provide relativistic particles in the 
same scaling limit (4.20) with masses 

2m sin( ~ m,( n/y - 1 ) } 1 S n < [n/(n - y )] (4.22) 

where [x] stands for integer part of x. Eq.(4.22) follows from eqs. (4.18) and 

(3.61) of ref.[4]. This set of particles are fermion-antifermion bound states. 
They relate semiclassically to the breathers of sine-Gordon as the fermions 
or holes relate to the sine-Gordon solitons. The S-matrix describing the 
two-body interaction of all these particles follows by direct calculation 
from the SAE using standard methodsl491. 

The preceding exposition of the light-cone lattice method applies to 
all gapless vertex models. In ref.[43] the models with rational R-matrices 
associated to simple Lie algebras are analysed. The q(2q-1) vertex model 
associated to the deformed Aq_1 algebra is also considered in its gapless 

regime[4,431. 

Within this light-cone approach it is possible to construct explicitly 
the canonical bare fields on the lattice and to show that in the scaling limit 
(4.20) the massive Thirring model emerges[431. 

Eq.(4.20) defines the renormalized scaling limit yielding rigorously 
all physical quantities. There is in addition the bare scaling limit giving the 
bare quantum fields in the continuum[431. 

We use the word "rigorous" since we solve in this approach a lattice 
model exactly, then we take the infinite volume limit and finally the a --+ 0 
(scaling) limit. In other words, here one solves (exactly) a model with both 
UV and volume cutoffs and then lets the cutoffs to infinity in a precise way. 
This is clearly much better than the coordinate Sethe-Ansatz (CSA) where 
the UV cutoff is introduced after the obtention of the solution. For the MTM 
and the chiral Gross-Neveu model the results of the CSA coincide with the 
light-cone approach for on-shell magnitudes. Hence the CSA works well in 
these cases. This is not the case for the multiflavor Chiral fermion model 
treated in ref.[45] by CSA. As it is shown in ref.[43] the results of ref.[45] are 
not correct. 

Starting from richer vertex models than the six-vertex a large set of OFTs 
arises[43J. Let us first summarize the integrable vertex models 
classification in terms of simple Lie Algebras. There exist an inequivalent 
vertex model for each representation space of each simple Lie algebra. In the 
rational case these models are invariant unde the corresponding Lie group in 
the sense of eq.(1.17). In the trigonometric/hyperbolic case the invariance 
under the Cartan algebra survives and for the rest we have the invariance 
under the quantum group in the sense of eq.(5.28). 

In these models, the links can be in any of q different local states 
where q is the dimension of the respective representation space.As an 
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illustration let us take the model associated to the Aq_1 Lie algebra in the 

fundamental representation. The R-matrix reads for this case[4,46l: 

Rabij (9) = 0ia 0jb shy exp[ 9 sign(a-b)] + sh9 Bib 0ja 

Raa ii (9) = 0ia sh( y ± 9 ) , ± for regime I I III. 

fo r i;ej, 

(4.23) 

Here 1 ~ i, j, a, b, ~ q where q can take any value ~ 2 In the trigonometric 
regime (regime II), some weights are complex. The R-matrix reads: 

Rabij (9) = 0ia 0jb siny exp[ i9 sign(a-b)] + sin9 Bib 0ja for i;ej, 

Raa jj (9) = 0ia sin( y+ 9) (4.24) 

This is a regular R-matrix, since 

Rabij(O) = 0ia 0jb shy (or 0ia 0jb siny) (4.25) 

The YB algebra defined by the R-matrix (4.34) is invariant under the 
group 

[U(1 )]q-l ® Zq (4.26) 

The cyclic group Zq is generated by powers of the matrix h defined as 

hab = 0a+l,b 
We have hq = 1. 

with (4.27) 

The R-matrix (4.23) enjoys PT invariance but not P or T 
separately: 

Rabij (9) = Rijab(9) , Rabij (9) ;e Rbaji(9) , Rabij (9) ;e Rjiba(e) (4.28) 

There are q(2q-1) non-vanishing weights in the vertex model defined 
by this R-matrix. Eq. (4.28) tells that the model is invariant under a 180 0 

rotation of the whole lattice. For q = 2 we recover the six-vertex model. 
In this model the links can be in q different states. In regime III, for 

d' > 1. 2e + d' fixed. the model has a long-range generalised ferroelectric 
order and the dominant configurations are formed mostly by vertices of type 
R a 1 a 1 (for e > 0) and some Ra.q-l a.q-l . There are q different predominant 
patterns following one from each other by shifting by one the state of all 
links. This generalises the six vertex (q = 2) situation [11. Regimes I and III 
map into each other through d' -+ -d' + I IT . 

The exact solution of this q(2q-1) vertex model can be found in 
ref. f4,18]. That is the eigenvectors and eigenvalues of the transfer matrix 
'( [N](e, CK ) associated to the R-matrix (4.23)-(4.24). 

The structure of the nested Bethe Ansatz (NBA) that solves each of 
these vertex models looks like the one of their respective Oynkin diagram. It 
must be noticed that a proof that these BAE lead to the eigenvectors and 
eigenvalues of the transfer matrix has been explicited only for a subset of 
models: those associated to U(N)[4,18], Sp(2N)[19], and SO(2N) [20] and some 
others. However, these statements are extremely likely to hold for all 
semisimple Lie algebras. 

Let us describe the BAE for the trigonometric models. The derivation 
of these equations (for a subset of Lie algebras) is in refs.[19,20]. The 
eigenvalues of the transfer matrix can be written as a sum of terms. The 
dominant one in the infinite volume limit (N -+ 00) is 
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N r ~ 

= n n n sh[ i( 8 - 8a) + ,..(k)jk - i 'Y (Ola,uk) ]/ sh[ i( 8 - 8a) + A(k)jk + i 'Y (Ola,uk) ] 

a=lk=ljk =1 (4.24) 

for e in the vicinity of e = 0, I e I < eo . Here el' e2, ...... ,eN are 

given numbers describing inhomogeneities of the lattice as discussed in 

sec. II [1,4,5] and A(j) -= (Ajk(k) ,1 ~ jk ~ Pj' 1 ~ k~· r}. The wa are 

fundamental weights and uk are the simple roots of G whose rank is r. (u, 

p) stands for the usual inner product in root space. The A jk (k) (1 ~ ik ~ Pj 

, 1 , k , r) are solutions of the nested BAE (NBAE) : 

N n sh[ ",(k)1< - i8a - i 'Y (Ola,uk))/ sh[ ",(k)jk - i8a + i 'Y (Ola,uk)) 
a=l 

r Po 

~ -n n sh[ A(k)ik - A(i)jj - i 'Y (uk,ui) ] / sh[ ",(k)jk 
.i=1 ~= 1 

1 ~ jk ~ Pk 1 ~ k ~ r . 

- A(i)jj + i 'Y (uk,ui)] 

(4.25) 

Here the upper indices (i) label the steps in the NBA. Each step is associated 
to a simple root Uj • The structure of eq.(4.25) coincides with the respective 

Oynkin diagram: when two roots, say ue and ui' are orthogonal, their 

associated parameters A JI (e) and A jj(i) (1 ~ jt ~ Pe, 1 ~ ji ~ Pi ) are not 

directly coupled through (4.25) since (Ui' ue) = O. It must be noticed that 

due to the orthogonality of fundamental weights and simple roots [47] 

(4.26) 

The normalization of the simple roots can be absorbed as a multiplicative 
factor on the A jj (i) 

We refer to the original references and to the reviews [4] for the 
resolution of the NBAE. Let us just say that there is a ferroelectric regime 
(regime III) where the ground state ( eigenvalue of 'tee) with maximal 
modulus) is a maximal weight vector. In regimes I and II the ground state is 
antiferroelectric with non-zero and zero gap respectively. There exists r 
branches of excitations formed by holes in the NBAE. In addition complex 
roots that can be interpreted as hole bound states appear in regime II for 
o < 'Y < rr.l2 yielding further excitations. When non-fundamental 
representations or non-simply laced algebras (even in their fundamental 
representation) are considered the ground state turns to be formed by 
complex roots (strings for N = 00 ). For example, this happens in the A1 case 

for spin S ~1 [481. In order to derive a OFT in the continuum limit from these 
lattice models in the light-cone approach it is enough to know the excitation 
eigenvalues Ak( 8, $) of 't(8) . We find 

lim Ak( 8, $) / Ao( e) 
N~oo 
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exp[ - i gk(8, $) ] 

, 1 ~k~r 

(4.27) 



where Ao( 0) is the ground state eigenvalue of 1:(0) • k labels the branch of 

excitation, q, the hole position in rapidity and 

gk(O. q,) = (mk 11' 'Y) exp [ ± K( q, + iO ) Iy ]{ 1 + o( exp( - 100 I) } 
i9 --* -00 (4.28) 

where 8 > O. The parameters K and me are given in Table II. K is just 

2 TT times the length squared of the shortest simple root in the normalization 
where [47] 

THBLE II 

Integrable OFT associated to trigonometric Yang-Baxter 

algebras in the light-cone approach. We indicate the 

underlying Lie Algebra !J. the respective scale parameter K 

(it coincides with the one-loop beta function) and the 

corresponding mass spectrum. 

Lie Algebra K 

An 2 l' I(n + 1) 

Bn l' 1(2n - 1) 

en 1'/(n + 1) 

On 1'/(n -1) 

E6 1'16 

l' 19 

l' /15 

1t/9 

1t 16 

sin( 1t kI[n + 1]). 1 S k S n 

sin(1t k/[2n-1]). 1 S k S n-1. mn = 1/2 

sin( 1t kl2(n+ 1». 

sin( 1t kl2( n-1). 

m ± = 1/2 

1S ks n 

1 S k S n-2 

m1 .. m5 =m6 I 2 = -./3 I 2 

m2 = m4 = (3 + ...J 3 ) I 2 

m3 = ( 3 + ...J 3 ) I ...J 2 

m 2 = 2m1 cos1t/18. m3 = m1 1(2 sin1t/18) 

m4 = 2 m2 cos1tl9. ms = 2m2 sin21t/9. 

m6 = 2m1 sin21'/9. m7 = 2 m1 cos1'/9. 

m2 = 2m1 co s1'/5 , m3 = 2m1 cos1'130. 

m4 = 2m2 cos71t130. ms = 2m2 cos21t/15. 

m6 = m2 m31 m1' m7 = m2 m4 I m1 ' 

ma = m2 msl m1 . 

m4 = 2 m1 cos21'/9. m3 = m1 1(2sin1t/18), 

m3 = 2m1 cos1'/18. 

m2 = m1 [(...J 6 + ...J 2 ) I 2 ] . 
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8(Ea ' E_a) 1, 
and 8( x , y) is the Killing form. 

Light-cone evolution operators can be defined through eqs.(4.7)-(4.9) 
for any R-matrix. Let us see that a relativistic dispersion law arises from 
any excitation spectrum as given by eq.(4.27). Let us call Ee (tp) and pe (tp) 

the eigenvalues of Hand P, respectively. Eqs. (4.9) and (4.27) yield 

Ee(Sh) = [exp(-hcS/y)/(nay) 1 me cosh( KSh/y ) + O( exp( -2iK8/Y) ) 

ie -+ 00 (4.29) 

Pe(Sh) = [exp(-iKS/y)/(nay) 1 me sinh( KSh/y ) + O( exp(-2iKS/y) ) 

ie -+ 00 

It is then natural to define the scaling limit according to 

a -t 0 , ie -t 00 ,I.l = exp(-iKS/y)/(nay) = fixed (4.30) 

is the renormalised or physical mass scale and the particle mass 
spectrum of these integrable OFTs is given by 

Me = J.l me (4.31 ) 

We recognize in eq.(4.29) as the physical particle rapidity. 

This is a very general way of constructing integrable OFTs. The 
operators Hand P given by eq. (4.9) are well defined on the lattice as well 
as all the higher conserved charges. In the continuum limit a -t 0, they 
provide the energy and momentum of a relativistic invariant OFT, as long as 
the spectrum of the initial vertex model is gapless. This is usually the case 
for rational or trigonometric weights. In addition to the particle spectrum , 
the S-matrix is exactly calculable from the BAE by standard methods[49,50l. 

As it was the case for the MTM, the evolution operators UR and UL are 

much simpler than Hand P on the lattice. This was exploited before in 
ref.[43] to obtain the lattice field equations for the fermionic fields of the 
MTM regularized by the lattice. An analogous local construction would be very 
interesting to obtain in the general case of a Lie algebra G. We present in 
ref. [43] a lattice construction for the current operators for all rational 
models. The Hand P are always given by eqs. (4.7) and (4.9). The renor
mali zed scaling limit (4.30) yields the mass spectrum (4.31) [see Table II] . 

In refs.[43] it is shown that we obtain in this scaling limit of rational 
vertex models associated to ~ the non-abelian Thirring model associated to 
the group ~. This theory, also called Chiral Gross-Neveu model, has as 
Lagrangian, 

~ = i 'P )P¥ - g ('P Yl.l ta. 'P ) ('P yIl t/3 'P ) Ka.13 (4.32) 

Here 'P transforms under the irreducible representation p of ~, Fare 

the ~ -generators in that representation and Ko< Il is proportional to the 
inverse of the Killing form. Actually the Hand P constructed from eqs. 
(4.7)-(4.9) describe the zero-chirality sector of the model (4.32). 
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The field theoretic models discussed up to here correspond to finite 
dimensional 'V' and 89.. Namely, a finite dimensional vector space at each 
link in the light-cone lattice. This is clearly appropiate for fermion or 
parafermion fields. Since there exists infinite dimensional representations 
of VB algebras, also bosonic QFTs may be described in this framework.The 
SU(2) principal chiral model (PCM) is defined by the lagrangian 

(4.33) 

where g £ SU(2). The lagrangian (4.33) exhibits a SU(2) ® SU(2) invariance. 
The infinite spin representation of the SU(2) invariant R-matrix 

(rational limit of the six-vertex model) relates to the PCM as it is 
investigated in ref. [51]. For arbitrary spin S, this R-matrix writes[52] 

R12(8) = r(2S+1+i 8) r(J+1-i 8) / [r(2S+1-i 8) r(J+1+i I)) 1 (4.34) 

where the operator J is defined by 
J(J+1)= 2S(S+1)+2S I ® S2 

8'1 and 8'2 are spin S operators acting on the spaces 89. and elf' respectively 

[(51)2 = (52)2 = S ( S + 1 ) ]. The light-cone hamiltonian (4.7)-(4.9) provides 
particle states that yield all particle masses and S-matrix amplitudes for 
the PCM letting S = 00. 

The conserved currents in the PCM read 
JilL g a~(g-1) and JIlR g-1a~g 

They transform under the left and right SU(2) groups, respectively. 
One obtains left or right transforming states depending 

identify J± L or J± R with the spin operators in the lattice: 

(1/ga8) 2::: oiSi2n -+ J+L(x) or J+R(x) 

(1/ga8) 2::: oi Si2n_1 -+ J_R(x) or ' J_L(x) 
1sis3 

upon we 

(4.35) 

with x = na for a -+ 0 .That is, the H obtained through eq.(4.9) is not the full 
hamiltonian of the PCM as it is proven in refs.(51) and (53). There is a very 
simple explanation for this, the physical particle states for this model 
transform under the group SU(2)L ® SU(2)R and from the present 

construction only left or right operators can be obtained. Therefore all states 
obtained in this way are left (or right) singlets. The detailed counting of 
states in ref.(51) is confirmed by the simple proof of ref. (53). 

This whole construction generalizes to the SU(N) PCM. It also applies 
for Chiral fermion models and PCM with one anisotropy axis (trigonometric 
VB algebras)[54]. 

U. BRRID GROUPS RND QURNTUM GROUPS 
FROM YRNG-BRHTER RLGEBRRS 

Let us see 
trigonometric/hyperbolic 

fi rst 
VBA. 

how braid 
In the limit 

groups follow from 
e -+ :!: 00 I:!: joo) the 
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hyperbolic/trigonometric generators behave as e±Ke(e+Ke ) times a well 
defined operator (K being a constant). Since such exponential factor can be 
absorbed in T(e) respecting the VBE, we can in general assume that the limit 

lim T(6) = T± (5.1 ) 
o-+±oo 

is finite and non-trivial for hyperbolic (trigonometric) VB generators. 
Actually a symmetry breaking transformation (2.23) may be necessary in 
order to find a non-trivial limit. These limiting operators can be graphically 
represented as follows 

/ 
/ 

Fig. 13 A braid from Bn. 

Letting 6 --+ ± 00, e' --+ ± 00 with 6 - e' --+ ± 00 in the hyperbolic 
regime of eq. (1.1) yields 

Tt(K,I) Tt(K,J) Tt(I,J) = Tt(I,J) Tt(K,J) T±(K,I) (5.2) 

In addition eq.(1.42) tells us that T + and T_ are inverses of each other 

(5.3) 

A factor ..Jp( e) has been absorbed in the definition of T( e ) as in eq. (5.1). 
If one consider R matrices instead of general VB operators T(I,J)( 6 ), 

eqs. (5.2)-(5.3) read 

R±23 R±12 R±23 = R±12 R±23 R±12 

R+R_ = R_ R+ = 1 

(5.4) 

(5.5) 

where now Vi = VJ = VK = A, R12 = R ® 1, R23 = 1 ® Rand R± = T±(A,A). 

Lines intersect in just two ways in the ultrarelativistic limit as 
depicted in fig.13. ( For finite 6 we have a continuous family of possibilities 
parametrized by the angle 6 ). We can interpret geometrically this two 
possibilities as one line being over the other or viceversa. This fact naturally 
connects VBA in the 6 = ±CO limit with braids, knots and links. The VB 
property allowing to push lines through intersections (Z-invariance, see sec. 
I) means now simply continuous deformation of lines without tearing them. 
More technically this connects with the Reidemeister moves. An important 
problem is to compute link and knot invariants which are intrinsic and 
therefore the same for topologically invariant objects. This can be achieved 
by computing the partition function Z for 6 = ±oo of an integrable model 
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taking as lattice a given knot, braid or link. Since Z is precisely Z-invariant 
it will be a topological invariant. 

Let us now study the connection of the ultrarelativistic limit of 
hyperbolic/trigonometric YB algebras with braids, knots, links and quantum 
groups. The matrices R+ and R_ will give a representation of a braid group in 

the following way. Let us consider the operators Xi(e) acting in the tensor 

produict of n auxiliary spaces .iI. [55] 

Xi(8) = 1 ® .......... ® R ( e) ® 

(i, i+l ) 

That is, 

They fulfil the relations 

[ Xi ( 8) ,Xj ( 8') ] = 0 if 

® 1 

n 

n 

R~~+I8;8;+1 (8) n 0llk'~ 
kjlll!i,hl 

I i - j I ~ 2, V 8, e' 

Xi( 8 ) Xi+ 1 (8 + 8' ) Xi ( 8' ) Xi+ 1 (8' ) Xi ( 8 + 8' ) Xi+ 1 (8) 

Xi ( 8) Xi ( -8) = 1 

(5.6) 

(5.7) 

(5.8) 

The last two equations being a consequence of the YB equation (1.11) and the 
unitarity eq.(1.42), respectively. 

These operators are clearly of "light-cone" type. They are closely 
related to the light-cone evolution operators discussed iR sec. IV. We find 

U+ = Xl X3 .... XN_l 

U_ = X2 X4 .... XN 

where[43] (see eqs.(4.7)-(4.8)) 

UR = V U_ 

UL = U+ vt 
Here V ( vt) is the shift operator affecting one-half translation to the right 
(to the left). There are two different limits for hyperbolic (trigonometric) YB 
algebras : 8 -- ! 00 ( ! i 00 ) . Upon adequately normalizing R( 8) and 
eventually applying a symmetry breaking transformation (2.23) in order to 
have a finite and non-trivial limit, we find 

bi = lim Xi ( 8 ) , bi-1 = lim Xi ( 8 ) (5.9) 
8-+00 8 __ -00 

and analogous relations for trigonometric YBA. The operators bi 

( 1 siS n) fu lfil: 

bi bj = bj bi when Ii - j I ~ 2 , 

bi bj+1 bj bi+1 bj bi+1 (5.10) 
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Let us briefly recall the notion of a braid group[561. Braids are formed when 
n points in a straight line are connected by n lines with othe n points on a 
paralell line as shown in fig. 14. When the lines connecting the points have no 
intersections, the braid is called trivial . A general n-braid is obtained from 
the trivial one applying succesively the operations bj and I or the inverses 

bj -1 ( 1 ::; i ::; n -1 ). The operations bi and bi-1 are depicted in fig.15, 

1 

Fig.14 The elementary operations bj and bi -1 from the braid group Bn. 

l i + 2 

('-. . .... i-l-I <+2 

2. 

-~ 
b· ... 

1 2. 

Fig.15 The two ways that lines may intersect in the e = ±oo limit. 
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Then each topologically equivalent class of braids is identified with an 
element in Bn' Eq. (5.10) shows that the e = too limit of hyperbolic 

R-matrices provide a representation of Bn. This connection between YB 

algebras and braid groups revealed recently very fruitful to obtain knot 
invariants and link polynomials [57,581. 

We want to remark that sometimes eq.(5.4) is' called YB equation in 
the literature. This is somehow misleading since eq.(5.4) is only a particular 
case of the the YBE with spectral parameter eq.(1.1) or (1.11). It would be 
more appropiate to call eq.(5.4) 'braid equation'. 

A braid invariant is directly obtained by taking the trace of the 
product of bi's and b(:-1's that represent the given braid. Moreover, a knot or 

a link can be associated to many different braids (Alexander's theorem). The 
so-called Markov moves relate equivalent braids associated to the same link. 
Remarkably enough, it is possible to define a trace which is invariant under 
Markov moves and therefore yields a link invariant. This trace is analogous to 
Z with twisted boundary conditions. 

The exchange of points in the n-point conformal blocks forming the 
conformal invariant correlation functions yields a representation of a braid 
group (5.10) [591. We want to remark that the R-matrix associated to such 
braid groups defines a lattice statistical model whose critical behavior is 
described precisely by the conformal theory yielding this braid group. 

Let us now discuss the quantum groups. They are related to 

trigonometric/hyperbolic YBA in the a = ± 00 limit (as the braid groups). 
Let us start by the six-vertex case, where [eq.(3.4)). In the a = too limit, the 
YB operators Tab(a) (1~a.b~2) yield for regime I [5) 

Tll ( a) = (y±)N exp( ±y 82 ) [1 + O( y± -2) ] • 

a ~ too 

T22 ( a) = (Yi)N exp( +y 82 ) [1 + O(Yi -2) ] 
a ~±oo 

T 12 ( a) = (Yi )N.1 sh y L( +y) [1 + O( Y± .2) ] 

e ~ too 

(5.11) 

(5.12) 

(5.13) 

T21 ( e) = (Y± )N.1 shy J+( ±y) [1 + 0 (y± -2)] . (5.14) 

where 
N 

Y± ± i exp[±( e + yl2 )] 8 z = i L (O'alz 
a-I 

and 

N k-I N 

J±(y) L: n exp(~'t(O'Jlz} (O':,:lk n exp{-~'t(O'llz) (5.15) 
k=1 J=I I = k+ I 

(Compare with eqs.(3.8)-(3.9)). 

The ultrarelativistic limit of the YB algebra relations (3.13) that followed 
from the R-matrix (3.1) yields the algebra of the operators J±(y) and 8 z. We 
find [1] 
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(S.16) 

(S.17) 

Analogous relations hold with y -+ iy in the trigonometric regime. 

Eqs.(S.13)-(S.14) define the so-called SUy(2) quantum group. That is, a 

one-parameter deformation of the SU(2) Lie algebra. Note that 
eqs.(S.13)-(S.14) for y -+ 0 reduces to the usual angular momentum algebra. 

The operators J+( -y ) , J_( -y) and Sz obey the same algebra than J+( y) , 

J_( y ) and Sz. In regime II these representations are complex conjugate of 

each other. 

We want to notice that J±(y) and Sz have a coproduct structure heritated 

from the YB algebra [eq.(1.19)]. Let us call J±(N-l)(y), S(N-l)z (J±(l)(y). 

S(l)z) the operators acting on (N-1) sites (the Nth site) of the line. Then, we 

find from eq.(S.1S) 

J±(N)(y) = ~(N-l,l)( J±) ;;; 

J±(N-l)(y) ® exp[ -yS(1)z] + exp[yS(N-l)z] ® J±(l)(y), 

S(N)Z = D.(N-l,l)( Sz) ;;; 

S(N-l)z ® 1(1) + 1(N-l) ® S(l)z, 

(S.18) 

(5.19) 

where S(1)z;;; ~o(l)z and J±(l);;; o(l)± . Eqs.(S.18)-(5.19) define a 

coproduct endowing (5.16)-(5.17) with a Hopf algebra structure. That is, if 
J±(.¢!. )(y), S(.¢!.)z and J± ('\I')(y), S('\I')z separately obey eqs.(5.16)-(5.17) as 

operators on .s& and qr, respectively. then D.(.¢!.. '\1')( J±) and D.(31. 'V' )( Sz ) as 

given by eqs.(S.18)-(S.19) also obey eqs.(S.16)-(5.17). Notice that 
D.(.¢!.. '\1')( J± ) ~ D.('\I' . .¢!.)( J±). That is this coproduct is not cocommutative 

(although D.(.¢!.' '\1')( Jz) = D.('\I' . .¢!.)( Jz ) ). 

The physical interpretation of the coproduct definition for YB [eq.(1.19)] is 
transparent : it is the way to combine the operators associated to two 
independent sites in order to have the same mathematical structure (YB, 
there) for the combined operator as for each one separately. In most physical 
situations the coproduct is a simple direct sum. For example, the spin 5 of a 
two site lattice reads, 

S S(l) ® 1(2) + 1(1) ® 5(2) 

where S(l) (S(2») is the spin of site 1 (2). For YBA the coproduct is 

depicted in fig.3 for two sites and in eq.(1.19) for N sites. This coproduct 
(1.19) ensures that T ab(N) fulfils YB when each tab(k) (1 ~ k ~ N ) obeys YB . 

The coproduct (S.19) is the consequence of the YB coproduct (1.19) for 
infinite e. 

One parameter deformations of all simple Lie algebras are known. They 
appear as ultrarelativistic limits of hyperbolic YB algebras. They can also be 
defined directly as deformations of classical Lie algebras using the Weyl 
basis. 
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It is possible to relate the operators J± (y) with the usual spin operators 
St. Sz obeying 

[S+ • S_) = 2Sz [ Sz • S± ] = ± S± 

Inserting the ansatz 
J+(y) = S+ f( y. Sz. S) • L( y) = f( y. Sz. S) S_ 

in eqs. (5.16)-(5.17) yields the recursion relation 

[f( y. Sz-1. S)]2( Sz -1)[ S(S+ 1) - Sz( Sz - 1») -

[f( y. Sz. S)]2 [ S(S+ 1 l - Sz( Sz + 1 l] = sin( 2ySz) / siny 

(5.20) 

(5.21 ) 

(5.22) 

where S ( S + 1 

solution[60] 
) = (S+ S _ + S_ S.+. )/2 + (Sz)2. as usual. This has as 

f( y. Sz. S) _1_ 
siny 

sin[y(S-Sz)] sin[y(S+Sz+1)] 
(S-Sz ) (S+Sz+ 1 ) 

(5.23) 

The quadratic ("Casimir") operator commuting with J±(y) and Sz writes 

here 
e = H J_(y) J+ (y) + J+ (y) J_(y) ] + cosy sin2( ySz ) / sin2y (5.24) 

This deformation of 52 has the value 

e = sin[(S+ 1 h] sin[Sy] / sin2y (5.25) 

In summary eqs. (5.21)-(5.23) explicitely display the SU(2)y quantum 

group generators in terms of the usual SU(2) generators St. Sz. 

The six-vertex model is invariant only under z-rotations and not under the 
full SU(2) group as long as y "# O. 1t . Let us see how this a deformed SU(2) 
invariance appears using J+( y ) • J_( y ) and Sz .This analysis is easier upon 

a symmetry breaking transformation (2.23) with 11 = -~ . v = 0) = O. Only the 

off-diagonal elements of Rab cd (6) are affected by this transformation : 

~1212(e) = exp(6)c • ~2121<e) = exp(-e)c 

(It must be noticed that this form ~ naturally emerges from the· Toda field 

theory[46]). Then. the generalization of the invariance under S± for Y'" 0 

is[61 ] 

[ R(6). o± ® exp( -~ y oz) + exp( ~ y oz) ® ° ±] = 0 (5.26) 

This implies for the N-site VB operator T ab(.¢!· '11')(9) using eqs. (1.13) and 

(1.21) : 

T (.¢!. '11')(6) [ J±(y) ® exp( -~ y oz) + exp( y Sz) ® ° ± ] 

[ ° ± ® exp( - y Sz) + exp( ~ y oz) ® J±(y) ] T('¢!·'II')(9) (5.27) 

where ® stands for tensor product between the auxiliary space ~ = G2 
(spin ~ ) and the vertical space 

'\I' = ® ( e2 )j 
lsisN 

Eq.(5.27) can also be derived from the asymptotic behavior of the VBE (1.3) 
using the eqs.(5.11 )-(5.13) transformed for the f (6). 
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In eq.(5.27) we recognize the coproduct (5.18)-(5.19). Therefore, we 
can express the 'quantum group invariance' in the compact form 

(5.28) 

where 6(oIQ.· 'V')( J±) is given by eq.(5.18). The invariance under z-rotations 

(Cartan algebra here) writes in the same fashion : 

(5.29) 

where 6(oIQ.· 'V')( Jz ) is given by eq.(5.19). 

The z-rotations invariance yield for the transfer matrix 
[ Sz, t a (6)] = 0 

where t a (8) = exp(ia./2) A(6) + exp(-ia./2) D(6). Now, taking trace on ~ in 

eq.(5.27) yields 

t_y(6) J+( y) - J+( y) t y(6) + 2 exp(-y/2) sinh{ y( Sz - ~)} C(6) 0 

t_y<8) J_( y ) - J_( y) ty<8) + 2 exp(y/2) sinh{ y( Sz + ~)} B(8) 0 

Here we restricted ourselves to the "y-deformation" of the SU(2) algebra. 

The y-deformations of all simple Lie algebra are known[61 1. They are also 

connected with the 6 = 00 limit of YBA[41. Moreover the quantum group 
invariance (5.28)-(5.29) generalizes to all trigonometric/hyperbolic YB 
algebras. 

To conclude, I want to stress that YB algebras are more general and 
powerful tools than the quantum groups. Moreover, the elliptic YB algebras 
provide additional structures beyond the quantum grou·ps. 

UI. SURUEY OF RECENT PROGRESS 

Let us very briefly summarize some recent progress in the domain of 
integrable theories. The full account can be find in the original references. 

In ref.[65] we obtained the dominant finite size corrections to the free 
energy fL - f~ for a U(1 )-invariant conformal 2D theory on a cilynder with 

arbitrarily twisted boundary conditions. We found 

f L - foo = n( C - 24 6 0 ) / ( 6 L) (S.1 ) 

where c is the central charge and 6 0 is the conformal weight of the 

operator which realizes the twist by the angle 6. As examples of the general 
formula, the free chiral massless field and the massless Thirring model are 
worked out in detail. As an application, we identify the proper twist 
operator, in the scaling limit, of the XXZ quantum spin chain. 

Eq.(6.1) was first derived by exact finite size calculations from the BAE 
(see ref.[4] for a review). Later we realize that these universal results could 
be derived independently of the integrability of the model only using the 
conformal invariance. The arguments in ref.[S5] can be considered as the 
generalization to twisted boundary conditions of refs.[66]. 
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In ref.[67] properties of the Thirring model solution obtained from the XXZ 
Heisenberg chain in the continuous limit are computed exactly using the 
Bethe Ansatz. 

The fermion fields, vector current, axial anomaly and equal-time current 
commutators are constructed explicitly on the lattice and then its continuous 
limit is obtained. An explicit coupling constant dependence is found for the 
Schwinger term. This result, together with the current correlation behavior 
and the conformal weights of the fields here, shows that this Thirring model 
solution is new. That is, it is a spin 1/2 solution not contained in previous 
families of continuous solutions. More preCisely, the continuous limit of the 
XXZ chain does not fit into the two-parameter solution of the Thirring model 
described by Klaibf;3r[681. Moreover, field theoretic anomalies are found using 
the Bethe Ansatz for the first time. 

In ref.[42] exact relations on the lattice are found between SOS and vertex 
partition functions. We find that both partition functions are identical up to 
boundary conditions on the four sites at the corners. Therefore, for large size 
their difference wi Ii be much smaller than N-2. This shows, for example, 
that both models have identical conformal propE~rties (central charge and 
conformal weights). 

In ref.[35] the critical limit of the eight-vertex model eigenvectors 
obtained by means of the generalised Bethe Ansatz is shown to give the six 
vertex eigenvectors as constructed in ref.[42]. Furthermore an explicit 
mapping is established between these eigenvectors and the usual Bethe 
Ansatz eigenvectors of the six-vertex model. This allowed us to show that 
the index v labelling the eight-vertex eigenstates in refs.[17,34] becomes 
exactly the third component of the total spin in the critical limit. It turned 
out that this endomorphism between six-vertex eigenvectors involves the 
quantum group generators (5.12). Refs.[35] together with ref.[42] show the 
remarkable mathematical richness of the Bethe Ansatz constructions of 
eigenvectors already in the trigonometric case. 

In ref.[22] the continuous limit of the eight-vertex model is shown to give 
solely the Massive Thirring Model (MTM). More precisely, using the light-cone 
lattice approach we find a whole class of lattice spacing (a) dependences in 

the eight vertex parameters (e, y, k) yielding a relativistic field theory in the 
a = 0 limit. This turns to be the MTM with no dependence on k. The exact 
excitation spectrum calculation presented in ref.[22], lead us to these 
conclusions. Analogous results are reached from a perturbative 
renormalization group study of the anisotropic current-current continuum 
fermion field theory. 

This paper[22] gives a negative answer to the question : would the 
light-cone eight-vertex model give a new, more general, local quantum field 
theory in the continum limit? At first, one might expect a positive answer 
on the basis of the relativistic S-matrix interpretation put forward in 
ref.[69] for the eight-vertex elliptic R-matrix. Actually the fact that this 
answer is negative is directly connected with the c-theorem. 

The finite size resolution methods for the BAE proposed in ref.[28]. 
generalized and extended in refs.[29-32] concerns models where the ground 
state is formed with real roots. When the ground state is formed by complex 
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roots (strings in the infinite volume limit) only numerical results were 
available[27J. This applies to models like the spin S integrable spin chains 
and spin S vertex models for S <! 1. In these models the roots are 
conveniently parametrized as 
Spin 1: "±J= Y]j ! j( 112 + 8 J 
Spin S : "m J = Y]m J + i ( S - 112 - m ) + 8 mJ (6.2) 

where m = 0, 1,2, .... , 2S-1 and Y] J' 8J ,y]m J and 8 m J are real 

quantities. We have singled out in eq.(6.2) the imaginary parts ±1/2 and (S-
112 - m) which are expected by the string hypothesis. 8 J and 8 rn J vanish 

for N -+ 00 and fixed j . 
In ref.[33] the Bethe Ansatz equations for spin S (S<!l) integrable vertex 

models (and magnetic chains) are investigated for finite size N. It is shown, 
that the finite size corrections to the imaginary parts of the roots (Bethe 
strings) for N » 1 are given by 

8 m J = um/[ 2N a ( Y]m J)] (6.3) 

where m is the index of the root within the string [cfr. eq.(7.2)], II m J is the 

real part of the roots and 
a( 1] ) 1 I [2 cosh(n1]) ] (6.4 ) 

is the density of the real parts. The constants u m are determined by a set 

of algebraic equations, and are given explicitely by 

U m = (lin) In{ cos[~n(S - m - l)/(S + 1)] I cos[~lt(S - m)/(S + 1)] J 
(6.5) 

For the best known S = 1 case Uo = In2 I ( 2 n). Eqs.(6.2)-(6.3) hold in the 

isotropic case and generalizes to the anisotropic case through a rescaling of 
the BAE roots by a factor y-1 for 0::; y ::; nl(2S) . 

These results are found through a generalisation of the Euler-Maclaurin 
formula including non-analytic contributions in N-1 which turn out to be 
essential in the solution of the present problem. We want to notice that the 
explicit result for the u m was obtained through an inexpected relation of 

the algebraic equations fulfilled by the u m with the Chebyshev polynomials 

and their zeroes. 

Besides the vertex models discussed in the previous sections, there exist 
a large class of interesting integrable lattice models formulated in face 
language[37-401. It is therefore an important issue to generalize the vertex 
language methods to face language. In ref.[41] an analog of the Yang-Baxter 
Algebra (YBA) is defined in face language. The operators tua ',IW(8) 

introduced in ref.[41] enjoy all essential properties of the vertex language 
YBA. Using this face YBA an algebraic Bethe Ansatz (BA) is constructed for 
80S models ( unrestricted IRF models ). The face dual of the six-vertex model 
and the critical ABF model are worked out explicitely. Eigenvectors and 
eigenvalues of the transfer matrix are found and the corresponding BA 
equations derived and compared with the six vertex BAE. 

The connection between Conformal Field Theories (CFT) and Integrable 
Field Theories (1FT) is obtained working solely in the continuum in refs.[70). 
It appears that for any (rational) CFT there exist, directly on the continuum, 
one or more relevant perturbations leading to a massive IFT[70J. This led to 
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the costruction by bootstrap of factorizable S-matrices describing the 
scattering of massive particles in the perturbed eFT. In ref.[l1] the exact 
S-matrix of the affine Es Toda field theory is found by bootstrap and 

checked against tree level standard perturbation theory. At a certain purely 
imaginary value go of the coupling constant g, this S-matrix coincides with 

that associated in ref.[lO] to the critical Ising model in a magnetic field. 
This supports the idea that the affine Es TFT at g = go describes the 

scaling limit of the Ising model in a field. The calculation in ref.[l1] lead to a 
value for go at which the Es TFT becomes strictly renormalizable. This 

means that the ultraviolet fixed point of the theory at g go is no longer 

the 8-componrnt massless Bose field ( central charge c = 8 ). This is 
consistent with the expectation c = 1/2, which would follow from the 
identification of the g '" go Es TFT with the critical Ising model in a field. 

This latter has obviously the c = 1/2 Ising field theory as UV fixed point. 
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1 Introd uction 

The purpose of these lectures is to present the salient features of systems with 
symmetries, in view of their quantization. Among the different types of symmetries, 
an important class arises in the study of singular lagrangians (or equivalently con
strained hamiltonians), of which the paradigm is the Yang-mills gauge lagrangian. 
We shall take this example as an illustration, although one should keep in mind that 
the features we will describe always appear, mutatis mutandis, for finite dimensional 
systems as well as for other field theories (e.g. gravitation or string theory). 
One of the important points about the geometrical aspects of gauge theories is that 
they appear both in the hamiltonian and the lagrangian approach. I will thus first 
present this geometry, and only then turn to the hamiltonian and lagrangian descrip
tions. It shall become clear as we proceed that there is a nice interplay between 
differential geometrical aspects and purely algebraic aspects, more appropriate for 
the treatment of the quantum theory. 
We start with the presentation of the basic geometry of a space of fields on which a 
group acts in the definite example of Yang-Mills theory, and introduce the space of 
all gauge potentials, the group of gauge transformations, and the resulting quotient 
space (orbit space) with its Riemannian geometry(paragraphs 2 to 5). 
We then give the hamiltonian analysis of the constraints. We will not dwell here on 
purely homological and algebraic methods, which may take the place of differential 
geometric methods, and we refer to M. Henneaux's lectures in the same volume. 
We next explain what are the Faddeev-Popov determinant, Gribov ambiguity, BRS 
operator, and ghost field in geometrical terms. 
In the rest of the lectures we concern ourselves with the functional integral approach 
to the quantization of gauge theories, with a special empha.sis on the case of anoma
lous theories, in the light of geometry. 

Work supported by CNRS 

Physics, Geometry, and Topology 
Edited by H. C. Lee 
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2 Notations and basic objects 

It has been realized for a long time that any proper description of gauge fields [1] 
requires some basic notions of differential geometry (like principal fibre bundles, 
connections, etc ... ), and that these concepts flourished both in Mathematics and 
Physics [2]. 
However it will not be our purpose to explain why a gauge potential AI'( x) is a 
component of a connection in some finite dimensional principal bundle, why the no
tion of a bundle is just the right one to accommodate fancy boundary conditions 
on the fields, or things of the sort. There are a number of references on the sub
ject [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] see also [19]. We shall concentrate on 
the geometry of the space of all fields. 

We deal with gauge theory over space-time M. Space-time will be of any dimension, 
especially 4-dimensional euclidean space-time in the covariant case, and M = R x V 
with V = 3-dimensional euclidean space in the hamiltonian formalism (resp. M or 
V are supposed to be compact and without boundary, which is a way of introducing 
a volume cut-off into the theory). It is important to notice that the geometry of 
the space of fields is in essence not sensitive to the dimension of M, except in 1 + 1 
dimensions where it somewhat degenerates in the hamiltonian formalism. 

The structure group G will be a compact Lie group. Its Lie algebra is denoted by g. 

Gauge potentials are connections on a principal fibre bundle P( M, G). 
We use two interesting associated bundles, constructed from P: 

E = P@Adg 

the associated vector bundle with fibre g, with the adjoint action of G on g, and 

F=P@adG 

the associated bundle with fibre the group G, with the adjoint action. 
We also introduce spaces of forms on M with values in E: 

If w is a connection on P, we have a corresponding covariant derivative V' acting on 
A 

V' : AP --+ AP+l . 

With the metric on M and a bi-invariant metric on G (denoted tr), we may define a 
scalar product in AP, using the Hodge * operator. Recall that locally in a coordinate 
system, if cp is a p-form then *cp is an (n - p )-form of components 

where E is the completely antisymmetric tensor, and gij are the components of the 
metric on M. We define the scalar product ( , ) in AP by: 
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The covariant derivative V has an adjoint with respect to the scalar product ( , ), 
the covariant divergence V* : AP+I ----; AP, such that 

(T, VO = (V*T, O. 

We will use the covariant laplacian on AO: 

When the laplacian is invertible, we denote its inverse by Gw : 

3 The space C of connections and the group 9 of 
gauge transformations 

The local expression of gauge transformations is very well known: the transfor
mation is given by a G-valued function 9 on M, and the action on the components 

Ap(x) is 

The correct way of describing such a transformation on a connection won P comes as 
follows: a gauge transformation is an automorphism of P, which induces the identity 
mapping on the base space. Phrased differently, it is a mapping f of P into itself, 
which moves the points of P along fibres, and commutes with the group action on 
P: \fp E P, f(p) belongs to the same fibre as p, and 

\fa E G, \fp E P, f(p . a) = f(p) . a 

where p. a denotes the right action of a E G on pEP. A gauge transformation may 
equivalently be described by a G-valued function <.p on P, since we can always write 
f(p) = p. <.pCp)· The equivariance property of f reads 

This last relation shows that we may consider gauge transformations as defined on 
M, provided their values are taken not in G, but in the bundle F introduced above. 
The product of gauge transformations is just the composition of mappings on P, and 
gives the pointwise product in G. 

We denote by 9 the group of gauge transformations. 9 acts naturally on any connec
tion on P by pull-back. Clearly, we recover that an element of 9 is, locally, a G-valued 
function on M, and that the usual gauge transformation formula is a change of co
ordinates under a change of sections of P. It is possible to show that 9 = space 
of sections of F = reF) is a true Lie group (although infinite dimensional). Its Lie 
algebra is the space of sections of E i.e. r( E) = A o. 

The action of 9 on Cis: 
w ----; w· 9 = w + g-IVg. 

What is noticeable in this transformation law is that C is not a vector space. It is 
an affine space, since the difference T of any two connections transforms covariantly. 
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Actually TEA 1 , and thus the tangent space to C is canonically AI. We shall denote 
by Tw(C) the tangent space to C at w. 

The gauge transformation formula reduces, for an infinitesimal gauge transformation 
~ E AO, to 

w --+ w + V~. 
This gives the form ofthe elements of Tw(C) which are tangent to the fibre through w. 
These are the vertical vectors at w. We denote by Vw(C) the vector space of vertical 
vectors at w. 

From the expression of vertical vectors, it easy to see that the action of Q on C has 
no fixed point, if for example we impose some normalization to the gauge transfor
mations. It is sufficient to suppose that gauge transformations are normalized to 
unity at some point, or equivalently that infinitesimal transformations vanish at this 
point. For w to be a fixed point of the infinitesimal transformation ~, we have to 
have w = w + VC or Dw~ = 0, which implies, with our hypothesis, ~ = O. 

4 A metric and a connection on C 

The scalar product ( , ) on Al ::::: Tw(C) is a metric on C. With that metric, C is 
flat, since ( , ) does not depend on w. Moreover the metric on C is it gauge invariant. 
This is a basic point for what we will say later on. 
lt is a fundamental principle of the theory that two gauge potentials related by a 
gauge transformation are equivalent and describe the same physical reality [1]. ThiH 
will also appear in the analysis of the lagrangian (see later). 
The gauge fixing is just the choice of one representative in each equivalence class 
(orbit). We want to draw a surface in C which cuts all orbits once (define a section of 
the Q-bunclle C). We may do this locally around an origin wo (reference connection) 
as follows: define the affine subspace So of C 

So = {all wE C s.t. T = w - Wo is orthogonal to the orbit through wo} 

So is made out of points which depart from Wo perpendicularly to the orbit. These 
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points verify 

or 

or equivalently 

(1) 

This is a linear condition on T, and defines what we call horizontal vectors at woo We 
denote by Hwo the space of solutions of equation(I). Clearly So is the affine space 
generated by Hwo when Wo is taken as origin. 

Claim: So is a good gauge section around Wo This is the covariant background gauge 
condition around Wo [20,11,22,23]. 
It was shown by topological methods [23,24] that there is no global section: if one 
goes sufficiently far away from Wo (within So) one has to meet a point gauge related 
to woo Our claim is that there is a region of finite radius around Wo in So, where no 
two gauge related points exist, and that all orbits in the vicinity of the orbit through 
Wo cut So inside that region. We will return to the problem of gauge fixing later. 

The previous result is the property of local triviality, basis of the stucture of fibre 
bundle of C. 

Actually, with some care taken of the spaces of functions we work with (Sobolev 
spaces), one can show that the action of 9 on C does define a nice fibre bundle, and 
that the orbit space is modelled on So. [see [23,25,26,27], especially for the more del
icate points of the definition of normalized group and of the restriction to irreducible 
connections]. 

Notice that a similar structure exists on the space of metrics on a riemannian manifold 
[28,29]: gauge transformations are replaced by diffeomorphisms, irreducible connec
tions are replaced by metrics without isometries, and the same kind of objects on 
the spaces of metrics have exactly the same kind of structure. This is used in gravity 
theory and in string theory. 

We denote by p the projection: C --+ C/9. 

It is easy to see that we have a connection on C, with our horizontality condition: 
indeed if we define the I-form X on C with values in the Lie algebra of 9 (i.e. A 0) by 

then: 
-the kernel Hw of X at each point w in C defines a distribution of horizontal spaces 
invariant by 9. 
-the value of X on a fundamental vector field C (vertical vector field on C generated 
by the infinitesimal action of ( E A 0) is ( itself. 
-X transforms with the adjoint representation of 9. 
-the necessary regularity properties are satisfied. 
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Define the horizontal projection operator ITw : Tw( C) ---t Hw by: 

and the vertical projection operator 

The operator ITw verifies: 

5 The metric on the orbit space 17 = C/9 

We denote by 1] the quotient space Cig [40,36]. We define a scalar pl'Oduct III 

the tangent space Ta(17) at any point a E 17 as the one induced by ( , ): 
If X, Y E Ta(17), choose any point w in the fibre p-l(a) above a. The vectors X alld 
Y have horizontal lifts TX and Ty at w. By definition, the scalar product (metric on 

17) is: 
g(X,Y) = (TX, TV)' 

The gauge invariance of ( , ) ensures the independence of 9 on the choice of w in 
p-l(a). 
vVe can now compute the metric 9 in the local coordinate system centered at Wo and 
defined by So. 
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The vectors X, Y E Ta(TJ) have coordinates Ctx and Ct1' such that: 

or 
IIoCty = Cty. 

Clearly Ctx is not the horizontal lift TX of X at w E So. The horizontal lifts of X and 
Yare: 

Thus 

or 

TX = IIw( Ctx) 

Ty = IIw( Cty). 

This gives us the metric 9 at the point w, in the coordinate system provided by the 
covariant background gauge at woo Notice that it is w-dependent. The orbit space is 

not fiat, as we will see. 

6 Dirac analysis of the lagrangian 

This analysis of the lagrangian leads to the construction of the hamiltonian of the 
theory. We thus use the canonical formalism (non covariant) where time is separated 
from space [30,31,32,33,34,35,36J. Gauge potentials are time dependent connections 
on a bundle over 3-dimensional space V. 

The action is: 

with 

With our notations, the lagrangian is: 

where 

and 

L = ~(A - 'VAo,A - 'VAo) - V(A) 

. aA 
A=

at' 

V(A) = ~(fl, fl), 

with fl the curvature 2-form of A. (fl E A 2). 
The conjugate momenta are: 

p=A-'VAo 

Po = O. 

The last equation is the primary constraint and leads to the hamiltonian 

Ho = Hp,p) + V + (p, 'VAo) + (A,p), 
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where .A is a Lagrange multiplier (A E A 0). 
We get as a secondary constraint: 

{Ho, Po} = V*p = 0 Gauss condition 

The hamiltonian becomes by incorporating Gauss condition: 

HT = Ho + (p" V*p), 

yielding as equations of motion: 

Po 0, 

..10 A. 

Ao appears as an unphysical degree of freedom, which we have to discard. The true 
hamiltonian is thus: 

H = Hp,p) + V + (~, V'p), 

with ~ a lagrange multiplier (~ E A 0). The equation of motion is 

..1= {H,A} =p+V~. 

The time evolution of A contains an horizontal part p (p is horizontal from Gauss 
condition) and a vertical part V~ (pure gauge variation induced by the Lagrange 
multiplier). From Gauss condition we may express p in terms of A: 

and the true lagrangian is: 

The lagrangian £ is naturally defined on the orbit space. Both parts of £ are gauge 
invariant, and the true configuration space appears to be the orbit space. The first 
term is a kinetic energy term constructed with the metric 9 on "1. The second term 
is a potential part (magnetic part). 

On the true configuration space, the lagrangian is of course not singular and of the 
typical form: 

£(q,q) = h(q,q) - V(q), 

where q(t) is a trajectory on 11, and q is the velocity. 

7 The riemannian geometry of TJ 

The previous paragraph shows that the classical evolution of the Yang-Mills fields 
is a motion on a non flat configuration space with a potential term V. This moti
vates a detailed study [36] of the riemannian geometry of 1]. We will perform our 
computations in the local coordinate system given by the covariant background gauge 
condition around a reference connection Wo0 

Define the following operators, associated to a generic point W E So 
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1 is the Faddeev-Popov operator in the coordinate system we consider. 1 is invertible 
if W is sufficiently close to woo Define also 

P is the projection on Hw along Vo, and reduces to IIo if w = woo 
We have a number of relations between II and P, especially: 

meaning that p. P is the inverse of the metric in our coordinate system. 
Finally define, for any TEA 1 : 

KT(O = [T,~] 
its adjoint 

The riemannian connection D on "l may easily be written for vector fields having 
constant coordinates X, Z (and thus commuting). 

DxZ = tP*P( -X:KxIIwZ - IIwKxXwZ - X:KzIIwX - IIwKzXwX (2) 

+[XwX,IIwZ] + [XwZ,IIwX]). 

The riemannian curvature tensor is 

R(X, Y)Z = IIo( -2KzGK'X(Z) - KyGK'X(Z) + KxGKY(Z)). 

(nb: this expression is valid at the center of coordinates). The sectional curvature in 
the 2-plane generated by the two orthogonal vectors X and Y is: 

qx, Y) = 3(K'X(Y), GK'X(Y)). 

We see that "l is of positive sectional curvature [36], see also [49]. However there is 
no strictly positive lower bound for }C. 

8 Geodesics on the orbit space 

It is clear that the geodesics of C are all straight lines in C. 
Moreover it is a general property that, for any group action on a riemannian manifold, 
and provided the metric is invariant by the group action, if one geodesic cuts one orbit 
perpendicularly at some point, then it cuts all orbits it meets perpendicularly [50]. It 
so happens that some straight lines in C have this property, as we may see directly: 
Suppose we consider the line through w of unit vector T: 

w = Wo + >'T (>. E R) 

Such a line is horizontal at Wo if VaT = O. It is then horizontal at all its points since 

Therefore we have a notion of horizontal line in C. 
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Claim: Geodesics on I) are just the projection of horizontal lines. The proof is im
mediate from the geodesics equation [36J. 

Remark 1. If al and a2 are two points in 17, we may evaluate the distance between 
al and a2. Take a generic point WI (resp W2 = WI + 7) in p-l(ad (resp p-l(a2)). 

The distance in C between WI and W2 is ex = J( 7,7 ). It is invariant by a simultane
ous gauge transformation of WI and W2. To define a distance d~ on 1), we may take 
the minimum of ex when W2 runs along its fibre a2. When ex is minimized, we have 
\7i7 = 0 and thus, at least locally, d~ = geodesic distance. 

Renlark 2. Suppose we start from a point W in C, along some horizontal straight 
line; then the orbits we meet are all perpendicular to the line we follow, but they do' 
not remain perpendicular to So. 

Remark 3. Since the metric 9 is defined via the connection X (itself issued from the 
metric on C), the projection p : C ---t 1) of horizontal lines preserves length. Thus I) 

is geodesically complete, for all straight lines are of infinite length. 

Remark 4. The property of the geodesics shows that the covariant background 
gauge around Wo yields a normal coordinate system at Woo 

Remark 5. Similar properties hold true for the space of moduli of metrics. 

9 The Gribov ambiguity in gauge fixing 

Suppose we use the covariant background gauge around woo The Faddeev-Popov 
operator 'Y is invertible as long as W is in a neighbourhood of Wo (there exists such a 
neighbourhood); however if we go far enough from w, then at the point W = Wo + A7, 

the operator 'Y('\) = Do + '\~J(T ma.y become non invertible. This is wheTe the GTibo1J 
ambiguity appeaTS [51 ,24,36,52,53J. 
It is the point where the coordina.te system becomes singular. At this point there 
exi~t vector~ v, which are vertical, but verify the gauge condition \7(jv = 0 (equivaleut 
to saying that 'Y has a kernel: if 'Y( 0 = 0, then v = \7 w~ is such a vector). 
The point W is the first focal point of Wo in the direction T. 

The picture is the following: 

(see next page) 

The vector v projects to zero on 17. At the point w, the projection p from So to I) i~ 

singular. The region of So where det'Y ~ 0 is convex and is precisely the region where 
the coordinate system is non singular (the riemannian exponential is non singular). 
To know if and how that region covers the whole orbit space is an open ques
tion [54,55J. However, the best conjecture is that the orbit space is entirely covered 
by a. region strictly smaller than the one delimited by the Gribov horizon. 
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10 The Becchi-Rouet-Stora operator and the ghost 
field 

The behaviour under gauge transfonnations of any function of the connections 
is easy to test: we just have to compute the derivatives of the function along the 
fibres. Notice that this will test infinitesimal gauge transformations. If g has more 
than one connected component, we stay within the component of the identity [56]. 
For infinitesimal gauge transformations, we may do the following [58,57,59]: 
Let de be the exterior derivative on C. Define the vertical part {j of de as follows. If 
r.p is a q-form on C, then: 

where lI; is the vertical part of Xi (lI; = V7XX;). 

For a function on C (zero-form), we measure the variation along fibres. 

Notice that this definition is similar to the definition of the covariant derivative (one 
would take horizontal parts and not vertical parts). However, contrarily to what 
happens for the covariant derivative, we have: 

by integrability of the distribution of vertical spaces. 
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8 is the Becchi-Rouet -Stora operator. 

Let np(p) be the space of p-forms on P with values in the Lie algebra g, which 
transform by ad under 9. 
Let SM be the space q-forms on C with values in np(p), and which are invariant by 
9. (and S = ffip,q sP,q). 

The exterior differential dp of P acts on S, by acting on the values. 
But the exterior derivative de of C also acts on S. So does 8. We shall take into 
account the degree of the value by using (- )Pde on sp,q rather than de (resp. (-)P8 
rather than 8). 

The function w, defined on C, and which to any connection on P associates its 
connection I-form belongs to Sl,O. 

8w is a I-form on C with values nl. 

8W(T) = -vedical part of T = -\7X(T). 

Thus 

8w = -\7x, 

which is the B.R.S. transformation of the gauge potential. 

The connection I-form X on C belongs to SO,l. 

Since the curvature 2-form R = dex + Hx, X] of the connection X is horizontal in C, 
we have 

8x = -t[X,X]. 

X is the ghost field, and we have recovered its B.R.S. transformation. 

11 The anomaly problelTI as a cohOlTIological prob

lem on C 

Quantum anomalies are the breaking, at the quantum level of the classical gauge 
symmetry: some quantum diagrams, involving fermion loops, generate after renor
malisation, non invariant interactions [60,62,63,64,65,66,67] . We shall be more spe
cific in the last two paragraphs. 
For example, if we denote by rcA) the quantum effective action of a background 
gauge potential in the presence of quantized Weyl fermions, rCA) may not be gauge 
invariant . Equivalently 

~ = 8r =I- O. 

~ is the anomaly. 
From 82 = 0, we see immediately that: 

8~ = 0 (3) 

This is the Wess-Zumino consistency condition [68]. 
From the way the non invariance of r appears at the level of Feynman graphs, it is 
known that ~ is an integral over space-time of some polynomial in the fields and their 
derivatives. It is always possible to redefine r by such a polynomial: the anomaly ~ 
is spurious if it is of the form 
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6. = 6(polynomial). 

The problem of finding the true anomalies is thus a cohomological problem: we have 
to find 6.(A) (a vertical I-form on C) verifying 66. = 0 modulo the trivial solutions 
of the form 6M(A) with 'local' functions. [see [59]]. 

There is a simple way of producing solutions of equation(3), from the cohomology of 
the orbit space: 
Suppose [<p] is in H2(77), i.e. <p is a 2-form on 7] in the cohomology of 17 (e.g. de Rham 
cohomology although the precise definition of this cohomology needs some detail) 
[69,70,84]. 
The pull-back t/J = p*<p is a 2-form on C such that: 

a) dct/J = 0 
b) t/J vanishes on vertical vectors. 

Since de has no cohomology on C, there exists a I-form 8 on C such that 

t/J = de8. 

Restricting 8 to vertical vectors produces a solution of equation(3) of ghost degree 
one. What is remarkable is that on S\ we get the usual chiral anomaly [71,72,73], 
although the condition of locality is absent in this approach. 

It is an open problem to define the part of H*(7]) which will give the correct (local) 
cohomology of 6. 
Two different paths have been followed: 
-take in H*( 7]) only the Chern character ofthe appropriate bundle. This is the index 
theorem approach, and in fact it links directly to the original problem of definition 
of functional determinant, at least when space-time is compactified to a sphere. This 
approach also applies to gravity [74]. 
-use a purely algebraic approach and limit oneself to some polynomials in the fields 
and their derivatives. This line was taken in [75,76,77,78,79]. 
The importance of the consistency equation is revealed not only in the problem of 
the usual chiral anomaly (first cohomology group of 6), but also, and with possible 
drastic consequences on our understanding of quantum gauge theories, in the study 
of Schwinger terms in the commutation of quantum currents (second cohomology 
group of d) [80,81]. 
It is worth noticing that the covariant anomaly also has an interpretation on C(82]. 

12 Functional measures on the orbit space 

Before describing the main features of the functional integral, it is interesting to 
give a remarkable operatorial relation between the metric on the orbit space and the 
Faddeev-Popov determinant. 
Indeed we know that when using a functional integral formalism to write down rules 
of quantization for the Yang-Mills theory, one is lead to a functional measure which 
depends on the gauge condition [31,37,38,39,40]. 
It is very important to distinguish the hamiltonian formalism and the covariant for
malism; fortunately enough the geometrical concepts we have introduced are perti
nent to both cases. 
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As a first step we will compare (formally) the spectra of the operators "{ (on A 0) and 
the metric operator 9 (in the tangent space to 17). The difficulty comes from the fact 
that "{ essentially acts on vertical vectors, while 9 acts on horizontal vectors, and 
thus the two operators ad on spaces of different dimensions. 
Let us introduce the operator Q : A l ----4 A 1 defined by 

Q sends Vw in Ho. Its adjoint is 

Q* sends Ho in Vw • 

On So, the metric can be written 

9 = 1- QQ". 

Let h : A 0 ----4 A 0 be the operator 

There exists an isomorphism between A 0 and Vw given by: 

Its 'inverse' is given by XW : Vw ----4 A o. 
Thus h is similar to h' : Vw ----4 Vw 

h'=V'w·h·Xw. 

It is easy to check that 
h' = 1- Q*Q. 

From the fact that QQ" and Q*Q have the same non zero spectrum, and that 
detAl9 = detso9 , we get 

or, formally, by assuming that the determinant of a product is the product of deter
minants, we get the basic identity [40J: 

det 9 . detDo . detDw = (deh)2 (4) 

Denote by 93 the metric on the true configuration space, and by 94 the metric on the 
orbit space of 4-dimensional potentials. 

In the canonical formalism, we see that the measure (up to constant factors) is 

II Vdet93 
time 

a naive natural volume element for paths over the orbit space. 

In the covariant formalism however we have: 
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Faddeev-Popov determinant = .jdetg4 • .jdetOw . 

The factor JdetO w being the scale of the fibre through w [41j, the covariant func
tional integral is an integral over the whole space of connections rather than over the 

orbit space. 

Notice that the same phenomenon happens when one wants to integrate over the space 
of metrics an action which is invariant by diffeomorphisms, in string theory [47,48]' 
as well as in gravity theory [42,43,44,46]. 

13 The problem of anomalous theories 

We want to describe how the functional integration in the lagrangian (Lorentz lll

variant) formalism leads to quantization rules for field theories in the presence of 
anomalies, taking the definite example of Yang-Mills theory with fermions of a defi
nite chirality (Weyl fermions). 

The Lagrangian of the theory is 

where 
. 1 -,5 

1/;£ = left fermIOn = -2-1/;[' 

and D(A) is the Dirac operator constructed with A, that is to say 

D(A) = iq; + J. 

The fermions belong to some unitary representation of the group G. The action is 
classically invariant by the gauge transformation 

where g acts on the fermion through the representation of group to which V' belongs. 

The appearance of gauge anomalies in the quantization of the theory has been up 
to now considered as dirimant in 4 space-time dimensions. This has lead to very 
stringent conditions on the construction of models [86,87] . For instance in the stan
dard model for weak and electromagnetic interactions, where chiral fermions are used 
on purpose -to obtain parity non invariant interactions- the fermion content is not 
arbitrary, and one insists on cancellation of possible anomalies between the various 
fermions. 

The belief that an anomalous theory cannot be quantized consistently (i.e. so as 
to obtain a Lorentz invariant unitary renormalizable theory), has been questioned 
recently [80,89,88]' and proposals have been made. Such a proposal we will explain 
here. One should insist that this proposal is intended to apply in all dimensions (2, 4, 
and others). We will use the functional integral approach and the lagrangian formal-
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ism, to ensure Lorentz invariance, but at the risk of irremediably loosing unitarity. 
This is the approach of [90,91,92]' and it is deeply motivated by the geometry. 

Our purpose is to produce calculation rules for a perturbation theory (formal per
turbation) from the usual functional integral 

keeping in mind that the presence of the anomaly will force us to revise the usual 
rules. We should insist that we take the same starting point as in the non-anomalous 
case, but expecting new pert1Lrbation rules. 

One of the strong motivations to do so is the work [47,48] about string theory, where 
the presence of the Weyl anomaly produces additional terms in the action which one 
has to take into account when constructing the quantum theory. Phrased differently 
it already appeared in [47} that· the presence of an anomaly yields, at the quantum 
level to a field content which is different from the naive classical one. It is natural to 
believe that the features which appeared there will exist for all theories with anoma
lies. 

In the next paragraph, we analyze the consequences of the results obtained above on 
the geometrical content of the Faddeev-Popov procedure, and study of the integra
tion measure dA for the integration over gauge potentials. This integration is not 
sensitive to the presence of anomalies. 

In the following paragraph, we examine the effect of the presence of anomalies. In
deed performing the fermionic integration goes through the definition of a fermionic 
measure 

- z-
dJlA("p) = d"pd"pexp(y;"pD(A)"p). 

One should notice that if such a measure is ever defined, it will certainly be this 
'gaussian' measure, and not the 'Lebesgue' measure d~d"p. The fermionic measure 
will then be dependent on the gauge potential. The anomaly is a non invariance of 
d,lA( 1/.,) under gauge transformation. If, is a gauge transformation one has: 

where J( A, ,) is a jacobian coming from the admissible non invariance of the renor
malization procedure used to define dJ-L( 1/.'), and from the anomaly (the two add!). 
The invariance of the fermionic measure would read J = 1. 

In the last paragraph, we consider the result of the integration over all fields, I.e. 
gauge potentials and fermions. 

14 A measure without anomaly: dA 

The Faddeev-Popov determinant was introduced in [37] in the process of elimi
nating an infinite integration and producing perturbation rules for Yang-Mills theory. 
However, one has to realize that this determinant appears as soon as one defines a 
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theory with a symmetry. Indeed the volume element used to define the functional 
integral is constructed (formally) from a metric on the space of fields, and may just be 
thought of as the square root of the determinant of that metric. In order to preserve 
the symmetry at the quantum level, one uses an invariant volume element, and to 
that end , one uses an invariant metric on the space of fields. 

Integration of an invariant function (exponential of the action) with an invariant 
measure evidently leads to an integral over the space of fields quotiented by the sym
metry (orbit space). On the orbit space, the measure to use is straightforwardly the 
product of the of two pieces: the first is the measure induced on the orbit space by 
the original one, and the second is the volume of the orbit above each point. 

This is best pictured in a naive example of finite dimension (the plane). Suppose 
f( x, y) is a function of two variables (x and y), independent of y -i.e. invariant 
by the symmetry operation which translates y- and is integrated with the invariant 
measure dx dy, over the triangle 

y 

° x 1 x 

The orbit space is the real segment (0,1) and the induced measure is just dx. The 
integral 

1= J f(x,y)dxdy 

may be written 

1= J f(x)h(x)dx, 

where hex) is the lengtht ofthe orbit above x. We see how the presence ofthe factor 
hex) weights differently different points x E (0,1). 

The same phenomenon happens for any theory with symmetry, and appears explic
itly when one chooses adequate coordinates in the space of fields. This choice of 
coordinates is dictated by the existence of the action of the symmetry group on this 
space. One chooses a surface S which cuts, at least locally, the orbits (local gauge 
section). 

A generic point A in the space of fields has as coordinates two objects: first a specific 
field a which sits at the intersection os S and the orbit through A, second the group 
element g which takes a into A. This way of coordinatizing the space of fields implies 
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only that we have a nice group action on the space of fields, just as is the case for 
Yang-Mills [23,25,24J. In these coordinates, the volume element dA can be rewritten 

da = dv(a) . p(a) . dg, 

where 
.dv( a) is the induced measure over the orbit space, in the local coordinate system 
given by the section S. This volume element was shown above to be the square root 
of the determinant of the induced metric, thus invariant by changes of coordinates, 
i.e. invariant by changes of local section. This invariance shows that the problem of 
patching different coordinate charts, is automatically taken care of 
.p( a)dg is the integration measure over the orbit, explicitely built from a volume 
element over the symmetry group, and the scale with which the group is pictured in 
the space of fields. 
One should make two remarks at this point: 
1. A choice of gauge is merely a choice of coordinates if one does not drop the 
coordinate g, and is then meaningful, even if one is to integrate a function which is 
not gauge invariant, as will happen later. 
2. The picture is essentially different in the hamiltonian formalism where the group 
coordinate is eliminated a priori. 

15 A measure with an anomaly 

The anomaly was understood in [94,95J to be a non invariance of the fermiollic 
measure. Rather than talking about a measure d~d~), we prefer (see above) to use 

The existence of the anomaly, seen as a non invariance of dJ.lA, creates -through the 
explicit dependence on A- a gauge dependence of the fermionic measure. 

The transformation law 

(5) 

reflects this dependence. The jacobian factor arising in (5) is a calculable function of 
the gauge field -considered here as an extenlal field- and does not depend on 1/;. 

The value of the jacobian J may be obtained by a direct integration of (5), yielding 

detD(A· "() 
J( A, "() = detD( A) (6) 

where the determinants are calculated on the adequate spaces of fermions. This 
relation leads to the value of the jacobian, as the integral along a path in the group 
g, of the anomaly of r(A), and directly to a co cycle relation for J: 

J(a,g) = J(a,"(). J(a. "(,,,(-1 g) (7) 

It is very important at this stage to emphasize the ambiguity in the value of J, which 
comes from the ambiguity in the expression of the anomaly. One has the possibility 
of redefining, in the spirit of renormalization theory [93], the jacobian by a factor of 
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the form exp(P(a· g) - pea»~ 

J(a,g) '" J(a,g)exp(P(a. g) - pea»~ (8) 

where P is some polynomial in the fields (i.e. a local counterterm to the action). To 
say there is an anomaly is precisely saying that 

J(a,g) = exp (In detD(a . g) -lndetD(a») 

canot be put to 1 by a change of the type (8). This is actually the origin of the 
cohomological problem underlying the calculation of possible anomalies. Here it is 
the cohomology of the group g (see above where we had a problem of cohomology of 
its algebra). 
Finally, once a form of the anomaly is chosen, the jacobian is nothing but the expo
nential of the Wess-Zumino action [68] 

J(a,g) = exp(WZ(a,g». 

Remark 1. One has to notice that the co cycle relation (7) ensures that the trans
formation law (5) is meaningful, since it allows the composition of transformations. 

Remark 2. If the number of dimensions of space-time is larger than two, we do 
not know a closed expression for the effective action rCA) = IndetD(A). However 
we know its variation along an orbit, given by J(A,g). It is then very natural to 
prefer as coordinate system for the gauge potentials, the one we have chosen, since 
the dependence along the orbit will be calculable. 

16 The integral over all fields 

We start the integral 

We choose one section S as above and reexpress the same integral in the coordinates 
(a, g, 1/'), getting 

The dependence in 9 remains only in 

We may redefine the fermion variable, since it appears only in the measure, and get 

(9) 

An equivalent rewriting is obtained using Faddeev-Popov ghost c an dinatighost c, 
since the meaS1tre over the gauge potentials is the same as in the non anomalous case: 

Z = J dcdcdadgd-:;j;d.,pexp(*(Sori9inal + SgaugeJixing + SFP + WZ(a,g») (10) 
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The dependence in 9 is only through the Wess-Zumino action and could be eliminated 
if we were dealing with Dirac fermions (non anomalous case). In this case the integral 
of dg would just be factored out. 
The explicit appearance of the field 9 in the action we want to take for constructing 
perturbation theory promotes this field to the rank of true degreee of freedom of the 
quantum theory, while it disappeared from the classical theory. However the exact 
status of 9 as a physiceJ field is the main unsolved problem in this approach. 
We can easily prove the independence of Z on the choice of gauge. This shall produce 
a B.n..S. invariance of the quantulll action of the theory [58,67]. 
Two choices of gauge are related by a family of gauge transformations describing 
how, on each orbit, one goes from one to the other. 

a 

a' = a', 

I 
I 

I 

s 

s' 

For each point a of S, one has a gauge transformation l' such that a' = a '1'. Clearly 
l' varies from point to point. The change of coordinates is then 

a --t 

9 --t 

1/;--t 

, 
a =a·1' 

9' = 1'-lg 

1/;' = 1'-1 . 1/; 

The measure dv( a) is independent of the choice of gauge. 
The measure dg is independent of the choice of gauge, and so is pea). 
Finally the measure 
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is independent of the choice of gauge, since 

by the cocycle condition (7). 

One should notice here that B.R.S. invariance is the independence on the choice of 
gauge. 

Relation (10) should be taken as a starting point for a perturbation theory. A num
ber of results have been obtained for the two dimensional theories, abelian or not. 
They conclude t.o t.he existence of a consistent unitary theory, with one more degree 
of freedom than in the non anomalous case. See for example [96,81]. 

The challenging problem is the definition of the theory in 4 dimensions, where the 
main difficulty is to concile renormalizability and unitarity. Preliminary results show 
that the two may contradict. 
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TOPOLOGICAL ASPECTS OF THE QUANTUM HALL EFFECT 
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Abstract: Topological aspects of the quantum Hall effect, including both 
the integral and fractional cases, are discussed. These include the 
quantized Hall conductance (for both IQHE and FQHE) as a topological 
invariant, the role of fractional statistics in the FQHE and the ground 
state degeneracy of the FQH states on a compactified space. To make the 
lecture notes self-contained, the background material is introduced in 
great detail. 

1. Introduction 

When I was asked to give a lecture on the Quantum Hall Effect (QHE) 
at the Banff Summer School where most students have particle physics back
ground, I completely agreed with the organizers that the QHE should become 
part of the traiQing for all graduate students in physics, since the sub
ject is so deeply related to fundamental principles of physics and so 
strongly connected to the frontier of topological investigations in phy-

. ,sics. In the last forty years, the vital interactions between quantum 
field theory and condensed matter physics have proved beneficial to both 
sides. The QHE has exhibited an interesting interplay between gauge 
fields, two dimensionality and topology, all of which are at the center of 
attention in contemporary theoretical physics. In particular, the QHE is 
related to Chern-Simons gauge theory, which recently is a popular topic in 
mathematical physics, and probably to high-Tc superconductivity (at least 
to one school of the high-Tc theory), which is currently under intensive 
study in condensed matter physics. Many problems in the QHE (particularly 
in the FQHE) remain a challenge and recently there are revived interests 
in the QHE on the off-diagonal long range order, on the topological order, 
on the transition regions between plateaus and on the edge excitations, 
and so forth. The progress in understanding anyon superconductivity, 
which originated from analogy with the FQHE, may eventually feedback to 
promote our understanding of the latter. 

The most remarkable and fascinating features of the QHE are, of 
course, the appearance of an integral or fractional quantum number, the 
quantized Hall conductance, as a measurable many-body quantity and the 
great precision with which the quantization is observed in dirty condensed 
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matter samples. The two features combined together make the quantized 
Hall conductance distinct from other known examples of similar quantum 
numbers in physics. For example, the quantization of circulation in 
superfluid He has not been tested with great precision, and on the other 
hand the quantized flux in superconductin~ ring is not directly a many
body quantity. It is well-known that the mteger or rational quantum num
bers occurring in quantum theory are of two different types. Spin is an 
example of first type, which is directly related to asymmetry, rotational 
symmetry in this case; though there are some topological aspects in the 
quantization of spin, spin itself is not a quantity of topological origin. 
The quantized Hall conductance is a ~ood example of the other type, which 
has no symmetry origin but is Identifiable directly as a topological 
invariant. Topological quantization, such as the magnetic charge for a 
monopole, has emerged in particle physics for many years, but up to now 
there is no convincing experimental evidence. The QHE really provides us 
a rare opportunity to enjoy the interplay between topology and physics and 
to put our understanding under test. Now we believe that there is some 
non-trivial topological order (or structure) in the QH states and, in 
addition to the quantized Hall conductance, there should be more features 
or characterizations which are· of topological origin. Though topological 
aspects do not exhaust all essential features, the study of them will .con
tinually promote our understanding of the QH states as a new macroscopic 
quantum phenomenon. 

The lecture notes are meant to be self-contained. So we first intro
duce the experimental observations in Sec. 2 and then discuss in Sec. 3 
the classical and quantum dynamics of a single electron in a magnetic 
field. Sec. 4 starts with a critical review of Laughlin's argument for 
the IQHE and proceeds to show the topological basis for the quantization 
of Hall conductance, which Laughlin's argument seems to fail to provide. 
Both the case of non-interacting electrons in a periodic potential and the 
more general case with various complications allowed are discussed, and 
the Hall conductance is shown to be a topological invariant (the first 
Chern class on an appropriate bundle). Sec. 5 is devoted to Laughlin's 
wave functions for the FQHE, providing a basis to the next two sections. 
In Sec. 6 we present theoretical evidence for our belief that quasiparti
cles in an FQH system obey fractional statistics and explain how it helps 
to understand the occurrence of stable fractions for the filling factor of 
the system. Finally in Sec. 7 we discuss why the ~ound state degeneracy 
on a torus is responsible to the fractional quantizatIOn, how to show the 
existence of this degeneracy and how it is related to edge excitations, 
which is recently a focus of attention in this field. 

2. Brief Summary of Experimental Facts 

Experimentally the QHE is observedl -3 for 2-d electron systems at low 
temperatures and in strong magnetic fields. The electrons are tra~ in 
a thin layer ( tv l00A) at the interface between semiconductor and Insulator 
or between semiconductors. The mostly used devices in observing the QHE 
are the Si MOSFET (Metal-Oxide-Semiconductor-Field-EJfect-Transistor) and 
the GaAs/GaXAl1_xAs (O<x< 1) hetero-structure. Typically for the IQHE, the 

temperature r~ge is T tv 1-4"K and the magnetic field is about B tv 3-15 Tesla 
(1 Tesla = 10 Gauss). For the FQHE, the temperature is even lower: T tv 20-
100 mK and the magnetic field needs to be stronger: B tv 15-30 Tesla. The 
low temperature is needed to quantum mechanically freeze the degree of 
freedom for motion in the perpendicular direction in the ground state so 
that the system can really be treated as a 2-d system. The strong magne
tic field makes the system to be in the quantum limit so that electrons 
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fill, from the bottom up, the Landau levels of the cyclotron motion (see 
below, Sec. 3). 

An important physical parameter of the 2-d electron gas is the so
called filling factor defined by 

# of electrons 
I) = # of Landaus 1 tes (2.1) 

where Ne is the number of electrons, N4> is the degeneracy of each Landau 

level which is just equal to the total magnetic flux though the planar 
system in units of flux quantum 4>0 =hc/e (-e being the electronic charge). 
Experimentally, I) can be adjusted either by source or drain control or by 
changing the magnetic field. In physics I) represents the number of filled 
Landau levels at T=O. 

Now we are ready to describe the experimental observations of the 
QHE. The data is normally presented as two curves: p vis Band p vis 

xy xx 

B. See Figs. 1-4. Here we suppose an electric field is applied in the 
y-direction in the sample plane, and the Hall current is in the x
direction. p = V II and p = V II are, respectively, the longitudinal 

xx x x xy y x 

and transverse resistance. With fixed number of electrons, change in B 
means actually change in I). 
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Fig. 1. A sample of the IQHE. (Ref. 4) 
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From Figs. 1-4, the basic feature of the experimental curves is the 
development of the Hall resistance plateaus at filling factors near all 
low-lying integers v=I,2,3,··· and near some special fractions such as 
v= 113, 2/3, 2/5, 3/5, ••• and 4/3, 5/3, •••. Corresponding to the pla
teaus in p , there are valleys in p with p ... 0 or at least sharp dips 

xy xx xx 
in p. When p is zero, the inverse of p gives us the Hall conduc-

xx xx ~ 

tance u (see Sec. 3 below). Another remarkable feature of the QHE is 
xy 

that at the plateaus the Hall conductance is quanti~ed to be the corres
ponding integer or fractional2 filling factor in units of e Ih: 

2 

U H E P:; = v li-
Note that the unit here, e2/h, is expressed only in terms 
constants. When v = integers we have the IQHE and when v 
the FQHE. On the look, the curves have similar features 
But the FQHE corresponds to partially filled Landau levels, 
tical explanation for it is more complicated. 

(2.2) 

of fundamental 
fractions for 

in both cases. 
so the theore-

The third feature, which makes the QHE practically useful and scien
tifically fascinating, is the high accuracy :with which the quantizatiop 
(2.2) of U H is observed. For the IQHE, LI v::s 10- and for the FQHE, LI v::s 10- . 

In particular, the IQHE can be used to make the standard for resistance 
and to improve the measurements of the fundamental physical constants. 
Also it is notable that almost all filling factors corresponding to the 
FQHE have an odd denominator with only one exception (v=5/2). This is the 
so-called "odd-denominator rule". 
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Recently there are experimental studies on the transition region 
between plateaus and on the edge currents in the sample, but we do not 
have time to discuss about them. Their explanation is still an open ques
tion, so hereafter we will restrict ourselves to discuss topological 
aspects of the QHE which are directly related to the observed features we 
have described above. 

3. Motion of Single 2-d Electron in Magnetic Field 

First let us consider the motion of an electron confined on a plane 
in the presence of a perpendicular magnetic field. The discussion of a 
2-d non-interacting electron gas is directly reduced to this case. Also 
the knowledge of the motion of a single electron is the starting point for 
dealing with the complicated interacting system. 

1. Classical Mechanics 

Set z=x+iy, v=i==dz/dt, E=E +iE. The Newton-Lorentz equation is 
x y 

• eE. v = - - + leo v m c 
(3.1) 

where eo == eB/m is the cyclotron frequency, with B the perpendicular magne-
c c 

tic field. m is the electron mass, (-e) the electron charge. We also 
have assumed that there is an electric field (E ,E) in the plane. If E 

x y 

and B are constant both in space and time, then the solution to eq. (3.1) 
is given by 

eoE ieot 
v(t) = Iiii"W + Vo e C (3.2) 

C 

where Vo is the initial complex velocity: vo=v +iv. The second term 
ox oy 

represents the cyclotron motion, while the first term the drift motion 
with the velocity vd=-icE/B. Note that 

(v) = cE IB, 
d x y 

(v) = -cE IB 
d y x 

(3.3) 

7 7 

so the drift velocity is in the direction of Ex B and is independent of the 
sign of the charge. 

For a non-in\fracting electron gas, the drift current or the Hall 
current is given by j =-nevd, where n is the density of electrons. Thus, 

OH) = -nce E IB, 
x y 

(3.4) 

The Hall current (density) 1H is perpendicular to the applied electric 
field E. In general if one introduces the conductivity matrix (a..) by 

1J 

then eq. (3.4) gives the Hall conductivity 
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xx 

a 
yy 
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We emphasize that this result is derived in classical mechanics for a non
interacting 2-d electron gas. 

Remark. The resistance matrix (p..) is the inverse of the conductiv-
-1 lJ 

ity matrix: (P . .) = (0-. .). So eq. (3.6) leads to 
lJ lJ 

P"" = 0-- 1 = Blnce _, yx 0 
(3.6') 

To incorporate a non-vanishing longitudinal resistance, one has to 
take into account the collisions between electrons and to consider the 
Langevin equation 

d 
Of 

eE. <v> <v> = - - + IW <v> - --me. (3.7) 

where we have used the average velocity <v> to replace v in eq. (3.1) and 
have added the third term to represent the effect of collisions. • is the 
relaxation time. In a steady state (in equilibrium), the left-hand side 
of eq. (3.7) vanishes and one has for the current density 

o-E 
j = -ne <v> = l-~w. (3.8) 

c 

with 0- =ne2./m. For resistances, it follows that 
o 

P = P = 1/0-, P - P - W .10-xx yy 0 xy--yx- co 

but for conductivities one has 

In particular, 

{ 
o-xx = 

0- = 
xy 

-0-
xy 

nce 0- xx 
= -,,- - CJ) T 

C 

which reduces to eq. (3.6) only when HOO or 0- -*>. xx 

Note. In obtaining eqs. (3.10) we have used 

0-
xx 

2. Quantum Mechanics 

0-
xy 

= 

One needs to solve the Schrodinger equation 

H", == 1 [(P + ~ A)2 + (p + ~ A )2]", = e", 2m x cx y cy 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

For a uniform magnetic field B we take the Landau gauge A =-B , A =0. In 
x y y 

this gauge [H,p ]=0, so we set 
x 

'" = exp{ik x}cf>(y) 
x 

(3.13) 
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with 

(3.14) 

where 

chk 
x 

= Clr (3.15) 

Eq. (3.14) is the Schrodinger equation with a harmonic well with the cen
ter at y=y , so one obtains 

o 

(3.16) 

which corresponds to 

(3.17) 

The energy levels, the so-called Landau levels, are equally spaced like 
those of a harmonic oscillator with spacing hC/). The Landau orbital 

c 

(3.16) peaks at y=Yo; in other words, the parameter Yo defined by eq. 
(3.15) represents the peak position, or the site, of the Landau orbital 
(3.16). 

One key feature of the solutions is that eq. (3.17) is independent of 
y, and the Landau site y depends only on k. So each Landau level is 

o 0 x 
highly degenerate. If the system is of finite size (with area L L) then 

x y 

the allowed values of k are discrete: Llk =2n/L. Moreover the condition 
x x x . 

O<y <L implies that 0< Ik I «e B/hC)L; so the number of allowed values of 
o y x 0 y 

k is finite and given by 
x 

(3.18) 

Thus the degeneracy, or the number of Landau sites, for each Landau level 
is just the total flux cp (a BL L) threading the planar system in units of 

x y 

the flux quantum cp (ahc/e). 
o 

For a 2-d electron gas, if the filling factor is v, then in total 
there are vcp/cp electrons, which correspond to a surface density 

o 
n=(vcp/cp )/L L = veB/hc. If the gas is non-interacting and the classical 

o x y 

result (3.6) applies, then one would expect 

H nce e2 
a xy = - --r = -v n (3.19) 

Now let us show that indeed this classical result for the drift current is 
still correct in quantum mechanics, although the center of the quantized 
Landau orbit cannot have definite values for both the guiding center coor-
dinates x and y simultaneously. (In the gauge we are using, y is 

o 0 0 

definite but x is not; see eqs. (3.15) and (3.13)). 
o 
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To see this, let us suppose E =0 and E =E. In the presence of the 
x y 

electric field, eq. (3.12) is now changed to 

f:I: Vi = 1 [(P + ~ Ai + (P + ~c Ai] Vi-eE Vi = 2m xCx 'I y 'I 

N N 

eVl (3.20) 

Again, [f:I:,p ]=0 and one sets 
x 

ik x 
Vi = e x q>(y) (3.21) 

dl'l' 2 
q1 + -1n {'6 _ ~ al (y_y)l + e Ey} q> =0 

dy 1 h 2 C 0 

(3.22) 

The effect of adding the electric field is to shift 

y ~ y = y + eE 
o 0 0 meal 

(3.23) 

o 

and 

(3.24) 

The wave functions are q> (y) = q, (y-y ) with q, given by eq. (3.16). It is 
DOD 

easy to see that 

{ 
1 ! Idxdy 

N* a '" 0 <v > <p > = VI D ( -in Or) VlD = 
y m y 

.hk B 
(3.25) 

<v> 1 < (p eB y» = x e '" = cE 
= - lil- mc y r x m x c 0 

From j = -ne <v > and (1 = j IE one obtains eq. (3.19). 
x x xy x y 

If the system is circular (rather than rectangular), one may use the 
symmetric gauge A =-B 12, A =B 12. The eigenvalues of eq. (3.12) are still 

x y y x 
given by eq. (3.17), but the wave functions become 

.I. ex (1 il (a + i a )m (a _ i a )D exftL Xl +t} 
'l'm,D = P14 Il Ox Oy Ox Oy Y1, 412 

where 115!(hc/eB)1I2, m is the angular momentum, on which the energy does 
not depend. For the lowest Landau level n=O, 

q, = _1_ zm exp {_ l!f } 
m,o,--: 4/2 

" m! 

(3,21 ') 

If there are random impurities, the Landau levels are expected to 
broaden into energy bands. Theoretically we are not quite sure, but the 
experimental existence of a non-zero quantized Hall conductance is suffi
cient evidence for the existence of extended states in the presence of 
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magnetic fields (see below, Sec. 4.1). The fact that at Hall plateaus 
p =0 indicates that the Fermi level is in the region of localized states. 

xx 

4. Quantized Hall Conductance as Topological Invariant 
(the IQHE Case) 

1. Laughlin's Argument for the IQHE 

The high precision (up to to-8) of the observed integral quantization 
of Hall conductance naturally motivates the idea that this exact quantiza
tion must be deeply related to fundament¥l principles of physics. Soon 
after the discovery of the IQHE, Laughlin has given a very elegant and 
general argument for the exact quantization, making clever use of gauge 
invariance and a non-trivial geometry: a cylinder threaded by a flux
tube. Laughlin's argument has played a very important role in later 
developments of our theoretical understanding of not only the IQHE but 
also of the FQHE, including the edge excitations in both cases. Also this 
argument has been later refined and elaborated into a rigorous mathemati
cal formalism, which shows that the quantized Hall ~onductance is actually 
a topological invariant. The topological approach8, was first proposed 
by Thouless, Kohmoto, Nightingale and den Nijs for the non-interacting 
case with a periodic potential present. It has bren further generalized 
by Niu, Thouless and Wu iO, and by Avron and Seiler1 , to general many-body 
cases allowing electron-electron interactions, weak random impurities and 
crystal imperfections. These topological formalisms have refined and ela
borated Laughlin's original argument in two aspects, i.e. in uncovering 
the topological origin of exact quantization and in clarifying the role of 
the (non-) degeneracy of the ground state. Despite these, the essence of 
the topological approaches is still that of Laughlin's argument, namely 
the interplay of gauge invariance and non-trivial topology. Here we give 
a critical review of this fundamental argument. 

Following Laughlin, let us consider a cylindrical system, pierced 
everywhere by a magnetic field normal to its surface. In the presence of 
disorder, the Landau levels have been broadened into bands of extended 
states separated by tails of localized states. The Fermi level is assumed 
to be in a mobility gap where the localized states occupy. (See Fig. 5.) 

9(Elll (\ 

A :8.. 
~----~~~~~~~--~~~~-----, , 

I 
I n: 

I : 

I , 

'~ I , 

I I 
I I 
, ~ 

n/(eB/ch) 

n/(eB/ch) 

Fig. 5. The structure of broadened Landau levels and the density of states 
The shaded region represents localized states; unshaded extended states 
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Now let a flux-tube thread through the hole formed by the cylindrical sur
face with flux adiabatically turned on from 0 to q, (unit flux). The 

o 
gauge invariance of the electromagnetic field11 tells us that a unit flux 
tP in the thin tube is equivalent to no flux at all, since it can be 

o 

gauged away by a gauge transformation. (Note the latter is not legal un
less the flux is an integral multiple of tP.) Therefore after adding a 

o 
unit flux tP, the Hamiltonian is back to that with no flux, and the system 

o 

is back to itself with possibly excitatioq or de-excitation of the orig
inal one, by the quantum adiabatic theorem 3. On the other hand, there is 
a gap in the spectrum of the system which is supposed to remain unclosed 
during this process, so an adiabatic change of the many-body Hamiltonian 
cannot excite quasiparticles across this gap. [For this to be true, the 
flux can not pierce the system; when the flux pierces the system a quasi
particle excitation is possible (see Sec. 5.2).] Therefore adding a unit 
flux can only produce an excitation of charge transfer, i. e. the energy 
increases due to the net transfer of N (integer) electrons from one edge 
to the other. (For N to be integer, the ground state has to be non
degenerate otherwise because of the wave nature of electrons in quantum 
mechanics, the transfer of a fraction of electron is possible and indeed 
this occurs in the FQHE. The non-degeneracy condition was not stated in 
Laughlin's original paper. The role of this condition can be clearly seen 
in the topological approach, see below Sec. 5.2 and 5.3.) The energy 
change for such a charge-transfer is obviously 

AU = Ne E L = Ne V 
y y y 

and the current around the cylinder is given by 

cNeV 1 
I = c AU = ~ = N ~ V 
x 2Iq; UCte u y 

Therefore, the Hall conductance is always quantized: 

I e1 
O'H = V- = N D (N: integer) 

y 

(4.1) 

(4.2) 

(4.3) 

To see more clearly how there can be a charge transfer between edges, 
let us examine the non-interacting case. From eqs. (3.15) and (3.23) we 
see that the uniform increment AA=AtP/L in A , due to a small change AtP in 

x 
tP, leads formally .lip = ~cAA and therefore Ay =AAIB. Thus the centre of 

x 0 

the Landau site is shifted by AAIB. After adding a unit flux AtP=hc/e, the 
Landau site is just shifted by one: 

Ay _ AA _ hc 
£Jo-n--eBL 

x 

L 
~ = site spacing 
'1'1'1'0 

(4.4) 

Therefore, one electron is transferred from one edge to the other for each 
fully filled Landau level. The integer N is directly related to the num
ber of fully occupied Landau levels in the non-interacting case: 

e1 
N = v ~ O'H = v D (4.5) 

If the system is dirty, the above argument can not tell us what the 
integer N should be. It can be zero, as is in most systems with gaps. 
For N to be non-zero, there should be a long-range phase coherence around 
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the cylinder which needs the existence of extended electronic states in 
the sample. For if all states are localized, the only effect of the flux 
in the hole is to multiply each localized wave function by a gauge factor 
exp{ieAx/hc} (x is the coordinate of the point where the state is local
ized) and the energy change and current are both zero. For extended 
states such a gauge transformation is iUegalunless cf>=ncf> , so that a non-
vanishing lIall current is possible. 0 

Experimentally, the samples are always dirty and interacting systems, 
and the observed quantization N on a plateau is always directly related to 
a nearby integral filling factor v by eq. (4.5). To establish this rela
tion, one needs the topological invariance of the lIall conductance a Hand 

applies it to the process, in which various interactions in the sample are 
turning off until the system becomes non-interacting, assuming the gap 
remains open the whole way. This is the subject of the next two subsec
tions. 

2. Non-interacting Electrons in a Periodic Potential 

In this case we have the lIamiltonian for a single electron 

H = k (i~ + ~ xi + V(x,y) (4.6) 

where V(x+a,y) = V(x,y+b) = V(x,y), (a,b) being lattice spacing. Again we 
take the Landau gauge: A =0, A = Bx. 

x y 

Let us introduce the generators of magnetic translation: 

{

II = P + ~ A + ~ By 
x x c x c 

II = P + ~ A - ~ Bx 
y y c y c 

(4.7) 

They commute with the kinematic momentum operators 

[II., p. + ~c A] = 0 
1 J J 

(for i,j = x,y) (4.8) 

Therefore, the magnetic translation by a lattice spacing in either x or y 
direction is a symmetry: if we define 

T = exp{! ail} , 
a h x 

(4.9) 

then 

[T ,H] = [T ,H] = 0 
a b 

(4.10) 

However, T a and T b do not commute with each other; they rather satisfy 

T T = T T e -i2ncf> 
a b b b 

(4.11) 

where cf> = (eB/hc)ab is the flux per unit cell in units of flux quantum. 
Now we assume cf>=p/q where p and q are two integers which are mutually 
prime to each other. Then T = (T)q commutes with T, since qa and b 

qa. b 

form a bigger magnetic unit cell, which is the smallest area which 
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contains an integral multiple of flux quanta. 
simultaneously diagonalize H, T and Tb• 

qa 

then 

Applying the Bloch theorem, one has 

ik1qa 
T l{I=e I{I, 

qa 

o S kl S 2nlqa , 

ikb 
TI{I=e 2 ", 

b 

Therefore, we can 

(4.12) 

(4.13) 

Note that the magnetic Brillouin zone is q times smaller than the original 
one in the absence of a magnetic field. The wavefunction satisfying eq. 
(4.12) is of the form 

i(k x+k y) 
e 1 2 U~a! (x,y) 

1 2 

with U(a) satisfying the twisted periodic conditions 

{ 
U~7!}x+qa ,y) = e-i2npy/b U~7!2(X'Y) 

U~a! (x ,y+b) = u~a! (x,y) 
1 2 1 2 

(4.14) 

(4.15) 

where a is the band index. Substituting eq. (4.14) into eq. (4.6), we see 

that U~7!2 satisfies the Schrodinger equation 

ft(k k )U(a) (x y) 
l' 2 k k ' 

1 2 

(4.16) 

with 

ft(k1,k2) = ~ (-ill ~ + flit + ~ Ai + V(x,y) 
~m a~ c 

(4.17) 

From the band theory, this implies that a Landau level in the presence of 
a magnetic field is split into a number of bands by the lattice potential, 
or that a band in the lattice potential is split into a number of sub
bands by the magnetic field. The details of the splitting pattern depend 
on the lattice potential V(x,y). 

The non-interacting electrons fill the single-electron energy levels 
from the bottom up. Now we are ready to show that if the Fermi level lies 
in a gap ~etween two sub-bands, then the Hall conductance is an integer in 
units of e Ih. Let us start with the Kubo formula in the linear response 
theory for q : 

xy 

q 
xy 

(4.18) 

where we sum over all states a below EF and states P above EF and (V) ap is 

the matrix element 
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~ - 1 Jq• Jb (a)* . a e it (/J) 
(t' 'ap - m 15k k'c5k k' dx dy Uk k (-ih -; + c )Uk'k' 

1 1 2 2 0 0 1 2 ax 1 1 

Note that by definition a¢p ( •• t a <Ep<8p), so that <aIIIP> = l<aIP> =0. 

This leads to (for i=1,2) 

(4.19) 

In fact, 

where we have used (atpUJk) <alP> =0. Substituting eq. (4.19) into (4.18) 

one has 

Using 

L {la> <al + IP> <PI} = 1 
ta<Ep<tp 

We finally rewrite the Hall conductance into the form 

a = L a(a) 
'XY t <E XY 

a p 

(4.20) 

a(a) = e2 1 J d2k {<aualaua > _ <~I~>} 
xy n 2nl ~ ~ (I1\. 1 (l1\.2 

(4.21) 

where the integral J d2k is taken over the magnetic Brillouin zone 

(Osk s2n/q , Osk s2nlb). 
x a Y 

Eq. (4.20) tells us that the Hall conductance a is the sum of the 

contributions a(a) from each filled Landau sub-bands'XY a below the Fermi 

level. More i~portant, eq. (4.21) implies that a(a) in units of e2/h is a 
xy 

topological invariant, the so-called first Chern class, which can only be 
integers. ( ) To see this, we note that if we take the phases of wavefunc
tions Uk7k}X,y) to be smoothly varying inside the magnetic Brillouin 

zone, then by using Stokes' theorem in eq. (4.21) we get a line integral 
along the boundary of the zone 

(4.22) 

where na is an integer, since the line integral just represents the total 
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phase change of the wave function U~a~ along the boundary which, by the 
( 12 

single-valuedness of Uk a~, must be an integral multiple of 2n. Alterna-

tively the set of the ~a~efunctions {U~a~ (x,y); 0:!ik1:!i2nlqa, 0:!ik2 :!i2nlb} 
1 2 

forms a cross-section of a (twisted) complex line bundle over the magnetic 
Brillouin zone, whose topology is actually a torus. A gauge potential (or 
Berry's connection) is given by 

(4.23) 

and the integrand in eq. (4.21) is nothing but the field strength of this 
potential. So u(a) is the first Chern number of the bundle, which repre-

xy 
sents the total "magnetic flux" through the torus and is well-known to be 
quantized. Eqs. (4.20) and (4.21), together with the above topological
invariant interpretation, was first obtained by Thouless, Kohmoto, 
Nightingale and den Nijs.8 

3. The General Case 

The realistic samples exhibiting IQHE, of course, are not the ideal
istic non-interacting electron gas in a perfect crystal. Rather there are 
impurities, imperfections and electron-electron interactions. Can we gen
eralize the derivation of the integrally quantized Hall conductance as a 
topological invariant to the general case with various complicati0!l~ 
allowed? An indication that this is possible is Prange's explicit proof 
that if there is an isolated J-function impurity, even though it binds a 
localized state, the remaining delocalized states carry exactly enough 
extra current to compensate for its loss. The discussion of the general 
case allowing all pofNible complications was l~iven first independently by 
Niu, Thouless and Wu and by Avron and Seiler. 

For a realistic sample, certainly one needs to consider a many-body 
Hamiltonian to incorporate various interactions: 

H = \ k[-ih ~ + ~ X(t.)]2 + \ U(t.) + L V(I1.-1.1> 
t,. a~ J t,. J .. 1 J 
J rj @ J 1 <J 

(4.24) 

where 1. are 2-d coordinates of the /h electron; the second term u(1.) 
J J 

stands for the interactions of the electron with the positively charged 
background and with impurities; the third term the interactions among 
electrons. In the following derivation we do not need the detailed know
ledge of these interactions. To generalize the derivation in the last 
sub-section, we note that the key point there is that the Hamiltonian 
(4.17) contains two parameters (k1,k2), which essentially form a torus. 

How to introduce similar parameters in the many-body Hamiltonian? Our key 
observation is that the twisted boundary conditions for the many-body wave 
function will do the job: 

{ 
'II("-,Xi +L1,---) 

'II("-'Yi +L2,---) = 

ill -i(eB/b)y.L1 = e 1 e 1 'II(---,X.,---) 
1 

ill 
e 2 '11( .. - , y . , - - - ) 

1 

(4.25) 
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Here (0 ,0) are parameters characterizing the boundary conditions on the 
1 2 

sample, which is assumed to be a rectangle with sides Ll and L2 . 

Obviously «(J 1,(J2) live on a torus: O~ 0 1,02 ~ 2n. Because of the identity 

of electrons, (0 ,0) are the same for all electrons. A more symmetric 
1 2 

and covariant form of the boundary condition is 

iO 
\(L1)", = e 1"" (4.25') 

where ti (L1) and t i (L2) are magnetic translations for the lh electron, 

similar to T, T in eq. (4.9). In the particular gauge X=(O,Bx), eqs. 
• b 

(4.25') reduce to eqs. (4.25). Here we have assumed that the flux 
through the sample, L IL2(eB/hc) == I/>hpo = NI/>' is an integer in units of 1/>0' 
so that t i (L1) commutes with ti (L2) and, therefore, the two conditions in 

eqs. (4.25') are compatible to each other. For the many-body system, the 
Kubo formula takes the form 

• 2 (V) (V) - (V) (V) 
_ len \' x on y no y on x no 

UH - ~ L 2 
1 2 n>O (E -E) 

o n 

(4.26) 

where 0 refers to the ground state and n( > 0) excited states; 

v = [ ~ (-in fx-), V = [ ~ (-in -lv + ~ Bx.) 
x i m Xi Y i m Yi c 1 

(4.27) 

In order to absorb the parameters (01,02) characterizing the boundary 

conditions into the Hamiltonian, we make the following gauge 
transformation: 

~ 01 0 } 
'" = ex i L (x + .. -+x ) + i -2 (y +---+y) I/> 

n II N 21 N n 
(4.28) 

Then, the Hamiltonian for the new wave function I/> is 
n 

{

H ~ ft 

Ll oft 
V ~ t = -.:- "!f"Zr"""" , V ~ V 

x X 11 u17 1 Y Y 

H [ . a . a nO 1 • a . a no2] 
-In ~. ~ -In~. + r;-- ,-lh "!!;';- ~ lh "!!;';-+r-

U A 1 U A,l uy i uy i 2 

(4.29) 

Substituting in eq. (4.26) and with the same manipulations similar to 
those between eqs. (4.18) and (4.20), one obtains 

ie2 
\' 1 {<I/> ,oft ,I/> > <I/> ,oft ,I/> > - (0 ~O)} 

n L (E E)2 0 ~ n n ~ 0 1 2 n>O - 1 2 
o n 

(4.30) 
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By this expression, a H depends on (fJ l ,fJ2), the parameters in the 

boundary conditions, which seem to be fixed. However, when we measure aH 

in a sample, there must be an external electric field E which drives the 
boundary phases varying in time. In fact, since E=(-l!c)oAlot, imposing E 
leads to adding a term -cEt to A. If E is small, one may apply the adia
batic approximation, i.e. use the above result with the time-varying para
meters fJi(t) == fJ.-(e/n)E.L.t. (In the thermodynamic limit, the bulk pro-

1 1 1 

perties of the sample is isotropic, so we do not need to assu!,lle E is only 
in x- or y-direction.) So the measured Hall conductance a H should be 

obtained by averaging eq. (4.30) over (fJ l ,fJ2): 

~ tn dfJl tn dfJ2 aH(fJ l ,fJ2) 
(2n) 0 0 

(4.31) 

The form of this expression is exactly the same eq. (4.21); by the same 
reasoning below eq. (4.21), iF is quantized to be an integral multiple of 

H 

e2/h. Also it acquires the interpretation as a topological invariant. 

Before discussing the consequences of eq. (4.31) I would like to 
first emphasize the implicit assumptions we have made in the derivation of 
integral quantization of the Hall conductance. First we have assumed that 
the ground state of the system has to be separated from other states by 
energy gaps which do not become zero either in the thermodynamic limit or 
in the whole range of 0::5 fJ, fJ ::5 2n. Otherwise linear response theory would 

1 2 

not apply because the Zener tunneling would become important for infini
tesimal gaps. The arguments of topological invariance also require the 
opening of the gap plus the assumption that the Fermi level lies always in 
this gap. Finally the integral quantization is true only when the ground 
state is non-degenerate; For this guarantees that the ground state comes 
back to itself (up to a phase) as, say, fJ 1 changes from 0 to 2n, so that 

the integral (4.31) is over a compact torus. Under these assumptions our 
above derivation is valid, no matter what complications (impurities, 
imperfections or electron-electron interaction) may exist in the sample. 

The topological-invariant interpretation of a H provides us a ration

ale for why its integral quantization has been so precise as up to 10-8 in 
some experiments. (Remember that the real samples are always very "dirty" 
and vary case to case. Generally one does not expect high precision in 
measuring a quantity in condensed matter physics.) Also it explains why 
the IQHE is stable against weak perturbations and various complications 
that may happen in real samples. Especially the topological invariance 
explains the existence of the plateaus for a H provided that the gap per-

sists and the Fermi level remains in the gap. Finally, if the ground 
state of the sample can be obtained by continuously turning on the impuri
ties and various interactions from non-interacting electrons at an inte
gral filling with a persisting gap and with the Fermi level remaining in 
that gap, then the topological invariance asserts that the Hall conduc
tance must be locked at the integer corresponding to that integral fill
ing. This is what we believe happens for states on the plateaus of a H in 

the IQHE, which establishes the relationship between quantized a H and the 

nearest integral filling factor as observations show. 
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s. Laughlin Wave Functions for the FQHE 

1. Similarities and Distinctions between FQH and IQH States 

Now we proceed to discuss the FQHE, which looks to the eye life the 
IQHE, except that the Hall conductance is fractional in units of e Ih at 
certain fractional fillings (se~ Sec. 2). The most notable case is the 
0=113 FQHE with O'H=(1I3)(e Ih). Despite the similarity with the IQHE, a 

FQH ground state must differ from the IQH states at least in that the 
former cannot be obtained from non-interacting electrons by continuously 
turning on interactions without undergoing a sort of "phase transition" ; 
for otherwise if none of the conditions for the topological arguments is 
violated, one would have integral rather fractional Hall conductance. 
This suggests that a FQH state must be a new type of many-body condensate, 
which has certain unusual properties that normal IQH states do not have, 
albeit sharing some other properties with the latter. 

The most important common feature of the FQH and IQH states turns out 
to be that both of them are incompressible quantum fluid states (in the 
absence of impurities), because there are downward cusps in E (the ground 

g 

state energy vs. B (the magnetic field) for fixed electron density n at 
particular B =o·l(hc/e)n, or in E vs. n for fixed B at particular 

o g 
no = o(eB/hc), with 0 being integers or simple rationals. A downward cusp 

implies a gap in density of states (spectral function of Green's function) 
at T=O with the chemical potential in that gap. So microscopically the 
incompressibility is equivalent to the property that all quasiparticle 
excitations above the ground state have a gap (or cost a finite amount of 
energy). For free electrons, integral 0=1,2,3, .. correspond to completely 
filled Landau levels, and it is easy· to understand the incompressibility 
of the IQH states in view of Fermi statistics. However at fractional 
values of 0, which correspond to only partially filled Landau levels, the 
incompressibility is a non-trivial property that originates from the 
interactions between electrons. 

In addition to explaining the incompressibility, the theory of FQHE 
must be capable of explaining the distinct features of FQHE which are not 
shared by IQH states. Intuitively the IQHE may be viewed as a spectro
scopy of the electron charge; by analogy, one expects that the FQHE should 
be interpreted in terms of spectroscopy of a quasiparticle charge that is 
fractional. Namely if fractionally charged quasiparticles exist and 
behave more or less like electrons or holes in the IQHE, then the Hall 
plateaus observed in the FQHE can be understood as due to localization of 
these quasi-particles. Furthermore, the formation of other stable, incom
pressible FQH states at values of 0 other than 113, includin¥ the odd
denominator rule for 0 < 1, should be explicable by condensatlOn of the 
fractionally charged quasiparticles (to form new interpenetrating fluids), 
which turn out to obey exotic fractional statistics. Another feature of 
the FQH states is the ground state degeneracy on a torus. ~r existence 
of this degeneracy can be inferred from a generalized argument of gauge 
invariance a Ill. Laughlin. It is well-known that a FQH ground state is 
non-degenerate on a disc or a sphere geometry. Thus for a FQH system the 
ground-state degeneracy must depend on the topology of the surface that 
the system lives in. In this and the following sections we will concen
trate on these distinct features of the FQHE which can be viewed as mani
festations of a non-trivial topological structure, or topological order, 
contained in the FQH states. 
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2. Laughlin Wave Function for v=1/m Ground States 

Let us start with Laughlin's microscopic theoryl6 of the FQH system 
with v=lIm (m odd). We will ignore the spin degrees of freedom which are 
frozen out by a strong magnetic field. In a study of the three-electron 
case, Laughlin made the observation that electrons in a strong magnetic 
field, lying in the lowest Landau level, like to avoid each other. Moti
vated by this observation, he has proposed a many-body wave function for 
the ground state on a circular disc geometry as follows: 

~m) = PI (z._z.)m exnL i [ z.z.} 
i < j I J Y[. i =1 I I 

(5.1) 

Here z. =x. +y. in units of the magnetic length 1= / nc/eR, which we have 
I I I 

set equal to one, is the comoplex coordinate for the i-th electron. The 
integer m has to be odd, in order for the wave function to be totally 
anti-symmetric. The mathematical features and physical meanings of the 
Laughlin wave function (5.1) are the followingl7: 

N 
1) The prefactor f(ZI, .. ,ZN) == .n. (z._z.)m is an analytic function of 

I < J I J 
Z., so the wave function (5.1) is comprised solely of single-electron wave 

I 

functions lying in the lowest Landau level (in the symmetric gauge (A,A) 

(~, -~x); see eq. (3.21). This should be a good approximation, ~in;e 
in a strong magnetic field, the Coulomb potential is "small" compared to 
the cyclotron energy nro . 

c 

2) The prefactor is a homogeneous polynomial in z. of degree M=mN(N-
I 

So (5.1) is an eigenstate of total angular momentum with M. 1)/2. 

3) The prefactor is of the Jastrow form with each factor (z._z.)m hav
I J 

ing a m-th order zero at z. = Z., SO the electrons want badly to keep far 
I J 

apart from each other, and each electron sees m zeros bound to the 
positions of the other electrons. 

4) If z. goes around z. counter-clockwise by an angle cp, then the fac-
I J . cp 

tor (z._z.)m gives rise to a phase e'm Thus, the phase correlation of 
I J 

electrons is as if each electron carries m flux quanta. 

5) The square of the modulus of (5.1) can be written as a classical 
Boltzmann distribution 

I rm)(z ••• z ) 12 = exp{-pV (z ••• z )} 
o I' 'N eff I' 'N 

With the fictitious temperature is set to IIp=m such that 

V (z ,···,z ) = _2m2 \' Inlz.-z.1 + m2 ~ Iz 12 
eff 1 N . L. I J k 

I <J 

(5.2) 

(5.3) 

coincides with the potential energy of a 2-d one-component plasma: the 
first term in (5.3) represents the repulsion between particles of charge m 
via the Coulomb interaction which is logarithmic in two dimensions; the 
second term is the attraction of these charges to the origin due to a uni-
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form neutralizing background on the same circular disc geometry of charge 
density Po = 1I2nr. This analog reduces the calculation of expectation 
values with the wavefunction (5.1) to a corresponding one in the equiva
lent plasma. In particular, the neutrality of the plasma tells us that 
the electron density in the state (5.1) is uniform and equal to 

lm) = ~ = 1 
o m 2nmr 

= 1 • eB 
m Dc (5.4) 

In other words, the state (5.1) has the filling factor v=lIm, so that on 
the average there are m flux quanta for one electron. 

6) In eqs. (S.2) and (5.3) the ratio of potential energy to temperature 
is r=2m, which means the fictitious temperature of the equivalent 2-d 
plasma is sufficiently high for m = 1,3,4,···, the cases of interest for 
FQHE. Monte Carlo studies of 2-d plasma have shown that the equivalent 
plasma at such temperatures is a liquid rather than a Wigner crystal and 
so is the FQH states (5.1) with v = 1, 113, 115, •••. The liquid nature of 
the FQH states guarantees the uniformity on length scales smaller than the 
inter-particle spacing. 

In summary, the Laughlin wave function (5.1) describes a uniform 
circular liquid droplet for a FQH state with v= 11m (m odd), in which elec
trons lie in the lowest Landau orbit and keep far apart from each other, 
and have phase correlations as if each electron carries m flux quanta. 
The justification that such a state gives the ground state for the corres
ponding FQH system comes from two arguments. The first is a variational 
one, i.e. the ground state energy evaluated with (5.1) is substantially 
below the competing Hartree-Fock-Wigner-crystal charge-den~ity-wave 
states as v> 0.1 or m < 10. The second argument, ~iven by Haldane, goes as 
follows: first in a pseudo-potential approach1 it is shown that the 
Laughlin wave function is the exact and unique ground state of a truncated 
Hamiltonian representing short-range components of the electron-electron 
interactions. Then one may argue that when the long-range part of the 
interactions is continuously turning back, no phase transition in the 
ground state occur~~ at least this can be verified by numerical studies of 
finite-size systems. It is clear from this approach that the Laughlin 
wave function (5.1) is exceedingly rigid and unresponsive to variations in 
the form of e-e repulsive potential and particularly to variations in its 
short-range part. This is exactly what one expects from the property that 
in the state (5.1) electrons keep far apart from each other as a conse
quence of the Jastrow form. 

3. Laughlin Wave Function for Quasiparticles 

To generate l}; fractionally charged quasi-particle one may follow a 
thought experiment: pierce the ground state (5.1) with an infinitesi
mally thin flux-tube at the point Zo and adiabatically turn on the flux 

from zero to a flux quantum tJ> 0 == hc/e. During the process the state of the 

quantum liquid droplet remains to be always an eigenstate of the changing 
Hamiltonian. Since the changing flux induces a circular electric field, 
due to the Hall transport the surrounding electrons will flow inward to or 
outward from the point Zo' depending on the direction of the flux. So as 

cfHtJ> 0 we end up with some positive or negative charge accumulated in an 

area of size I around Zoo By gauge invariance (a flux quantum is equiva

lent to no flux), this final state is an excited state of the original 
Hamiltonian. This excitation is a quasiparticle: either a quasihole or a 
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quasi-electron, depending 01. the sign of the accumulated charge. From the 
known FQHE: (J =(lIm)(e /h), it is easy to calculate the accumulated charge 

H 
to be ±(lIm)e. Thus, the quasi-particles are fractionally charged. 

For definiteness, let us consider quasi-holes with + (lIm)e. 
formed by depletion of (11m) electrons in an area of size I. 
natural to suggest the many-body wavefunction for a state with 
hole centered at Zo to be of the form 

N 

.il (Zi-ZJ ~m) (ZI' ••• 'ZN) 
1 = 1 

They are 
So it is 
a quasi-

(5.5) 

Numerical calculations indicate this wavefunction for the quasi-hole is 
rather accurate: it really accumulates an excess charge +e/m. Also it is 
s~own numerically that the creation energy of a quasi-hole is about 0.026 
e /l which represents a non-vanishing energy gap. This tells us that the 
FQH fluid is incompressible. The incompressibility comes from the rigid
ity of the Laughlin wavefunction (5.1) and the Coulomb interactions which 
give rise to tmite enel~ cost for fractionally charged quasi-particles. 
Laughlin has also shown that quasi-particles act like electrons or holes 
in the lowest· Landau level. Not only their size, charge and energy do not 
depend on Zo' but also they execute cyclotron motion like electrons, 
except that the orbit radius is ml12 times large (due to e*=e/m). 

From the argument given above one can see that if we increase or 
decrease the total flux through the system so that v deviates from the 
exact fraction 11m, then we will generate fractionally charged quasi
particles in the system. Like in the IQHE, the impurities cause the 
localization of these quasi-particl1s which leads to the observed Hall 
plateau with (JH locked at (1Im)(e Ih. The existence of Hall plateaus at 

other values of v is explained by condensation of quasi-particles to form 
new penetrating incompressible quantum fluids. At which fraction v the 
new stable " daughter" states can be formed depends on the statistics of 
the quasi-particles, in a way similar to the fact that the ori~inal stable 
states occur at V = 11m with m odd in view of the Fermi statistIcs of elec
trons. In the following we will present a direct and elegant derivation 
of fractional statistics starting from Laughlin wavefunctions. 

6. Fractional Statistics and the FQHE 

1. Fractional Statistics of the Quasiparticies 

According to Arovas, Schrieffer and Wilczek,2o the charge and statis
tics of the quasiparticles can ~e determined by a direct method based on 
the concept of Berry's phase.2 To determine the charge, one calculates 
the change of phase l' of the quasi-hole wavefunction (5.5) as the quasi
hole location Zo adiabatically moves around a closed loop of radius R 

enclosing flux q,. We note that Zo appears as a parameter in the many-body 

WaVefujction (5.5), so that the phase change consists of usual "dynamical" 
phase t E(r)d-r, where E(-r) is the energy of the state, plus Berry's phase 

which is independent of how slowly the loop is transversed. (For details 
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about Berry's phase, see Vinet's lectures in these proceedings.) 
phase yet) satisfies 

U = i < '1'~7)(Zo)I~1 '1'~7)(ZO» 

= i < '1'( m)(Z 'I ~t \ In [z -Z (t)] I '1'( m)(Z '> 
+ 1 0' UL t.. i 0 + 1 0' 

1 

Berry's 

(6.1) 

To make it manageable, we note that the electron density in the state is 
given by 

= < '1'(m)(Z 'It' o(z-z)1 '1'(m)(Z '> 
+1 0' l,. i +1 0' 

(6.2) 
1 

Thus 

(6.3) 

Now integrate Zo(t) along the loop C in a counter-clockwise sense. The 

time-derivative term has non-vanishing contribution only from z inside C 
which is -2ni: 

(6.4) 

where D is the region enclosed by C. If we ignore the correction to the 
background density Po arising from the quasi-particle, which is of the 

order of (lIR)2 (I being the magnetic length), we obtain Berry's phase 

(6.5) 

where < n > D is the number of electrons in D. This extra phase should be 

interpreted as the Aharanov-Bohm phase that a charge e* would gain in mov
ing around this loop: 

(e*/nc) Tc x-at = 2n(e*/e)cpICPo (6.6) 

Comparing (6.6) with (6.5), this determines the charge e* of the quasi
hole to be e* = ve. This derivation shows that the charge of the quasipar
ticle and the charge density of the ground state are essentially the same 
thing. 

To determine the statistics of the quasi-particles, one needs to con
sider the state with two quasi-holes at ZI and Z2: by generalizing (5.5) 

we have 

'1'( m)(Z Z) = II (z -Z )(z -Z) ~m)(z --- Z ) 
+2 l' 2 iii i 2 0 l' 'N 

(6.7) 

Now let ZI move slowly around a closed loop C, then a formula similar to 

eq. (6.4) obtains for Berry's phase. If Z2 is enclosed by C we have 

(6.8) 
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The first term is the same as before and the second term is due to the 
depletion of electrons in the configuration of the second quasi-hole at 
Z . This extra phase is independent of small deformations of C and is 
i:terpreted as the exchange (or statistics) phase e-2i(}. (The factor 2 is 
because moving Zl around Z2 once is equivalent to exchanging them twice.) 
Therefore the statistics parameter of a quasi-hole is determined as 

() = -.1 112 = on (6.9) 

For example, in the FQH state with 0=113, one has (}=n/3. Since generally 
o is fractional, so we have fractional statistics for the quasi-particles 
in an FQH state. 

From the derivation it is clear that the statistics parameter is 
directly related to the depletion number in the quasi-particle configura
tion. The latter is a definite number, because the FQH state is incom
pressible. If it was not so, the depleton number might not be well
defined and fractional statistics would no longer make sense. For 
example, the above derivation can be applied m,thematically to the discus
sion of statistics for vortices in s~rfluid He film. However due to 
the compressibility of superfluid He, the depleton number for a vortex 
depends on the loop C and logarithmically diverges for very large loops 
and, therefore, it does not make senle to ~nsider assigning a fractional 
statistics to the vortices in superfluid He fIlm. 

An astute reader may point out that Berry's phase for a closed loop 
is intrinsically ambiguous up to 2nN and so is the statistics parameter 
determined from it up to n. However this ambiguity can be solved by con
sidering the 0 = 1 case, in which the quasi-particle is just usual electrons 
or holes obeying Fermi statistics «(J=n). 

2. The Odd-denominator Rule and Fundamental Selection Rule 

A remarkable empirical observation is that all stable FQH states for 
o < 1 occur at fractional fillings with an odd denominator. Since this ru~~ 
is valid without exception, there must be a deep reason for it. Tao & Wu 
first pointed out that the odd-denominator rule originates from the Fermi 
statistics of electrons, which are constituent particles of real FQH 
systems. 

Their argument ¥oes as follows. It is well-accepted that a quasi
hole is formed in the lDcompressible fluid with 0 = 11m by a 2-d bubble of a 
size such that 11m of an electron is removed. So it is very natural to 
expect that if m quasi-holes are present at the same location Zo' then the 

state should be the same as if one electron is removed. In other words, a 
small cluster of m quasi-holes is equivalent to a usual hole. Thou~ this 
property is not generally true in more complex fluid systems, it IS cor
rect in the spinless or spin-polarized FQH fluids with constituent parti
cles having "hard-cores" or short-ranged repulsive interactions. Indeed 
this is a well-known property of the Laughljn wave functions: making m 

"quasiparticles" at Z is represented by n (Zo-z.)m (z ,···,z); from the 
o I~l liN 

form (5.5) of ~m), the latter wavefunction is nothing but the ground 

state ~m)(ZO,zl'··· ,ZN) of N + 1 electrons with one elec1tron removed from 

the zero-angular-momentum orbital centered at Zo' exp{-4IZo12}. Thus the 

statistics of m quasi-holes should be the same as that of a usual hole. 
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Given the statistics (Jln=lIm from eq. (6.10), the statistics of the clus
ter of m quasi-holes is given by 

(6.10) 

Here we have used the fact that the exchange of two clusters contains m2 

pair-exchanges.24 Thus we have 

i8 . 
e m = e1mn = (-1) (6.10') 

Here -1 represents the Fermi statistics of the usual hole. It is obvious 
that m must be odd. 

For a general f1lling fraction v =p/q, the argument can be formulated 
in a way independent of the Laughlin wavefunctions. Let a thin flux-tube 
pierces the fluid with unit flux slowly turned on, then p/q of the parti
cles must be removed around it by the radial Hall current (with conduc
tance O'H = (p/q)(e2/h» induced by the transient electric field. Such a 

combin~tion (unit flux-tube with p/q particle charge) is the so-called 
anyon.2 From the Aharanov-Bohm phase produced by exchanging two anyon 
quasiparticles, one infers that the statistics of the anyon is (Jln=p/q. A 
small cluster of q such anyon quasiparticles should be equivalent to 
removal of p .particles, or simply to p holes. The statistics of q anyons 
is 8In=(p/q)q =pq and the statistics of p particles is (=Fl)P. Equating 
the two leads to the relation 

{ 
(-) - sign for fermions 

(-lr = (=Fl)P 
(+) - sign for bosons 

(6.11) 

This is the fundamental selection rule for the stable filling fractions at 
which the FQHE occurs. For electronic FQH systems, if p and q are 
mutually prime, then q must be odd, giving the "odd-denominator rule". 
For bosonic cases, the fractions with both p and q odd are excluded. 
Bosonic FQH systems, though not realistic, can be created in computer sim-
ulations or be considered in some theoretical approaches. In all cases 
the above selection rule is verified without exception. (The 5/2 FQH 
state is beyond the scope of the above discussion, since it involves elec
trons with both spin orientations.) 

Generalizing the argument a bit, it is easy to realize that the com
posite object consisting of q quasiparticles and p particles in the FQH 
state with v=p/q should br6 a "charge-zer~ boson", if the selection rule 
(6.11) is satisfied. Read and Haldane 7 has recently suggested that 
there is a new off-diagonal long range order in the QHE exhibited through 
the correlation function of such composite objects and, therefore, the 
incompressible QH fluids may contain Bose condensation of these composite 
objects. 

3. Fractional Statistics and the Hierarchy Scheme 

The Laughlin many-electron wave functions are easy to construct only 
for simple filling fractions like v= 11m (m odd). More general incompres
sible ~&H fluid states may be constructed by the hierarchical 
scheme. 8,. The basic idea is that the dominant interaction between the 
quasi-particles is the short-range repulsive part of the pair interaction 
and the quasipartic1es act like electrons in the lowest Landau level. 
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Therefore the Laughlin wavefunction can be applied to the interacting 
quasiparticle gas, which is present at filling factors near the stable 
value of the parent incompressible state and will condensate to form a new 
interpenetrating incompressible quasiparticle fluid at appropriate filling 
factors. These new stable filling fractions must be related to the frac
tional statistics of the quasi-particle the way the original fractions °0 = 11m (m odd) to the Fermi statistics of electrons. The derivation of 

the hiergchy of FQH states along this line of thought was given by 
Halperin, 8 who first suggested the relevance of fractional statistics to 
the FQHE. 

In analog to the Laughlin wavefunction (5.5), the wavefunction for 
the quasi-holes in a parent fluid with 1>0= 11m is of the form 

(6.12) 

Since the quasi-holes obey statistics with Olx= 11m, the exponent m l in the 
prefactor can only be 

(6.13) 

where a l = + 1 for quasiholes (and -1 for quasi-electrons), and PI is a posi

tive integer. Again the probability distribution 1 'P~ 12 can be interpreted 

as that of a classical one-component plasma of charges m l in a uniform 

background with charge e*/e. So the density of the plasma is fixed by the 
charge yeutrality condition, which gives the number of quasi-holes in an 
area 2xl to be just 

(6.14) 

Since each quasi-hole has charge a/m, the filling factor for electrons in 

the new stable state is 

(6.15) 

For m=3, PI=1 we have DI=117 (or 115), 1)1=217 (or 2/5) for the quasi-hole 

(or quasi-electron) fluid. Higher order states can be constructed in a 
similar way, reproducing observed fractions. 

Obviously this discussion can be extended to a hierarchical scheme; 
namely one may consider quasi-particles in the fluid of quasi-particles in 
the fluid of and so on and so forth.. The iterative equation for the 
charge q of a quasi-particle at level s+ 1 is 

8+1 

q = -a q 1m 
8+1 8+1 8 8+1 

where 

m = 2p +a 1m 
s+1 8+1 8+1 8 

The stable filling factor at level s + 1 satisfies 

(a 1-±1) 8+ 

(p > ° ,integer) 8+1 

I> = I> + Iq 8 Iqs+l 
8+1 s m 

8+1 

(6.16) 

(6.17) 

(6.18) 
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It can be shown that v can be expressed as a continued fraction in 
s+1 

terms of the sequences {p.,a.}: 
1 1 

1 
vs+I = -------='------a l 

a 2 

2P2 + 2p + ... 
3 

This is the hierarchy that Haldane obtainedl8 in a different way. 

7. Ground State Degeneracy of FQH Systems 

1. The Extended Laughlin Argument 

(6.19) 

The IQHE has been explained by Laughlin's argument, making clever use 
of a non-trivial topology: a cylinder threaded by a flux tube, combined 
with the gauge invariance argument. (See Sec. 4.1.) Tao & WUl4 have 
extended it to incorporate the FQHE without violating gauge invariance, 
and pointed out that the condition which spoils the integral but favors 
the fractional quantization is the ground state degeneracy of FQH systems 
on certain compactified space geometry. (In the present case it is the 
torus geometry with periodic boundary condition on the two edges of the 
cylinder.) 

The ground-state non-degeneracy condition for the IQHE was not expli
citl¥ stated in Laughlin's original argument, but emphasized by Tao & 
Wu 4. They pointed out that this condition, in addition to the torus geo
metry and the gauge invariance argument (one pure flux quantum is equiva
lent to no fluxt) , is necessary to gqarantee an integral Hall conductance. 
So to obtain a fractional O'H = (P/q) (e2/h) , the system needs to be q-fold 

degenerate on a torus. More rigorously one can see this from the deriva
tion of the Hall conductance as a topological invariant by Niu, Thouless & 
Wu iO, presented in Sec. 4.3. There we have seen that whenever the ground 
state is nondegenerate and is separated from the excited states by a fin
ite energy gap for all values of the boundary phases (°1,°2), the ground 

state q, 0 will map back to itself when either °1 or °2 changes from 0 to 

2n. Then the Hall conductance, when averaged over °1 and °2 on the torus 

(0;!501 <2n, 0;!502 <2n), is the integral of Berry's curvature over the torus, 

which must be quantized as integers in e2/h. To obtain fractional quan
tized O'H' the ground state must be degenerate. Now let us start from one 

of the ground states, now written as q,l' Changing °1 or °2 from 0 to 2n 

may not map CPl back to itself. Suppose one needs to change °1 from 0 to 

2nq (q is an integer) to make q,1 back to itself. Then the averaged Hall 

conductance can be written as an integral over the torus O;!5 °1 < 2nq, 
0;!5°2<2n: 

_ e 2 rnq rn 1 { oq, II oq, 1 } 
O'H = 0' = Dq t dOlt dOl 2m <~ ~> - (°1 "",(2) 

o 0 2 1 
(7.1) 

t For anyons (charges threaded by flux), the condition is a bit differ
ent. For example, it is two flUX quanta which are equivalent to no flux 
for the flux threading an electron. 
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where the factor q comes from the averaging procedure. Now the integral 
must be an integer, as an integral of Berry curvature over a compact sur
face always is, so in general O'H becomes a fraction with denominator q. 
Note that the above integral over O:s 81 < 21l', O:s 82 < 21l' is no longer an inte
gral over a torus, since the integrand are not the same at the edges 81=0 

and 81=21l'. 

Experimentally O'H is p/q times e2/h when the filling factor v=p/q. 
To make the above argument capable of explaining this, one needs to fur
ther prove that 

(1) The integer q defined above to make a ground state back to itself 
is the same for either of the ground states we start with and is identi
fied to the denominator of the filling factor. 

(2) The integral in eq. (7.1) is also independent of the choice of the 
ground state and is actually the numerator integer p of v. 

We leave the proof of (1) to the next subsection. For the proof (2), one 
may invoke the topological invariance, assumin~ the gap is unclosed by 
turning off various interactions in the Hamiltoman. Then the integral is 
unchanged. For a non-interacting gas, O'H is known to be p/q at the fill-
ing factor v=p/q, and so is the O'H calculated from eq. (7.1). The exis
tence of a plateau near v=p/q is explained by localization of quasiparti
cles by impurities, similar to the IQHE cases. 

2. The Ground State Degeneracy on a Torus 

A general method to prove the existence of degeneracy in quantum 
mechanics is to find two non-commuting symmetry operators each of which 
commutes with the Hamiltonian. In the present situation such operators 
are provided by magnetic translations. The infinitesimal magnetic trans
lations of a single electron are defined by eqs. (4.7). In a many-body 
system one can define the magnetic translation 

t.oo = exp{! :ten.} 
1 H 1 

(7.2) 

for each electron i. In the absence of impurities but in the presence of 
electron-electron interactions the total magnetic translation 

N 

TOO = n t.oo 
i = 1 1 

(it: 2-d vector) (7.3) 

leaves the many-body Hamiltonian invariant. 

For definiteness, to impose the torus geometry let us consider the 
periodic boundary condition imposed on the many body wavefunction 

(7.4) 

with t = Let = L e So the wavefunction is unchanged when one of the 
1 1 x' 2 2 y. 

electrons is magnetically translated by t or t across the plane. This 
1 2 

corresponds to the case with 81=82 =2n1l' in eqs. (4.25'). Suppose there are 
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Ll L2 
N"" = = integer 

'I" 21t 12 
(7.5) 

flux quanta through the surface, and there are 

Ne = vNq, = (p/q)Nq, (7.6) 

electrons, with p,q mutually prime integers. The translations which also 
leave the boundary condition (7.4) invariant are 

(7.7) 

and their powers. These are the symmetry operators we are looking for, 
since Tl and T2 do not commute: 

= T T e-I21tP/q 
2 1 

(7.8) 

One may choose a ground state 410 to be an eigenstate of T2 , then the q 

states defined by 

(n=O,l,···,q-l) (7.9) 

are degenerate, i.e. have the same energy with 410• Furthermore, they are 

all eigenstates of T2 but with different eigenvalues: 

T 41 = e-l21tnp/q T 41 (7.10) 
2 n 2 0 

and therefore they are orthogonal to each other. In other words, the 
ground states must form representations of the Heisenberg algebra (7.8), 
whose irreducible representation is S dimensional. So the ground state 
must be at least q-fold degenerate. 1 If there is no accidental degener
acy, there are exactly q ground states. 

In general, the presence of disorder or random impurities breaks the 
invariance under many-body translations (7.7). This means that the ground 
state degeneracy is lifted by weak impurity potentials. If the impurity 
potentials are weaker than the energy gap, one may use the first-order 
degenerate perturbation theory in the gound state sub~ace. This 
approach has been taken by Tao & Haldane, and Wen & Niu. In general, 
there is a unique ground state for each set of boundary phases «J1,(9. 
Does this imply that the Hall conductance should be an integer according 
to the theory of topological invariant? The answer is negative, because 
the temperature in realistic samples is believed to be higher than the 
energy splitting caused by impurities. The lowest q states split from the 
ground states are equally populated below the Fermi level, so the discus
sion in the last subsection still applies. 

Wen & Niu30 has recently proved, by using the effective Ginsburg
Landau theory for the FQHsystems, that the ground state degeneracy of a 
FQH system with v=p/q ona Riemann surface with genus g is qg-fold, even 
though the translation invariance no longer holds on a Riemann surface 
with g> 1. This degeneracy is shown to be invariant against weak but 
otherwise arbitrary perturbations. This result explicitly shows that the 
ground state degeneracy of a FQH system depends on the global topology of 
the surface. Originally the ground state degeneracy was controversial for 
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a while: Laughlin's wavefunction for rs disc geometry16 and Haldane's gen
eralization for a spherical geometry were both found to be non
degenerate. OIf; the other hand, the degeneracy argue~ by Tao & Wu for the 
torus geometry 4 was seen in computer simulat\ons 1 and in explicit con
struction of Laughlin wavefunction on a torus. 2 Later the speculations 
about symmetry breaking from this degeneracy turned out to be incorrect, 
since the degeneracy 3pn a torus can be interpreted as the degeneracy of 
center-of-mass motion. Wen & Niu resolved the puzzle. They showed that 
the degeneracy is dependent on spatial topology and preserved in the ther
modynamic limit even though the translational or rotational symmetries may 
be lost on a high-genus Riemann surface. This implies that the degeneracy 
of FQH states is a reflection of some topological order in the system and 
that the degeneracy should not be interpreted as a symmetry breaking of 
usual type, nor should it be disregarded as merely the center-of-mass 
degeneracy. Very recently Wen34 has developed the concept of topological 
order and has attempted to use the non-abelian Berry connection in the 
ground state subspace to fully characterize the topological order of the 
FQH states. 

3. Gapless Current-carrying Edge States and Topological Considerations 

This is a subject currently attracting a lot of interest. Almost 
immediately after Laughlin's argument, Halperin35 has noticed an important 
consequence of the gauge-invariance argument. Namely there should exist 
current-carrying states in a QH (both IQH and also FQH) system with boun
dary; these states are localized on the boundary but extended around the 
perimeter. Becap!e of recent experimental observations of the I;dge states 
in FQH systems, they have attracted more and more attention.3 We do 
not have time to enter into this subject, but wish to make the following 
comment. 

There should be a close relationship between the edge states on the 
boundary and the degeneracy of the FQH states on a compact surface, 
because both are required by gauge invariance. This can be seen more 
clearly from the cylinder geometry in Laughlin's original argument. In 
the v = 113 FQHE case, as the flux threading the hole enclosed by the cylin
der increases from zero to CPo (unit flux), a charge-1I3 quasi-particle is 

transferred from one edge to the other. Only as the flux increases to 
3cp 0' an electron or usual hole is transferred across the system between 
the two edges. Since the basic constituents for the edge states are still 
electrons, the Hilbert space of edge states should be understood from the 
point of view of electrons. If so, with unit flux turned on, the edge 
state should not be in the same sector in the edge-state Hilbert space as 
before, because of the transfer of a charge-1I3 quasiparticle between 
edges. Thus, the edge Hilbert space should contain three sectors and dif
ferent sectors are related by adiabatically turning on unit flux. Only 
turning on three unit flux does not change the sector. Intuitively one 
may expect the correspondence of the three sectors in the edge Hilbert 
space on a cylinder and the 3-fold ground state degeneracy on a torus. 

Actually such a correspondence can be realized by bending the cylin
der and bringing the edges together in contact to each other in physical 
space. With the edge potential barrier present and tunneling between 
edges ignored, the system is like the cylinder one we discussed above. If 
we imagine to reduce the height of the edge barrier and to increase the 
tunneling of electrons between edges in a thought experiment, finally we 
can achieve the toroidal system with the disappearance of the edge barrier 
and with electrons going freely across the edges. In the latter situa
tion, a gap is expected to be open in the edge Hilbert space and the state 
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on the "would-be cut" where the edges are glued together to be in the 
ground state which is 3-fold degenerate. If one moves a charge-V3 quasi
particle from the "would-be" cut around a non-shrinkable loop on the 
torus, this will bring a ground state to another degenerate one, since it 
corresponds to, in the cylinder geometry, what happens when a unit flux is 
turned on. It would be interesting to see how the physics discussed here 
is exhibited in an appropriate formalism for the Hilbert space of edge 
states in the cylinder geometry. 
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THE NONABELIAN CHERN-SIMONS TERM WITH SOURCES AND BRAID 

SOURCE STATISTICS 

M. Bourdeau * 

Department of Physics 

Syracuse University 

Syracuse, N.Y. 13244-1130 

INTRODUCTION 

The statistical properties of N identical particles are related to the fundamental 
(Rd(\Rd 

group 1I"1(Q) of Q, where Q, the configuration space is given by s/Iasonal , 

where d is the space dimension. In three or more dimensions, the group 1I"1(Q) is 

the permutation group SN. Each unitary irreducible representation (UIR) of 1I"t{Q) 

corresponds to a distinct quantum theory, these quantum theories describing bosons, 

fermions and paraparticles in three or more dimensions.1 In two space dimensions 

the situation is different: 11"1 (Q) is the infinite braid group BN l1 , which has N - 1 

generators U Q , these generators describing the exchange of particles a with a + 1. 

This group governs the statistics and has many UIR's which are not also UIR's of 

SN, SN being a factor group of BN. We expect therefore a novel type of statistics, 

specific to two space dimensions. In 2+ 1 dimensions, it has been known for some 

time2 that a Lagrangian consisting of an abelian Chern-Simons term for charged 

particles leads to 'fractional statistics'. This statistics seems to be the one obeyed 

by the Laughlin3 quasiparticles of the fractional quantum Hall effect. This work 

* This work is done in collaboration with A.P. Balachandran and S. Jo. 

Physics, Geometry, and Topology 
Edited by H. C. Lee 
Plenum Press, New York, 1990 
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concentrates on the nonabelian generalization of the U(1) sources and the abelian 

Chern-Simons term and whether this generalization leads to novel statistics. This 

inquiry is of relevance for example for the strongly coupled Hubbard model which 

has an SU(2) gauge invariance4 and where it is possible that the effective action of 

the connection fields contains a Chern-Simons term. 

In two dimensions the solution for the gauge connection for the Lagrangian of 

N identical charged sources interacting with an abelian Chern-Simons term is unique 

up to gauge equivalence. The generalized statistics is determined by the strength 8 

of the Chern-Simons term. We will see that the situation for the nonabelian Chern

Simons term with sources is quite different: there exist many gauge inequivalent 

solutions for the gauge connection and each class of gauge potentials leads to a 

different (braid) statistics. We find also that there is no obvious correlation between 

the spin and statistics of the particles. 

The outline is as follows: we shall first describe the model of N identical particles 

in interaction with a nonabelian Chern-Simons term, then find all solutions of the 

field equations with sources and describe how they fall in equivalence classes; the 

quantization of the system will be discussed and finally, the relation between spin 

and statistics of these particles. 

DESCRIPTION OF THE MODEL 

Consider G to be a simple compact connected Lie group with Lie algebra G, for 

example, G = SU(M). The sources for the SU(M) gauge fields are point particles. 

Then, the Lagrangian for N identical point particles carrying nonabelian charges fa 

with a Chern-Simons term can be written down as: 

where za(t) are the space-time coordinates of the particle 0:: 
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z<>(a)(t) = xa(a)(t), for a = 1,2 

zO(a) (t) = t 

(1) 



and where we define an isospin-like variable: 

K(a) determines the UIR of G to which the particle belongs. On quantization, Ija)(t) 

become the generators of the representation of Q which characterizes the source. 

The coupling 

The last term in Lis J .ccs with A = Ap,dxP" the Yang-Mills potential for 2+1 

dimensional space-time and the group G. The coefficient in .ccs is quantized, the 

quantization condition being k E Z. 

We neglect the kinetic energy term in this Lagrangian. It is probable that the 

physical effects predicted by this model and others where the kinetic energy is also 

neglected survive for sufficiently large length scales because the long range fields to 

leading order appear to be caused solely by the contribution of the Chern-Simons 

term to the field equations. 

The variations in A , s(a)(t) and x(a)(t) give the following analogues of Wong's 

equations5 : 

(2) 

where Eab = EOab 

(3) 
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(4) 

where the last equation is the nonabelian version of the Lorentz force equation. 

Classically, the motion in the spatial coordinates is free, as seen by substituting Eqs. 

(2) in (4): 

za(a) (t) = o. 

Quantum mechanically, however, the sources will in general scatter. 

SOLUTIONS TO THE FIELD EQUATIONS 

We can now solve for the preceding equations in a particular gauge. It can be 

shown that any solution is gauge equivalent to such a solution6 • We will first assume 

that no two sources have the same first coordinate at a given time: 

[x1(a)(t) - x1(P)(t) of 0 if a of Pl. The general solution for A can then be obtained 

as follows: choose K(a) to be any fixed point in the orbit of [(a) under the adjoint 

action: 

Then at time t, 

A = A,.dx" = 0 
. a·I.(a) 

= _~ K(a) _0/_ dx" 
k ax" 

in ]R2\Ua~(a)(t), 

in ~(a)(t). 
(5) 

As shown in Figure 1. below, ~(a) is a thin strip in ]R2 going from x(a)(t) along 

the negative 2 axis. The tails are assumed to be thin enough as not to overlap 

[~(a) n ~(P) = 0 if a of Pl. ",(a) is an angle like function which (at time t) is 

constant in ]R2\~(a)(t) and increases by 271" as ~(a)(t) is crossed from left to right 

below the source position x(a)(t). 
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x(lt +1) 

t 
.1 (OC) 

Fig.I. 1/J(a) increases by 211" when 6(01) is crossed along the arrow. 

By Stokes' theorem, and using the relation: 

for a counterclockwise loop enclosing only the source O! at time t, we get: 

Using this, and the fact that 1/J(a) can be regarded as a function of (xa_xa(a)(t)), 

one can check that A satisfies (2) in the gauge where j(a)(t) = K(a), where K(a) are 

independent of time. 

The holonomies associated with the gauge connection are: 
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w(a) = Pexp [f A] = exp [- :c:)] (6) 
C(a) 

Altough the connection looks abelian, the holonomies w(a) don't necessarily 

commute for specific choices of K(a) and k. 

There are two important remarks about these solutions which come about as 

follows: 

If two solutions A(L) and A(M) are gauge related by a gauge transformation gLM, 

then their holonomies are in the same conjugacy class. Conversely, if their holonomies 

are in the same conjugacy class, that is if there exists an element hLM E G 

independent of a which fulfills w(L)(a) = hLM w(M)(a) hilI ,then there exists 

gLM which gauge transforms A(M) to A(L) . However there is no guarantee that gLM 

is well defined at the source positions. A requirement on gLM to partially avoid such 

singularities is: 

(7) 

This condition has the following consequences: 

-All solutions of (2) are gauge related to a solution of the type (5). 

-Two connections which are solutions of (2) (with sources characterized by internal 

vectors K(a) and K(a)) are gauge related if and only if there exists a hE G 

(independent of a) such that 

A detailed proof of the above can be found in Ref. 6. 

Now, in the abelian Chern-Simons theory, the solution for A is unique up to a 

gauge transformation. In the nonabelian problem, as we have just seen, the situation 

is different: there exist many gauge inequivalent solutions and as we shall see later, 

the statistics depends on the equivalence class of solutions one is considering. 
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LAGRANGIAN FORMALISM FOR THE SOURCES AFTER ELIMINATION 

OF THE GAUGE FIELD 

We will now eliminate the field A and obtain an effective Lagrangian for the 

sources. The Lagrangian formalism for a point particle with internal symmetry will 

be discussed. The requirement that LEFF give classically free motion in the particle 

coordinates then leads to an interesting quantization condition (similar to the Dirac 

quantization condition for the charge-monopole system6 ), as we shall see in the next 

section. 

The Lagrangian before elimination of the gauge potential is: 

L = L ~m[za(a)(t)]2 + ij Tr[K(a)s(a)(t) -1 Dts(a)(t)] 

a (8) 

Note that if we redefine s(a)(t) = s,(a)(t)f(a) , K(a)(t) = f(a)-l K,(a)(t)f(a) in 

(8), we can arrange to have the same K(a),s in (8) as in the gauge potential equation 

(5). Then the K(a),s coming in the definition of /(a),s are the same as the ones 

coming in the formula for the gauge potential. This is done for simplicity. We can 

now substitute in the source part of the Lagrangian the potential due to all the 

particles j3 of a . We are neglecting self interactions here. 

The potential seen by particle a due to N - 1 particles is given in a general 

gauge by 

gA(a)g-l + gdg- 1 = g [ - £ L K(,B) dt/J(,B)] g-l + gdg- 1 , (9) 
,Bola 

where A(a) is the solution given in (5): 

A(a) = -i; L K(,B) dt/J(,B) 

,Bola 

We can infer now from (9) and (8) that 

(10) 

499 



(11) 

= L ~m[Za(et)(t)]2 +jTr[K(et)S(et)(t)-lDtS(et)(t)], 
et 

(12) 

(13) 

Note that stet) is gauge invariant. 

The factor of ! in (13) comes about by eliminating the Chern-Simons term 

from the action2: 

The terms in the action involving A (upto terms coming from the gauge transfor

mation which are not of interest here) are: 

(14) 

with 

JI' = iL f dr6 3 [x - z(et)(r)]S(et)(t)K(et)S(O!)(t)-l. 
O! 

The variation of this expression under an infinitesimal variation of z(O!) must coincide 

with the variation of the interaction term in the effective Lagrangian for particles. 

One then finds6 that the term in the effective Lagrangian arising from S' is: 

We shall now briefly discuss the Lagrangian formalism for a point particle with 

internal symmetry7. It is closely related to the Kostant-Sourieau approach to finding 

the VIR's of a Lie group using suitable co adjoint orbits as phase spaces8 , and to the 

Borel-Weil-Bott method for finding VIR's of semisimple compact Lie groups9. 
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We are interested in particles associated with unitary irreducible representa

tions of the internal symmetry group G as sources, just as in the abelian case we 

are interested in particles of fixed electric charge as sources. As explained in Ref. 

7., this means that one can regard the internal vector I(t) of a particle as belonging 

to a fixed orbit of G in the adjoint representation. The orbit in question determines 

the UIR. Representing the elements of G by matrices as usual, and denoting by K 

a fixed fiducial point on the orbit, we may write 

I(t) = Ij(t)Aj = s(t)Ks(t)-l,s(t) E G (15) 

where Aj are hermitean generators of the Lie algebra G of G normalized according 

to 

(16) 

The "free" Lagrangian describing a particle associated with a UIR of G (and no 

other degree of freedom) is 

LINTERNAL = iTrKs(t)-ls(t) , s(t) = d~~t). 

As discussed in Ref. 10., the variation of LINT gives the equation of motion 

. dI(t) 1 
I(t) == ---;£t = 0, I(t) = s(t)Ks(t)- . 

It is not possible to quantize LINTERNAL unless K is subject to certain quantiza

tion conditions7• The precise nature of these conditions depends on the rules of 

quantization adopted. Here, we adopt the following: 

Let If be the generators of G acting on s from the right, the nontrivial PB's 

involving l;R and s being 
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~R . Aj 
{Ij ,S} = -t s 2' (17) 

(18) 

Define also 

(19) 

Then, 

(20) 

where 

(21) 

The Lagrangian LINTERNAL implies the constraints 

(22) 

or 

(23) 

relating these generators and sK s-1. The constraints in terms of JR are then 

JR+K ~ o. (24) 

Consider the Lie algebra kK of the stability group of K. It is spanned6 by 

elements K , K(p) where Tr K K(p) = 0 and K(p) span a Lie algebra 12.j{' It is 

shown in Ref. 7. that the components of the constraints (24) in the directions lying 

in kK are first class. The first class constraints are thus 
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Tr KIR + Tr K2 R$ 0, 

Tr K(p)IR R$ O. 
(25) 

The components of the constraints in directions orthogonal to kK are second class. 

The constraints to be finally applied as conditions on the physical states turn out 

to be the following6 (calling if the quantum operator for the classical variable l;R 
with fR = f;R)..j): 

[Tr K fR ]'I/J = - Tr K2 'I/J , Tr K2 = an integer x It , (26) 

(27) 

~R 
[Tr Ea I ]'I/J = 0 , 0: < O. (28) 

where Ea are simultaneous eigenvectors of all the elements in C (a Cartan sub algebra 

of kK) under the adjoint action6 .(If C is of dimension r [G is of "rank" r] and has 

a basis Hi, then 0: = (O:l, ••• ,O:r) is an r dimensional vector called a "root" and 

[Hi, Ea] = O:i Ea. The "lowering" operators are defined as those Ea for which 0: < 0.) 

The above conditions admit the following interpretation. The wavefunctions 'I/J 

can be regarded as functions on the group {s}. The group G = {g} has the following 

right action on the functions X of s (whether or not they fulfill (26,27,28): 

g X --t R(g) X , 

[R{g) x]{s) == x{s g). (29) 

The infinitesimal form of this equation defines the action of if on these functions. 

(29) means that the physical states 'I/J transform as a highest weight state for this right 

action of the group on {s}. This highest weight state furthermore is an eigenstate 

of [Tr K fR] for eigenvalue - Tr K2 and a 12..J{ singlet by (26) and (27). It is well 

known that there is a unique UIR with such a highest weight state. 

503 



It is possible to display the physical states t/J explicitly. Let p label all the 

inequivalent UIR's of G and let DP(s) be the image of s in the UIR with label 

p. Consider the matrix elements D~, a(s) of DP(s) between suitable basis states 

la > , la' >, D~, a(s) = < a'IDP(s)la > . It is well known that these matrix 

elements span the space of functions on s. The constraints state that the physical 

states are spanned by those D~, a for which la > is a highest weight state fulfilling 

(26,27,28). These requirements can be fulfilled in only one UIR and that too by 

a unique I a >. This means in particular that the UIR describing the particle is 

uniquely determined. 

It is worth noting that the generators of the internal symmetry transformations 

in quantum theory are 1; and not If where 1; are the quantum operators associ

ated with the classical variables If. The action of 1; on t/J is obtained from the 

infinitesimal version of the left action 

of G on t/J. Since DP(g-ls) = DP(g-l)DP(s), the wavefunctions fulfilling (26,27,28) 

are seen to transform irreducibly under internal symmetry transformations. 

The correct scalar product for physical states is given by group theory: If t/J 
and t/J' are physical states, then 

(t/J',t/J) = I dlL(S)t/J'(s)*t/J(s), 
G 

dlL(S) being the invariant measure on G. 

A final remark concerning the quantization : in our approach here, the con

straints are not eliminated at the classical level. They are imposed as suitable 

constraints on the quantum states. For example, take the case of G = SU(2), s(t) 

can be regarded as an element of its 2 x 2 UIR and one can assume K = eTa, C 

being a constant. Then the method described above requires e 2 = j2, j being a 

non-negative integer or half integer (the UIR being associated with the Lagrangian 
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for a given i is (2i + 1) dimensional). However, if one quantizes the classical system 

after first eliminating all constraints 7, the conditions on K are different and become: 

C 2 = iU + 1). 

A "BRAID" QUANTIZATION CONDITION 

Let's go back to Eq.(l1) which gives LEFF after elimination of the gauge po

tential: 

= L ~m[z<l(a)(t)]2 + iTr[K(a)S(a)(t(l DtS(a)(t)] 
a 

We must now check that (11) leads to reasonable equations of motion. In particular 

we must verify that there is free motion in the coordinates z<l(a). 

As stated before, the solution (5) is valid only if no two tails L::,.(a) and L::,.(P) 

(0: :f. P) cross. That is LEFF is correct only if source 0: never crosses the common 

tail of two sources p and 'Y , that is if L::,.(a) n L::,.(P) n L::,.h) = 0. In other words, 

L EF F is correct (in the limit of infinitely thin L::,. (a)' s) if no three particles have the 

same first coordinate. Excluding these source configurations , one can easily show 

that we get free equations of motion in the particle coordinates. To extend LEFF 

to configurations with three or more overlapping L::,.(a)'s , note that the coordinates 

of the N particle configuration space Q can be written as a 2N dimensional vector 

€ = (e,e, ... eN ). The interactions terms involving € in LEFF(for ,6(<» n ,6(P) n 

L::,.h) = 0) can be written as 

where the sum is from 0 to 2N, €o is identified with time t and 

BI-' = -~~al-'[LTr ](a) K(P)tJ1(P)(z(a»)]. 

p=fa 

It does not affect the equation of motion of €I-' because 

(30) 
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Now BIL is defined only on a subset of Q x ]RI [points of ]RI labelling instants of 

time]. We must now extend its definition to all of Q x ]RI maintaining the condition 

(30) so that the x(a) motion continues to be free: 

Consider the paths in Fig. 2 : these are paths in Q (at an instant of time) 

(here, for the case of three particles) associated with the left- and right-hand sides 

of the following braid relation: UaUa+lUa = U a+lUa U a+l , U a being the element 

associated with the exchange of particles a and a + 1 in the braid group BNll • 

The path PI corresponds to UIU2Ul where we first exchange 1 and 2 , then 2 and 

3 and finally 1 and 2 again. The path P2 corresponds to U2UIU2 where 2 and 3 are 

exchanged first, then 1 and 2 and finally 2 and 3. These two paths in Q are homotopic 

and along these paths, ,0,.(1) n ,0,.(2) n ,0,.(3) = 0. So, if aD is the loop PI U P2 -1 in Q, 

then any disc D which it bounds contains a point q with ,0,.(1) n ,0,.(2) n ,0,.(3) = 0. If 

the potential B is extendible as a flat connection to all of D including q, then it is 

necessary that 

or 

exp- / Bade = 1 

P,UP2-' 

exp - / Bade = exp - / Badt;.a 

~ P2 

Evaluating both sides of these equation in quantum theory, we find the quantization 

condition: 

exp{ 7ri Tr[pl) K(2)]}exp{ 7ri Tr[pl) K(3)]} 
k k 

= exp{ :i Tr[pl) K(3)]}exp{ :i Tr[pl) K(2)]}. 
(31) 

The result can be generalized for N > 3 , where we get more than one such condition. 
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a. 

2 3 

h. 

2 3 

c. 

Fig.2. a. shows the motion of the three particles corresponding to the path PI for 

UIU2UI in Q. h. shows the motion of three particles corresponding to the path 

P2 for U2UIU2 in Q. The homotopy from PI to P2 involves a point where all 

three particles have same first coordinate as shown in c. 

STATISTICS OF IDENTICAL PARTICLES 

We can write Eq.(ll) as: 

(a) 
LEFF = LEFF 

= L ~m[za(a)(t)]2 + j Tr[KS(a)(t) -1 DtS(a)(t)] 

a 

where we have now rotated all the K(a) to K. Indeed, we have seen that the internal 
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symmetry representation of the particle a is determined by the orbit of K(a) under 

G. It follows that for identical particles, K(a) are in the same orbit of G and can be 

written as conjugates of a fixed K on this orbit: 

(32) 

(We can choose e(a) to be time independent in (32), since K(a) and K are time 

independent.) Now, set s(a)(t) = S(a)(t)e(a)-1 in (12), and call S<a)(t) as s(a)(t) 

again, then we get the above equation. The elements K(P) in (10) are not affected 

by this transformation, but they of course fulfill (32). Remember here that only a 

global transformation will preserve the form (10) of A(a). 

The statistical properties of sources will be studied by looking at the symmetries 

of LEFF under exchanges. LEFF is not always invariant under the exchanges 

(33) 

We can however restore exchange symmetry by following up such an exchange with 

internal transformations 8(0') --4 T(0')-1 S(O') , T(O') E G. In order that LEFF is 

exchange invariant, T(O')'s must exist such that LEFF is invariant under the combi

nation of both these transformations. Such T(O')'s don't always exist. 

For the case when N = 3, the exchanges of a and /3 , including possible internal 

transformations, can be written as: 

Furthermore, for LEFF to be exchange invariant, Gap, Gpa and Hap must fulfill: 

(35) 

One can assume that Gpa = GaP -1 , Hap = Hpa. 
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If such Gap, Hap don't exist, LEFF is not exchange invariant. Physically, 

this means the following: The potential seen by particle a is A(a) (as given in (10)); 

consider an exchange as in (33); the internal transformations must be such that (33) 

effectively exchanges the potentials A(a) and A(P) in LEFF and leaves Ab) invariant. 

If these internal transformation do not exist, then the potentials seen by the particles 

are not exchanged by any a - (j exchange. When LEFF is not invariant under an 

exchange O'a of particles a and a + 1 , O'a transforms LEFF to a new Lagrangian 

O'aLEFF. All the Lagrangians LEFF , O'aLEFF , O'aO'pLEFF , ..• must be considered 

together to restore exchange invariance of the system and identity of the particles.(see 

Ref. 6.) 

From the above, we thus expect that the statistics of the sources (as defined 

by the representations of BN on the quantum states) depends on the symmetry 

properties of A(a). Indeed, distinct BN representations occur for suitable poten

tial choices. Therefore the nonabelian sources are not uniquely associated with a 

particular statistics, rather the latter depends on the choice of A(a). 

The space of states for an exchange invariant LEFF is spanned by Ix(1)x(2)x(3) > 
Im(1)m(2)m(3) > where the internal group of particle a acts on the index m(a) • The 

exchange 0'1 of particles 1 and 2 acts as follows on the quantum states6 : 

u1Ix(1)x(2)x(3) > Im(1)m(2)m(3) > = 

Ix(2)x(1)x(3) > Ilmn > [D(G21 )]'m(.,[D(G12 )lmm(l,[D(H12 )]nm(3,. 
(36) 

where D(.) are unitary representations. Remembering the conditions (35) and the 

braid relation UQUa+1Ua = UQ+IUaUa+b one can find solutions for the H's and G's 

such that u~s generate a representation of the braid group. 

Applying 0'1 twice gives: 

u~lx(1)x(2)x(3) > Im(1)m(2)m(3) > = 

Ix(1)x(2)x(3) > Im(1)m(2)n > [D(Hl2)]nm(". 
(37) 

We will now give an example of all this for the gauge group SU(2) for the case 

of three particles (N = 3): We regard here s(a)'s , K(a)'s etc. as associated with 
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the two-dimensional UIR of SU(2). A first condition that must be satisfied is the 

braid quantization condition (31). Let's assume that K = iTS with j ;::: o. Using 

(18),(21) and (24), we can write a solution of (31) as 

Conditions (35) simplify to 

j k E {o, ±1,,±2, ... }. 

Tr K(1)2 = Tr K(2)2 , 

Tr K(2)2 = Tr K(S)2 , 

Tr K(l) K(S) = Tr K(2) K(3) , 

Tr K(2) K(l) = Tr K(S) K(l). 

(38) 

(39) 

A simple choice for j , k , K and K(a) consistent with (26,27,28) and the above and 

leading to a~ = 1 is j = 1, k = ±1 and K = K(a) = TS (0: = 1,2,3). In this case the 

Bs representation becomes also a representation of Ss. We have used here only the 

simplest solution of (28). Other solutions could lead to nontrivial representations of 

the braid group. For examples with other gauge groups, see Ref. 6. 

FINAL REMARKS 

We have neglected self-interactions of the sources while deriving LEFF. How

ever, the sources acquire intrinsic spin because of the Chern-Simons term. By using 

the form of the connection6 as the source is approached in the angular direction 

cp, the intrinsic spin of a source turns out to be A Tr K2. It is quantized in the 

nonabelian case in units of 2k (Tr K2 being quantized in units of It (26)). 

As we have seen, in the nonabelian case, there is no unique UIR of BN we 

can unambiguously associate with the states of N identical particles. As this UIR 

determines the statistics of the particle, there is no obvious correlation in this case 

between the spin and statistics of a particle. 

A final note: in this work, we have considered open trajectories of particles 

(always going forward in time) as sources. This implies that we did not consider 

antiparticles. Preliminary results on the possible solutions of the field equations 

when sources trace out space-time loops show that the allowed gauge equivalence 

classes of potentials become restricted, therefore possibly restricting the statistics 

available. 
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THE QUANTUM GROUP METIIODS OF QUANTISING THE SPECIAL 

LINEAR GROUP SL(2,C) 

Nigel Burroughs 

Department of Applied Mathematics and Theoretical Physics 
Silver Street Cambridge England CB3 9EW 

ABSTRACT: There are two main methods for obtaining a description of a quantised 

version of the group SI(2,C) : a one parameter deformation of the universal 

enveloping algebra of the Lie algebra sl(2,C), and a non-commutative deformation 

of functions on SI(2,C). These two methods are discussed and their equivalence 

proved. 

§1. INTRODUCTION 

Quantum groups have been mentioned in this school a number of times in relation to 

vertex models by De Vega, Conformal field theory by Seiberg, 3-dimensional field theory by 

Frohlich, and knots and links by Wu and Lee. These fields are all intimately connected, knots 

and links, 3-dimensional Chern Simons theory and 2-dimensional conformal field theory are 

all related in the work by Witten [23], and vertex models have conformal field theories as 

their continuum limit. Quantum groups are connected with all these areas, most explicitly in 

knots and links [16], [18] and vertex models [6]. The connection with conformal field theory 

is still incomplete. 

Quantum groups and quantised algebras can be considered from two different view 

points, these leading to the two alternative approaches for quantising the Lie groups. Either 

one deforms the universal enveloping algebra of the corresponding Lie algebra [8], or one 

quantises the functions on the group [9]. These approaches are in fact equivalent, and related 

by duality [4]. The occurrence of quantum groups in Physics can be expressed in either of 

these formulations, in particular the enveloping algebra approach occurs in knot theory, and 

the function approach in vertex models. The suggested connection between quantum groups 

Physics. Geometry. and Topology 
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and CFT are expressed by a combination ; chiral vertex operators appear to be a quantum 

group comodule and the braiding matrices of CFT are identical to the R-matrix of some 

quantised algebra in representation form, [2], [10], [15]. Presumably there is also a quantum 

group generalisation of the Chem~Simons interpretation of the Jones polynomial, reproducing 

the quantised algebra valued knot invariants [18], and giving quantised algebra valued 3-

manifold invariants. This paper connects these two approaches to quantum groups, 

demonstrating their equivalence. Hence quantum group symmetries may be expressed in 

either form, as is convenient. 

Only the Lie group SI(2,C) is considered in this work. However this does not restrict the 

validity of the analysis to this particular case, the extension to other Lie groups being in most 

cases obvious. This paper is organised as follows. In §2, the methods for obtaining some 

type of a quantisation for the topological group Sl(2,C) are considered, thus motivating the 

quantisation of the universal enveloping algebra of sl(2,C) and the functions on SI(2,C). 

Section 3 outlines the quantisation of the functions as defined by Faddeev et al [9]. The 

corresponding quantisation of sl(2,C), ie the one parameter deformation of the enveloping 

algebra UsI(2,C), is discussed in §4. This is the definition as given by Drinfel'd [8]. Starting 

from the quantised algebra (§4), §5 reproduces the quantisation of the functions as formulated 

by Faddeev et al [9], by considering the fundamental representation of the deformed 

enveloping algebra. The rest of the paper is dedicated to obtaining the quanti sed algebra as 

formulated by Faddeev et al [9], a formulation that is very natural from the quantised function 

point of view. An explicit isomorphism between the generators used in this description of the 

quantised algebra, and that in §4, Drinfeld's [8], is obtained. In order to accomplish this we 

will exploit the quantum double construction [8], which is summarised in §6. Finally the 

desired reconstruction of the quantised algebra can be done in §7. 

This paper is based on the work in [4]. However the emphasis is different, the analysis in 

[4] emphasising the role of representations, and only using representation logic in the proofs. 

Here the same results will be obtained, but in a more algebraic manner. Hence this paper is to 

some extent complementary to [4]. 

§2. QUANTISING CONSIDERATIONS 

In order to provide a motivation for the quantisation programs presented in §3 and §4, we 

shall consider the problem of quantising the classical group SI(2,C). This is a topological 

group, so there is a topology that must also be considered in any quantisation process. A 

direct quantisation of SI(2,C) involves some generalisation of topology, in particular the 
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concept of a point would be lost. However the procedure for obtaining the required quantum 

generalisation of topology is unknown, and the issues one faces are difficult and as yet 

unresolved [12]. So in order to proceed it is necessary to use indirect methods, methods that 

are more algebraic and hence closer to the conventional quantisation process, ie replacing 

some commutative algebra and Poisson struc~e, with a non commutative algebra. The 

obvious choice is to consider the functions on Sl(2, C), Fun(Sl(2,C», a commutative algebra 

with a Poisson structure. The Gelfand spectral theorems assert that we can rebuild Sl(2,C) as 

a topological group purely from the knowledge of the function algebra. Thus quanti sing the 

functions will produce a description of the quantised group. However, there is also a theorem 

that relates the algebra Fun(Sl(2,C» to the universal enveloping algebra of sl(2,C), the Lie 

algebra of the original group. This states that the linear dual to Usl(2,C), denoted 

Us1(2,C f is isomorphic to Fun(SI(2,C»t 

Fun(Sl(2,C »::: Usl(2, C f. (1) 

This isomorphism can be understood by considering the derivatives of a function at the 

identity. An element of Usl(2,C f specifies all derivatives of some function on SI(2,C), 

and hence the function can be reconstructed by a Taylor series expansion about the identity. 

Due to the duality in (I), a quantisation of the universal enveloping algebra Usl(2,C) will also 

produce a description of quantised SI(2,C). Since SI(2,C) can be considered as embedded in 

the universal enveloping algebra as the exponentials of the Lie algebratt , we in fact obtain 

the triangle of relationships depicted in figure one. 

Sl (2,C ) LOCAlLY 

~/) ~= 
Usl (2,C )... DUAUlY • Fun(Sl(2,C :) 

:::Usl(2,C) 

FIGURE I 

t More precisely, Usl(2,C) corresponds to the distributions on Sl(2,C) with support at the identity. 
tt In particular, the exponentials of s1(2) form a group in Usl(2) isomorphic to Sl(2), are group like [1] and 
the C-span is Usl(2). 
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So a quantisation of SI(2,C) can be achieved by starting from the classical system positioned 

at any corner of this triangle. However the only two viable methods at present are via the 

function space or the enveloping algebra. The quantisation of the function space is the path 

pursued by Faddeev et al [9] and Manin [19], [20] while Drinfel'd [8] and Jimbo [13], [14] 

consider a one parameter deformation of the universal enveloping algebra. These two 

constructions are equivalent, as claimed in [9] and proved in [4]. The constructions that allow 

their equivalence to be deduced are the subject of this paper. The two quantisation processes 

are summarised in the following diagram; a quantisation of figure 1. 

TIlE 
QUANTISED 
ALGEBRA 

An Hopf 
.... brL 

QUANTUM 
FORMAL 
GROUP 
A aroup. 

FIGURE 2 

THE 
QUANTUM 

GROUP. 
Nol. IIJ'OUF 

Here Uq sl (2) is a one parameter deformation of the universal enveloping algebra of sl(2,C), 

Funq (SI(2,C» is a quantisation of the functions on SI(2,C), and 81 q(2, C) is a 

quantisation of the topological group SI(2,C). The last object is to some extent speculative, as 

the author does not know to what extent this object can be described. From the category 

duality point of view [24], the quantised functions Funq (SI(2,C» can be identified with the 

'continuous functions' on 81 q(2, C ) : 

Funq (81(2, C » ::Fun(81q(2, C ». 

The actual quantum group, as opposed to the generic term for this subject, is 

Funq (SI(2,C»; the linear dual to the quantised algebra Uqsl (2). This definition is logical in 

relation to the work ofWoronowicz on compact matrix pseudogroups [25], [26]. 
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§3. QUANTISING THE FUNCTION SPACE Fun(SI(2,C» 

In this section the function space of SI(2,C) is considered. The commutative algebra 

structure and coalgebra structure are demonstrated, however the Poisson structure is left until 

§4, where it is discussed in the context of the universal enveloping algebra. The quantisation 

of the functions, as presented by Faddeev et al in [9], is then reproduced, and the duality 

structure considered, pointing out that the linear dual to the quantised functions should be the 

one parameter deformation of the universal enveloping algebra of Drinfel'd [8]. This is in fact 

the case, as proved in §7. 

The Function Space of SLC2.q 

The most common picture of SI(2,C) involves two by two matrices, the fundamental 

representation of SI(2,C). Thus we can consider an element of SI(2,C) as the unit determinant 

matrix : 

A = (~ ~), ad - be = 1. 
(2) 

If the determinant condition is dropped, we obtain the a representation of Gl(2,C). From this 

representation, we deduce that the functions on GI(2,C) are then isomorphic to C4. If the 

functions are expanded in a Taylor series, then a system of generators for the function space 

can be deduced : 

~ rbB 'd" f (A)= .£... ant .. a c , 
rotu ~o 

'if A e Gl(2,C ). 

By the observation that a = Pu (A), b = P21 (A), etc, this can rewritten as : 

f (A)= L ant" P;lP;lP~2P;2(A). 
,..t" ,,0 

Since this holds for all elements of GI(2,C), an expression for functions in terms of four 

generators is obtained : 

Note that this expression involves the commutative multiplication in Fun(SI(2,C», defmed in 

the point-wise manner: 
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{g(A) = {(A)g(A), 

't/ { , g e Fun(Sl(2, C», 
AeSl(2,C). 

The generator expansion of the functions is valid for the general linear group 01(2). In the 

case of SI(2), a detenninant condition must be imposed as a constraint on the generators Pij' 
a condition deduced by analysing the determinant condition in (2) : 

PIIP'}2(A) - PI2PZl(A) = 1, . 't/A e Sl(2,C), 

or as a t:onstraint on the generators : 

det(p) = PIIP'}2 - PI2PZl = 1. (3) 

The identity map, 1, is the map that takes all elements of the group to 1. Thus the functions 

on SI(2,C) are generated by {I, Pij } with the determinant constraint holding (3). 

The fact that the fundamental representation generates the continuous functions is only 

valid for the special linear groups. Additional representations must be included for other 

groups, for instance the spinor representation is also needed for the orthogonal groups. 

Due to the group structure of SI(2,C), there is an additional structure on Fun(SI(2,C», a 

coalgebra mapt : 

A:Fun(S1(2, C» -+Fun(Sl(2, C» ®Fun(Sl(2, C» 
=Fun(Sl(2,C ) x S1(2, C». 

This is given by: 

L\j(A,B) = f(AB), 't/ A,B e Sl(2,C), f e Fun(Sl(2,C». 

It can be verified that the axioms of a Hopf algebra [1] are satisfied by this definition, with an 

antipodal mapping induced by the group inverse: 

S:Fun(Sl (2, C » -+ Fun(S1(2,C », 
S(f XA)= {(A-I). 

t Strictly speaking Fun(SI(2,C»®Fun(SI(2,C» only contains fmite sums, so the equality is not exact 
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The generators Pii possess an extremely simple coalgebra property (sum over k) : 

11 Pii(A,B)= Pii(AB)= pu.(A)pltj (B) 

= Pil. ® PItj(A,B). 

Here the representation property has been exploited. We deduce that: 

(4) 

This form will recur throughout this paper. We note again that it is purely a result of the 

representation property. With this coalgebra. it is possible to prove that: 

11 (det ( p» = det (p ) ® det (p ), 

ie the determinant is group like [1], and hence it generates a coideal. Since the functions are a 

commutative algebra the determinant trivially generates an ideal, and so there exists a quotient 

structure. This is the reduction of the function space Fun(GI(2,C» to Fun(Sl(2,C» : 

F (SI(2 C » == Fun(Gl(2, C » 
un , - (det(p )-1) . 

(5) 

Quantising the functions on Sl(2,C) will involve rmding a non commutative Hopf algebra 

with a coalgebra as in (4), that reproduces Fun(Sl(2,C» in the classical limit. Note that the 

coalgebra in (4) is only a result of the choice of generators for the function space; generators 

derived from a representation, but the commutative algebra is a result of the point-wise 

multiplication. Thus destroying the commutativity of the function space corresponds to the 

loss of the concept of points in a topological interpretation of quantisation. 

Quantising the Function Space 19] 

Assume the existence of a matrix R (not to be confused with the universal R-matrix 

introduced in §4), that is valued in End(V ® V), where V is some n dimensional vector 

space over the ring C[[h]]t . R is assumed to satisfy the Quantum Yang Baxter equation 

(QYBE): 

(6) 

t The fonnal infmite power series in Planck's constant. 
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Here RIa means: the matrix R in positions 1 and 3, with the identity at position 2 of 

End(V® V® V). Similarly for R23 etc. 

An Hopf algebra A(R) is then defined with generators {I, t .. } satisfying the following 
1/ 

relations: 

RT 1T 2 =T 2 T 1R, 

A(tu)= 2, t iAo ® tlU' , 
(7) 

Here the matrix T is a matrix of generators: (T) V = tv with T 1 = T ® 1 and T 2 = 1 ® T . 

For this algebra, the QYBE (6) corresponds to an associativity condition. 

For example, the following matrix satisfies the QYBE : 

- 1 (h )r (1 0 ) ( 1 0 ) =; -1 (0 1) (0 0) 
R= ~ r! 4' 0 (_l)r ® 0 (-1{ + q (q - q )\00 ® 10 

(8) 

If this is considered as a 4 by 4 matrix it takes the form : 

(
q 0 0 0] 

R= =; 0 1 (q - q-l) 0 
q 0 0 1 0 

o 0 0 q (9) 

The q factors are so arranged for later convenience. This R-matrix will in fact generate the 

quantum group corresponding to SI(2,C) when the Hopf structure in (7) is imposed. The 

algebra has the form : 

Here the T matrix has been written as : t = (k W, +). 
W- k 

There is in fact a family of R-matrices that produce an identical Hopf structure to (9). The 

following family of R -matrices is easily verified to give an identical algebra : 
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J 
where a E a[h]] is arbitrary. There are two special members of this family, the R-matrix in 

(9) obtained from the quantum double construction, (a = q-I), and the triangular R-matrix as 

used in comodule constructions [15], [16] (a= 7(q_q-I»: 

2/(q+q-l) 

_(q_q-I)/(q +q-I) 

(q_q-I)/(q+q-I) 

2/(q+q-l) J 
From the algebra A(R), an Hopf algebra U(R) is defined, a subalgebra of the dual to 

A(R). U (R) is generated by {I, 1 (.~) }, which are defined by the following evaluations : 
/I 

(10) 

(:t) (:t) (:t) (:t) 
where the matrices of generators L are defmed as (L ) ii = 1 ii • The two matrices R 

R(+) PRP R(-) R-1 • h P b· h . . . h J: are : = , = , WIt emg t e transposlhon matrIx on t e two lactors 

V ® V. Equation (10) is valued in End( V®(k+l», with the labeling in the order: 

By manipulating duality and the evaluation structure, it can be shown that the Hopf structure : 

A(l~:t» = ~)l!) ® l~) , 

" (11) 

is obtained for the generators 1 (.~) [9]. All the generators { 1 (.~) } are not independent, since 
/I 1/ 

the evaluation structure in (9) is degenerate under the followingt : 

t The quantum detenninant condition reduces to a product over diagonal elements when, as is usually the case, 
the matrices L are triangular. 
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(+) (-) -1 

Iii =(lii ) 
(±) 

det _,(L ) = 1. 
q (12) 

A degeneracy on the algebra A(R) is also observed : 

(l,det q(t)-1)=O \;;/ I eU(R), 

giving the quantum determinant condition : 

(13) 

Here det q t is the quantum determinant, a q-analogue of the determinant condition (3). 

This constraint is consistent with the algebra and coalgebra structure, since the quantum 

determinant lies in the centre of A(R) and is also group like [1]. Hence the quotient algebra is 

well defined as an Hopf algebra. This quotient structure is given in (14). 

As in classical matrix algebra, the determinant characterises invertibility. The relations 

(12) and (13) imply that the L (±) and T matrices are invertible [4]. In fact it is necessary for 

the quantum determinant to be equal to the identity for this to be the case, in contrast to the 

matrix algebra case where the determinant is only required to be non-zero. The quantum 

determinant conditions are intimately linked with the possibility of defining an antipode for 

these bialgebras ('Hop£' algebras without antipode [1]) [4]. 

If we consider the two Hopf algebras A(R) and U(R) in the light of the previous classical 

structure of Fun(Gl(2,C», we observe that the generators t ii are q-analogues of the 

generators Pij' the generators of the function space of GI(2,C). Hence A(R)t corresponds to 

FUllq (G I( 2, C » with the following quotient structure (cf (5» : 

FUllq (Gl(2, C» 
(det q(t) -1) == FUllq (81(2, C». 

(14) 

Lifting the isomorphism in (1) to the quantum regime, the dual elements {I, 1 (±)} should 
IJ 

generate a quantisation of the universal enveloping algebra. This paper and [4] prove that this 

is in fact the case. The classical limit of the Hopf algebra A(R) is easily seen to be 

Fun(GI(2,C». However to be a quantisation of this algebra, the Poisson structure, [8], [17] 

t The quotient algebra corresponding to the determinant condition holding, (14) will also be referred to as 
A(R). 
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must also be reproduced. In this paper, this requirement is only discussed in the context of 

the quantised universal enveloping algebra, §4. 

Note that in both the Hopf algebras A(R) and U(R), only the algebra is q-dependent, (7), 

(11). Thus the coalgebra is independent of the deformation parameter. This is provided that 

both algebras are interpreted as quantum formal series Hopf algebras, and not as the quantum 

universal enveloping algebra equivalent [8]. This difference in interpretation is especially 

important when the classical limit is taken. 

§4. A ONE PARAMETER DEFORMATION OF THE UNIVERSAL ENVELOPING 

ALGEBRA Usl(2,C) 

In this section the quantisation of the universal enveloping algebra of sl(2,C) is discussed, 

as defined in [8]. The universal enveloping algebra is initially defined and the Lie coalgebra 

structure of sl(2) is given. This Lie coalgebra structure corresponds to a coboundary in the 

Lie algebra cohomology, being the coboundary of the classical r-matrix. It can also be 

interpreted as a copoisson structure on the universal enveloping algebra, the analogue of the 

poisson structure in classical systems. The reproduction of the copoisson structure will be 

part of the conditions determining the quantisation. 

The universal enveloping algebra Usl(2,C) is the tensor algebra of sl(2,C) with the 

commutation relations holding. Thus Usl(2,C) has generators {I, H , X±}. This algebra is 

in fact a cocommutative Hopf algebra [7]. The Hopf structure is summarised below. 

[H,X±]=±2X±, [X+,X-]=H, 

~1= 1®1, ~ = H®I+I®H, M± =X± ®1+I®X±, 

S(1)=I, S(H)=-H, S(X±)=-X±. 

(The coalgebra map is~, and S is the antipode) 

(15) 

There is an additional structure on this Hopf algebra that can be considered as the 

corresponding notion to the Poisson structure on the function space [8]. This is the copoisson 

structure [8]. A copoisson structure is a mapping: 

.u:Usl(2) ~ Us1(2) ® Usl(2) 
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that satisfies the co-Jacobi identity and a certain compatibility condition with the multiplication 

on the Hopf algebra UsI(2,C) [8]. This structure is equivalent to a 1-cocycle on the Lie 

algebra, and our considerations are based on this interpretation. For a fuller account of 

copoisson structures we refer to [8]. 

The copoisson structure, when restricted to the Lie algebra corresponds to a 1-cocycle in 

the C*(s1 (2),s1 (2) ® s1(2» cohomology, the cohomology of sl(2) valued in 

sl(2)®sl(2) [11]. In fact it is a coboundary, and for this reason sl(2) is called a coboundary 

Lie bialgebra. The coboundary takes the form : 

1 
tfJ = Jl.1 = ~(r) E B (s1 (2), s1(2) ® sl (2», 

B/ (2) (16) 

where B is the coboundary operator [11], B*(s1 (2),sl(2) ® sl(2» the space of 

coboundaries, and r is the classical r-matrix : 

(17) 

a O-cochain. There is a generalisation to cases where equation (16) still holds, but the classical 

r-matrix is not valued in sl (2) ® s1 (2), but the direct product of an embedding algebra of 

sl(2). These Lie bialgebras are the pseudo coboundary Lie bialgebras [8]. 

The cocycle tfJ is also called a Lie coalgebra structure, an interpretation that comes from 

the Manin triple construction of sl(2) [8]. 

In the case of sl(2), the copoisson/cocycle structure is as follows : 

tfJ(H )= 0, 

tfJ(X±) = j(X± ® H - H ® X±). 
(18) 

The cocycle condition, Bt/>=O, is the compatibility of the map tfJ with the Lie structure, ie it 

expresses the interaction between the commutator bracket and the map tfJ : 

tfJ ([ a, b]) = [ tfJ (a ) ,b ® 1 + 1 ® b] + [a ® 1 + 1 ® a, tfJ (b )]. 

The commutator is the ordinary Lie bracket on the appropriate sl(2) factor. 
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The quantisation of the Lie algebra sl(2) is defined as a one parameter defonnation of the 

universal enveloping algebra of sl(2) [8], [13].~The defonnation parameter is Planck's 

constant, denoted by h. The combination q = e' will prove useful, due to its frequent 

occurrence. The one parameter defonnation of the universal enveloping algebra is denoted by 

U sl(2) , and is generated by {I, H , X± } with the following Hopf structure : 
q 

[H X±]=±2X± [X+ X-]= sinh(tH) 
, "sinh(t) , 

H -H 

A(H)=I®H +H®I, A(X±)=X±®q2 +q T ®X±, 

(19) 

It can be verified that this is indeed an Hopf algebra. It is tenned the quantisation of sl(2), and 

in the classical limit it reproduces UsI(2,C) as a Hopf algebra, and the Lie coalgebra structure 

(18). The Lie coalgebra is reproduced from the observation that the original Hopf algebra is 

cocommutative, and hence there is an induced structure in the classical limit : 

(4 - TOA)I 
J.l = h 

11=0 

the first deviation from cocommutativity. This induced structure is just the copoisson 

structure! Lie coalgebra structure (18). It is the analogue of the more traditional requirement 

that the non commutative algebra describing the quantised system reproduces the commutative 

algebra, and poisson structure of the classical system in the c1assicallimit. 

The quantised algebra Uq sH2) possesses two important subalgebras, the Borel 
+ -

subalgebras. These are generated by {H ,X 1 for Uq b+ and {H ,X } for Uq b-. 

Consider the mapping H ~ H ,X± ~ X" of Uqsl (2) to itself. By considering this 

transfonnation on the algebra and coalgebra in (19), it is observed that this is an algebra anti

isomorphism and coalgebra isomorphism, ie preserves the coalgebra but reverses the 

multiplication. This is an example of a general morphism iJ:U qsl(2) ~ Uqsl(2) that 

exchanges the Borel subalgebras and is an algebra anti-isomorphism and coalgebra 

isomorphism [4]. A morphism of this type is required in the quantum double construction 

[4], however it is not determined canonically by the quantised algebra, ie it is not inherent to 

the quantised algebra Uqsl (2). as are, for instance. the antipodal maps. 
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There is a choice of coalgebra structure, To l:! also being a suitable coalgebra, where Tis 

the transposition operator on Uq 8[(2) ® Uq 8l (2) . These two coalgebras are related 

through the universal R -matrix R, the subject of the next defmition : 

DEFINITION 1 : The universal R-matrix of Uq 81 (2), denoted R, is an element of 

Uq 8l (2) ® Uq 8l (2) , that satisfies the following propertiest 

1. R has an inverse. 

2. To Ma)R = R Ma), V a E Uq sl (2) . 

3. l:! ® Id(R ) = RIll 23 ' I d ® MR ) = R 13R 12 • These equations are valued m 
03 

Uq sl (2) 

4. In the classical limit : R ~ 1 ® 1. 

For a further discussion of notation, nomenclature and properties, we refer to [8]. The 

universal R-matrix is only non-trivial since the Hopf algebra is not cocommutative. An 

universal R-matrix for a cocommutative Hopf algebra being 1 ® I, although not necessarily 

the only possible R-matrix. Condition 4 ensures the continuity of the universal R-matrix to 

this solution. To first order in Planck's constant it reproduces the classical r-matrix, (17) : 

r = R h 11 
h->O 

again demonstrating the reproduction of the copoisson structure of the enveloping algebra 

UsI(2,C) and the symplectic structure of Fun(SI(2,C» [17]. 

We note that the above properties of definition 1 imply that the universal R-matrix 

satisfies the quantum Yang Baxterrelation on the algebra level: 

(20) 

03 
an equation valued in Uqsl (2) 

A further condition that is often required is the triangular condition [8] : (R ) -1 = R . 
12 21 

This is a type of normalisation, all universal R-matrices can be made triangular [8]. These 

t An Hopf algebra with an universal R-matrix satisfying the properties 1-3 is called a quasi-triangular Hopf 
algebra [8]. 
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triangular universal R-matrices are important in the comodule structures of quantised function 

spaces, [20]. 

For U s[(2) the universal R-matrix has a fonn : q 

R = ~H®H ~ (1- q-2)' ( ~x+)' ® ( -: x-)' 
q ~ [ . -2], q q 

,=0 r,q . 

where [r; q-2]! is a q-analogue of a factorial: 

x (1- qS) 
[x;q]!= II-- ,forxintegral. 

s=1 (l-q) 

(21) 

There exists a construction that enables the universal R-matrices corresponding to the 

quantisation of any Lie or Kac-Moody algebra to be calculated. This is the quantum double 

machine as defined in [8]. Given any representation p of the corresponding quantised 

algebra, we obtain a solution to the quantum Yang Baxter equation in End(V®3) (6), where 

R = P ® P (R ) E End(V) ® End(V). Thus the quantum double construction can be 

used to systematically derive matrix solutions to the quantum Yang Baxter equation. 

However, all known solutions can not be reproduced, only the algebraic solutions [6]. This is 

probably because the quantum group is not yet known. 

The existence of the universal R -matrix and its explicit fonn, as obtained by the quantum 

double method [5], [8] and summarised in §6 will allow us to reconstruct the quantisation 

program of Faddeev et al [9] from that of Drinfel'd [8] and Jimbo [13]. The importance of the 

antipodal map in this construction cannot be overemphasised! 

§5. THE QUANTUM GROUP 

In §3, the function space of SI(2,C) is constructed from the fundamental representation of 

the Lie group. This representation can also be considered as a representation of the universal 

enveloping algebra, via the exponential correspondence implied in figure 1. Hence, by 

analogy, the fundamental representation of the quanti sed algebra Uqsl (2) should be 

considered in order to reconstruct the quantised function space Funq (81(2, C ». The hope 

is that this will generate the quantised function space construction of §3. 

Although the fundamental representation is used in this section, all the manipulations are 

valid for other representations. However the final construction of the quantised function 
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space, Funq (Sl (2, C » depends on the use of the fundamental representation, as is to be 

expected by analogy with the classical situation where the fundamental representation 

generates the continuous functions. The fundamental representation of Uqsl (2) is identical 

to the classical case of sl(2,C) : 

(22) 

The individual matrix elements p .. define a mapping p .. :Uqsl (2) ~ C [[h]] via the 
u ,u . 

evaluationmap a ~(p(a» .. , and hence Pij E Uqsl (2), the dual of Uqsz(2). The Pij 
v 

will generate an Hopf subalgebra of Uq sl (2) which will be denoted by A(R) following §3, 

R denoting the universal R-matrix in the P representation. The Hopf structure of A(R) is 

induced from the Hopf structure of Uq sl (2) by duality, the coalgebra being given by : 

Compare this to the similar calculation in §3, which also exploits the representation property. 

Since a and b are arbitrary, we deduce that: 

(23) 

To derive the algebra structure we shall exploit the fact that the universal R-matrix relates 

the two coalgebras of Uq sl (2) , the very structures that induce the commutation relations of 

thedualt : 

Pij Pkl (a) J:, Pij ® Pkl (Aa) 

Pkl ® p/To Aa) 

= Pkl ® p/R AaR- 1
). 

Now use the coalgebra structure (23) to expand the multiplications: 

t Since the multiplication relations on some algebra A induce the coalgebra relations on the dual of A (ie 
algebras and coalgebras are dual), the algebra of the P;j generators will be induced from all the relations 
satisfied by the coalgebra. These are encoded in the universal R-matrix coboundary property, number 2 of 
definition 1. 
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where R' = p ® peR), (an n2 x n 2 matrix of End(V ® V». A summation on the 

indices a,b,c,d is implied. A rearrangement of the tensor products is necessary to obtain this 

result. 

On defining a matrix p valued in the dual algebra Uq sl (2) : 

P E Mat(n,U,sl(2)') by (P)ij = Pij , 

this can be written as a matrix equation, using the notation of (7) : 

-1 

P. P = IV' p P. (RP ) or IV' p p. = p. p R.i' 21 12 12 21 • (24) 

This equation in fact fixes all the commutation rules if R E Uq b + ® Uq b_, a condition that 

holds for all the universal R-matrices constructed from the quantum double construction [8]. 

If the above construction is carried out for Uq sl (2), using the universal R-matrix for 

Uqs1 (2), (21) and the representation (22), the R-matrix in (9) is obtained: 

.=![~ ~ R= q" o 0 
o 0 

o OJ (q _ q-l) 0 

1 0 
o q 

Thus the Hopf algebra A(R) as deftned by the relations (7) with this R-matrix, generates 

the dual Uqs1 (2). As discussed in §3, there is in fact a constraint condition on the 

generators, the quantum determinant condition (13). In the context of generating the quantum 

double from the fundamental representation, this follows from a quantum determinant 

condition satisfied by the representation p, a consequence of the fact that this representation 

was deduced from an SI(2,C) representation. The condition reads : 

(25) 
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and may be verified to hold explicitly on all elements of Uq 8l (2) by using the representation 

in (22). The most satisfactory derivation of the quantum detenninant with its accompanying 

properties is with the quantum plane constructions ofManin [19], [20]. 

The generators of U 8l (2) will be denoted by {t .. } with p being reserved for the 
q /I 

fundamental representation. The t.. generators satisfy no more relations if the representation 
/I 

is the fundamental one. This is because the representation satisfies no more relations. 

Compare to the case of the orthogonal groups where the corresponding orthogonality 

condition must be included. 

The quantum group as defined in [9] and reproduced in (7) has been obtained. It is 

desired to obtain the quantised algebra in the format of equations (11), this form being very 

natural from the quantised function space point of view. The similarity of the Hopf structures 

encoded in (7) and (11) implies that this process can be achieved by a similar technique to 

that used for the quantum group construction in this section. Thus it is necessary to have two 

structures available, as can be observed from the previous calculation of the quantum group 

Hopf structure: 

1. An algebra representation. This gave the coalgebra (23). 

2. An universal R-matrix. This allowed us to derive the algebra (24). 

Thus to obtain a similar formulation of the Hopf structure of the quantised algebra U s I (2) 
q 

it is necessary to have a representation of the dual algebra Uq sl (2) , and an universal R-

matrix for Uq sl (2). But there is a problem: it can be proved that the quantum group 

Uq sl (2) does not possess an universal R-matrix [4]. 

The solution to this problem is based upon the following two theorems [4] : 

THEOREM 1: Given an Hopf subalgebra B of an Hopf algebra A, then the annihilator 

space: 

1. { , }' B = X E A :X (B) = 0 c A 

is an ideal and coideal with quotient: 

~=B' 
1. -

B 

530 



THEOREM 2: The Borel subalgebras are self-dual : 

Proofs can be found in [4]. 

These theorems imply that the dual Uq 81 (2) can be mapped into the original quantised 

algebra Uq 81 (2) by exploiting the Borel subalgebra structure: 

(26) 

Then the fundamental representation of Uq 81 (2) can be used to obtain two representations 

of the dual Uq 81 (2) , the very representation used to describe the quantum group A(R) in 

this section. This should then reproduce the duality structure in (10). Both morphisms in (26) 

are in fact required, since by taking the quotient, the possibility of describing all of the 

quantised algebra with a single representation has been lost [4]. The problem is to construct 

canonically the two homomorphisms in (26), ie only by use of the structure available from the 

quantised algebra. This is achieved by exploiting the quantum double construction, the 

subject of the next section. 

§6. TIIE QUANTUM DOUBLE CONSTRUCTION 

The quantum double construction is the central feature of the analysis in [4], that relates 

the two quantisations of the Lie group SI(2,C), as outlined in §3 and §4. From the quantum 

double, the two homomorphisms (26), that are the possible resolution of the difficulties in 

meeting the two requirements in §5, can be constructed. These homomorphisms are 

constructed only from structure that is intrinsic to the quanti sed algebra, ie from the universal 

R-matrix of Uq 8[(2) and the antipodes. This becomes obvious from the formulae for the 

elements of U 8[(2) that correspond to the matrix element generators (J'~ (30). In this 
q v 

section the main details of the construction of the two morphisms (26) will be omitted. This is 

for simplicity, but unfortunately loses the emphasis felt desirable in [4], mainly that the 

reconstruction of the quanti sed algebra follows due to the possibility of constructing two 

representations of the quantum group, (26). All resulting properties are then a result of these 

representations, and their structure. 
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This section summarises the properties of the quantum double needed for our purposes, 

and is not meant to be an introduction or thorough exposition, these being found in [5] and 

[8], while the necessary adaptations for our purposes are described in [4]. The necessary 

Hopf subalgebra properties and the existence of an homomorphism onto the quantised algebra 

Uq sl (2) are simply stated. Proofs can be found in [4] and [8]. 

The crucial point is that there exists an Hopf algebra called the quantum double of Uq b+, 

and denoted by D( Uq b +), that has the following three properties: 

1. D( U b ) possesses an universal R-matrix, denoted R. 
q + 

2. D(Uq b) has Uq b+ and Uq b ~ as Hopf subalgebras. The quantum double is in fact 

constructed to be the minimal Hopf algebra containing these two Hopf algebras as 

disjoint Hopf subalgebras. 

3. There is a Hopfhomomorphism n, from D(Uqb+) onto Uqsl(2). Thus an universal 

R-matrix structure, definition 1, is induced on the quantised algebra Uqsl (2). The 

induced universal R-matrix on Uq sl (2) is given by n ® n (R ). This is in fact the 

method of construction used to calculate the universal R-matrix in (21), [8]. 

We note that the existence of an antipode is important in the ability to construct this object 

[8]. The duality structure in theorem 2 is necessary in order that the quotient structure of 

property 3 exists [8]. An arbitrary morphism t'} is also required, the quotient mapping n being 

t'} dependent. This morphism t'} is the general algebra anti-isomorphism and coalgebra 

automorphism of Uqsl (2) discussed in §4, that exchanges the Borel subalgebras. Our 

interest is in the Borel subalgebras, so we restrict t'} to Uqb_, thus: 

(27) 

There is an algebra isomorphism, coalgebra illlli-isomorphism induced on the dual Hopf 

algebras: 

(28) 

defined by: t'}~(a)= '(fu) for all aeUqb_, 'eUi~. Thus, by the use of these 

morphisms, the Borel algebras Uqb: and Uqb_ can be mapped into the quantum double, ie by 

mapping to the Hopf subalgebras required by property 2. Note however, that only one of 

these morphisms is an algebra homomorphism, it is necessary to compose t'} with another 

anti-algebra homomorphism in order to construct a representations. 
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The linear dual to the quantum double, denoted n(Uq bJ ' is also needed. This has the 

quantum group Uq sl (2 i as an Hopf subalgebra [4], a consequence of the fact that there 

exists a Hopf homomorphism from D(Uqb+) onto Uqsl<2>' This is the converse to 

theorem 2 [4]. Thus n(UqbJ can be considered instead of Uqsl (2i in the construction of 

the morphisms of Uqs1 (2i into Uqsz(2) , (26). Further use of theorem 2 implies that the 

dual to the quantum double, n(Uq bJ possesses a quotient structure induced from the Borel 

subalgebrasofD(Uqb) [4]: 

(29) 

§7. RECONSTRUCTION OF THE QUANTISED ALGEBRA Uqsl(2) FROM THE 

QUANTUM GROUP 

The two necessary requirements of §5 for the reconstruction of the Hopf structure of 

Uq sl (2) with a q-independent comultiplication have now been met The two representations 

O"± = P otfJ ± are defined, with tfJ ± given by the following sequence of mappings : 

+ , 
Thus: tfJ = not'}, tfJ- = noS of} , the various morphisms being defined in (27), (28), 

(29). Note the occurrence of the antipode S with the map '6, this being required in order that 

tfJ- is an algebra homomorphism (otherwise 0"- is an anti-representation). In this 

construction '6 is arbitrary, the only requirements being that it is an anti-algebra isomorphism, 

coalgebra isomorphism and exchanges the Borel subalgebras. A change in the morphism '6 

produces a compensating change in the quotient map n, ie the '6 dependence cancels. This is 

necessary as '6 is not canonically associated to the quantised algebra Uq sl (2). 
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In [4] it is shown that with these representations the elements of Uq 8l (2) to which the 

matrix elements O"~ correspond (recall that ~ gives a linear map from U 8l (2') to C[[h)), 
II 1/ q 

and hence is an element of the linear dual, ie Uq 8l (2» are given by : 

0": = Id®Pii(Ru.-d(2.CJ)eUqb+ , 

O"ij = Pij ® Id (R;;~1(2.CJ) e Uqb_ . (30) 

The analysis in [4] continues by only exploiting the representations O"±, emphasising how 

these two representations allow a reconstruction of the desired Hopf structure in (11) (the 

matrices L ± being denoted here by ~). A different approach will be followed here, the 

expressions (30) for the elements O"~ and the universal R-matrix properties in defmition 1 and 
II 

(20), will be exploited to attain the same results. This has the advantage of greater simplicity, 

but tends to understate the fact that the structure in (11) follows purely from representation 

theoretic properties. 

First note that the desired evaluation structure (10) between the T matrix and O"± follow 

directly from (30), because the T matrix is constructed from the representation P, §5. For 

example: 

(t kl ' 0";) = Pkl (0";) = Pkl ® pu( R u• sI (2,c ») 
p 

or (t ,0" ) = R , 

as in (10) (k=I). The other k values follow from the coalgebra relation (23). 

The coalgebra relation in (11), Acr; = L.a;"! ® O"~ follows immediately since O"± are 

representations, but also from the property 3 'of the universal R-matrix, definition 1 : 

AO"; = A ® pu( Ruqsl (2») = L.Id ® Pik ® Id ® Pk/R ® R) 
k 

= L.a;: ® 0"; , 
k 

and similarly for O"if. Note that these coalgebra relations imply that the Borel subalgebras are 

in fact compact matrix pseudo groupst [26], or in this context quantum groups themselves. 

Compare to the self duality in theorem 2. 

t Strictly. a pseudogroup has a C* structure; hence it is necessary to restrict Uqsl(2) to Uqsu(2) in order to 
attain a * -morphism [9]. 
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Consider mapping to the representation space in the second and third positions of the 

Quantum Yang Baxter relation (20) : 

Relabeling the vector spaces gives the desired relation (11). 

The other two algebra expressions in (11) follow from the two similar calculations (for + 
+ and + - respectively) : 

P ® P ® Id(R;31R2~IRI2) = P ® P ® Id(RI2R~31R~I) 

P ®Id® P(RI3R23R ;:) = p ®Id® P(R;21R23R I3) 

The two constraints (12) on the generators have differing origins. The relation 
(+) (_) -1 

eJii = (eJii ) follows because the diagonal elements only depend on the purely H-
1H fiJH 

dependent part of the universal R-matrix, ie only on the q' prefactor in (21), which is 

symmetric, and because S(H)=-H. In contrast, the quantum determinant condition is a result 

of a property of the representation. It follows from the quantum determinant condition 

satisfied by the fundamental representation (25). 

In order to derive the quantum determinant condition in (12), it is necessary to introduce 

the q-analogue Levi-Civita symbol [4]. Define: 

q (0 1) 
£ = _ q-l 0 ' 

(31) 

which in this 2-dimensional fonn also occurs in [22]. Then the quantum determinant can be 

expressed as [4] : 

(32) 

an obvious generalisation of the more familiar classical expression. Then we have : 

Id®det q p(R)=Id®l(R)=l E Uq sl(2,C) 

or upon manipulating the left hand side using (32) : 
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Id ® E~. PI. P'2 .(R ) = E~ Id ® PI. ® P.2 .(ld ® A(R » 
1/ • J 1/ • J 

= E: Id ® Pli ® p2j (R 13R12) 

-1 

Here we have used the easily verified result that: E ~ = - q -I E; . Thus we obtain the 

constraint: det cI = 1. 
-1 

q 

There are no other relations between the cr generators, since the universal R-matrix and 

fundamental representation satisfy no further relations. 

For Uq sl (2) the following fonns for cr are obtained from (30), (21) and (22) : 

o J --[q-~ 
-H ,(1-

q 2 0 

(33) 

It can be verified that the Hopf structure of these generators, as encoded in (11) is indeed that 

of Uqsl (2) (19). The two constraints on the generators (12) : 

obviously hold by direct observation of the fonn of the matrices in (33). 

Note that the algebra generated by {I, cr.} is only a Hopf subalgebra of U sl (2) as 
1/ q 

defined in §4. However these Hopf algebras only d}jfer in the treatment of the Cartan 

subalgebra, U(R) only containing the combination q ""2, and not H itself. This is not an 

important difference. The quantised algebra Uq s 1 (2) as defined by Jimbo in [13] is just our 

U(R). Thus we deduce, modulo this difference in the treatment of the Cartan subalgebra, that 

U(R) generates the quantised algebra Uq sl (2) , and A(R) generates the linear dual, ie the 

quantum group Funq (SI(2,C», as claimed in §3 and [9]. The two approaches to quantising 

the Lie group SI(2,C) are thus equivalent 
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CONCLUSION 

The discussion in §2 on the problem of obtaining some quantisation prescription of the 

Lie group SI(2,C) lead us to a consideration of the function space of SI(2,C) and the universal 

enveloping algebra UsI(2,C). The two methods in the literature for performing this 

quantisation, [8], [9], [13], [14] are then related and their equivalence proved (§5, §7). The 

discussion is restricted to SI(2,C) for convenience and simplicity of exposition, but all the 

definitions and proofs can be applied directly to all the other Lie groups, or at least require 

only small changes. Due to the presence of the constraint relations in the construction of 

Faddeev et al [9], the deformation of the universal enveloping algebra approach [8] is simpler 

(but more abstract). However we have proved that starting from the quanti sed algebra as 

defined by Drinfel'd [8], we may equivalently define the quantum group and quantised 

algebra by: 

RTIT2=T2TIR } 
Mt ii ) = f, tjh ® t kj Funq (Gl(2, C » 

det q t = 1 Quotients to Funq (Sl( 2, C ». 

with an evaluation structure given in (10), expressing the duality of these Hopf algebras: 

the analogue of the classical expression (1). 

The problem is to obtain an explicit description of the L(±) matrices in terms of the 

generators used in the quanti sed algebra description of [8] and [14]. The expressions (30) 

require a knowledge of the universal R-matrix, this only being known for the An Lie algebra 

series [3], [21]. The construction of the matrices L (±) in this case is carried out in [4]. 

However a similar analysis for the other Lie algebra series has not been done. In these cases 

there will be a greater number of constraints on the L (±) generators corresponding to the 

orthogonality etc (cf (12», and it will be necessary to consider more than just the fundamental 
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representation in the construction of the function spaces. The extent of the applicability of 

similar calculations for the quantised Kac-Moody algebras is unknown. 

The third method of quantisation, via a quantum topology is still open, and is perhaps a 

testing ground for quantum topology. 
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2+1 DIMENSIONAL QUANTUM GRAVITY 

AND THE BRAID GROUP 

Steven Carlip 

The Institute for Advanced Study 
Princeton, NJ 08540 U.S.A. 

Elsewhere in these proceedings [1], Jackiw has described an interesting calcu
lation of scattering amplitudes in 2+1 dimensional gravity. His approach [2], like 
that of 't Hooft [3], starts from the observation that there is no classical gravi
tational radiation in 2+ 1 dimensions: solutions of the field equations are locally 
flat outside sources, and the gravitational interaction depends only on the global 
geometry. In the absence of propagating gravitational degrees of freedom, one 
way to quantize the theory is to use the field equations to eliminate the metric, 
and to then quantize the remaining matter degrees of freedom. One then has the 
physically intuitive picture of quantized particles each moving in the background 
conical geometry induced by the others. For two-particle scattering, this picture 
is especially simple, since one may use center of mass coordinates [3] to reduce the 
problem to one of solving the Schrodinger equation on a cone. 

While this approach is attractive, it is not obvious that it is equivalent to or
dinary canonical quantization. Further, since the total deficit angle is determined 
classically by the energy, we are forced to work in a fixed eigenstate of the Hamil
tonian, and the superposition of energy eigenstates becomes difficult to understand 
[4]. In addition, by assuming the form of the background geometry, we evade some 
of the important conceptual issues of quantum gravity, such as the role of time in 
a theory in which time translations are symmetries [5] and problem of construct
ing diffeomorphism-invariant observables [6]; while this simplifies calculations, it 
makes the generalization to 3+ 1 dimensions less clear. 

A conventional canonical treatment of 2+1 dimensional quantum gravity is 
therefore of interest. Such a quantization is now possible, thanks to the recent 
observation of Witten [7] that 2+1 dimensional gravity can be treated as a Chern
Simons gauge theory. By comparing such an exact quantization to the physically 
clear picture of Jackiw et al., we may hope to gain some insight into the quan
tization of gravity in 3+1 dimensions, while at the same time testing the 2+ 1 
dimensional canonical framework. 

Physics, Geometry, and Topology 
Edited by H. C. Lee 
Plenum Press, New York, 1990 
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1. 2 + 1 GRAVITY AS A CHERN-SIMONS THEORY 

Let us begin by reviewing Witten's treatment [7J of 2 + 1 dimensional gravity 
as a Chern-Simons theory for the 2 + 1 dimensional Poincare group 180(2,1). 
This group is characterized by two sets of generators, the local Lorentz generators 
.:Ja and the translation generators Po" obeying the usual algebra 

[Po" PbJ = 0 

[Po" .:JbJ = EabcPc 

[.:Ja, .:Jb) = Eabc.:Jc 
(1.1) 

To construct a Chern-Simons theory, we associate gauge fields A,.. = {eO,,.. , wa ,..} 

to the symmetry generators {Po" .:Ja}, and form the standard Chern-Simons action 
8 = J Tr (A 1\ dA + ~ A 1\ A 1\ A) . To make sense of this expression, we must 
define "trace" for 180(2,1), i.e., we must specify a non degenerate group-invariant 
pairing of the generators. Such a pairing is almost unique [7): it is 

Tr(.:Japb) = 'T/ab 

Tr (.:Ja .:Jb) = Tr (papb) = 0 
(1.2) 

It is then easy to check that 

(1.3) 

which can be recognized as the standard first order form of the Einstein action if 
we identify Wa,.. with the spin connection ~Eo,bcW,..bc. 

8 is invariant under the gauge transformations 

(1.4) 

The TO, parameterize the local Lorentz transformations, while the po, transforma
tions are equivalent on shell to the diffeomorphisms. Note that this means we can 
either gauge-fix the diffeomorphisms or the p transformations: their difference is a 
trivial invariance of the kind discussed by Henneaux at this school [8). 

We now have a Chern-Simons description of 2 + 1 dimensional gravity without 
sources. There are various methods of incorporating point particles: by adding 
source terms to the action, by including timelike Wilson lines [9), or, most simply, 
by deleting particle world lines from our spacetime manifold and investigating the 
surrounding geometry. Let us choose this latter approach: we shall study quantum 
gravity on the manifold 1R. x (~ - {:ta}), where ~ is a two-surface (which we will 
often take to have the topology 1R.2 ) and {:tal are the locations of sources. 

One slight complication must be addressed if we wish to consider scattering 
problems. The classical solution of the 2 + 1 dimensional Einstein equations in 
the presence of a point source contains a conical singularity at the location of the 
source. At such a point, the group of rotations of the tangent space changes: if we 
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denote the deficit angle of a cone by f3, a vector at the apex of the cone returns to 
its original position after a rotation by 27r-f3 rather than 27r. To allow for this kind 
of singular behavior, we should replace IS0(2,1) by its universal covering space 
IS0(2,1). We can always recover the original IS0(2, 1) theory by an appropriate 
projection, but, as we shall see below, by allowing the projection to vary at chosen 
points we can also obtain the appropriate singular behavior. 

Unfortunately, the passage from IS0(2, 1) to IS0(2, 1) is not unique, and we 
will also find a number of ambiguities of 27r in the final theory. For example, the 
deficit angle of the conical singularity for a classical point source is equal to the 
mass of the source; but deficit angles are periodic, while masses are not, so the 
geometry alone is insufficient to determine the physics. A similar ambiguity occurs 
in the Regge calculus approach to gravity, in 2+1 or 3+1 dimensions [10J. While 
this ambiguity can be resolved classically by an appeal to the low-mass limit, its 
role in the quantum theory is not well-understood. 

2. QUANTIZATION 

Our goal is to quantize the system described by the action (1.3) on a manifold 
ill. x (~- {:Cal). Decomposing our fields into space and time components, we find 
that 

where 

S = j dt j ( _fij e"i :t W"j + e"oN" + Wao N ") 
E 

+ boundary terms 

- 1.. b 
N" = -f'] (8'w", - 8'w", + f" CWb 'W .) 2 '] ]. • C] 

(2.1) 

(2.2) 

Since no time derivatives of e"o or W"O appear in the action, the N" and N" are 
constraints. From the ew term, on the other han~, we can read off the commutators 

[W"i(:C), ij(:c')] = ifijli;li2(:c - :c') 

[W"i(:c),Wbj(:c')J = [e"i(:c),ij(:c')J = 0 
(2.3) 

It may then be checked that the constraints obey the IS0(2, 1) algebra (1.1) and 
that the generator of gauge transformations (1.4) is 

G = - j(r"N" + p"N") 
E 

(2.4) 

We must next construct a Hilbert space 1{ on which operators e and W act. 
Because of the structure of the constraints, it turns out to be easiest to work in a 
"momentum representation," in which the Hilbert space is built out of functionals 
of the W"i. To impose the constraints N" = N" = 0, we have two options: as 
Seiberg has explained in his lectures here [11J, such constraints may either be 
solved before quantization or imposed as operator equations after quantization. 
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Figure 1. A fiat connection on a punctured plane is determined by its holonomies 
around the punctures. 

Let us choose the former approach. To solve the constraints, we observe that 
the condition jira = 0 is simply the statement that Wai is a flat SO(2, 1) connection 

on ~-{ xo:}. N a then generates the SO(2, 1) transformations of w, so the constraint 
N a = 0 requires us to identify connections which are gauge-equivalent. Hence the 
physical Hilbert space is the space of square integrable functions on the moduli 
space .N of flat S O( 2, 1) connections on ~ - {xo:}. 

More concretely, a flat connection is determined up to gauge transformations by 
its holonomies around the nontrivial loops in ~ - {xo:}. To specify these holonomies, 
we must associate an element of the gauge group with each homotopy class of loops; 
in other words, we must give a group homomorphism 71"1 (~ - {Xo:}, *) --> SO(2, 1), 
where * is a base point for the fundamental group of ~ - {xo:}. Under a gauge 

transformation Q: ~ - {xo:} --> SO(2, 1), the holonomies are conjugated at * by 
Q( *). Hence the moduli space of flat connections may be written as 

(2.5) 

where two homomorphisms are identified under", if they differ by conjugation. 

If ~ is not compact, we must modify this result slightly, since the action (1.3) 
is then only invariant under gauge transformations which fall off sufficiently fast 
at infinity. The simplest approach is to choose the base point * to be at infinity, so 
gauge transformations are the identity at *, and to omit the equivalence relation 
'" from the definition of.N. In particular, if ~ has the topology lR.2, a point in .N 
is determined by a set of holonomies 

(2.6) 

around the punctures {xo:} (see figure 1). 

We are thus led to consider a Hilbert space of square integrable functions 
.,p(Paa). One cautionary note is needed, however. As noted above, we must allow 

our holonomies to be elements of SO(2,1), not just SO(2,1). This means in 
effect that the wave functions .,p must be multivalued: the 271" rotation operator 
exp{271"iJo: O} need not act as the identity, but may change the phase of.,p. We 
therefore obtain a quantum theory described by a Hilbert space 1{ of multivalued 
square integrable functions of the parameters Paa which label the holonomies of Wa. 
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3. DYNAMICS 

With this understanding of the kinematics of 2+ 1 dimensional quantum grav
ity, can turn to the question of the dynamics, that is, time translation and the 
Hamiltonian. If space is compact, this is can be a confusing task: time transla
tions are gauge symmetries, the Hamiltonian is a constraint, and even the definition 
of time becomes ambiguous. If space is asymptotically locally flat, however, the 
Hamiltonian includes a nonvanishing boundary contribution, and there is a sensible 
definition of time translation based on the behavior of the metric at infinity. 

To derive this boundary contribution, Regge and Teitelboim [12J give a simple 
general argument. Let G be the generator of a symmetry such as time translation. 
For the Poisson bracket of G with the fields to be well-defined, we must be able 
to take functional derivatives of Gj this will be possible only if variations SG 
contain no boundary contributions. While boundary contributions which do occur 
can sometimes be eliminated by restricting the allowed variations of the fields, 
certain variations - those corresponding to asymptotic symmetries - must be 
permitted on physical grounds, and the unwanted boundary variations must instead 
be cancelled by adding terms to G. 

For 2 + 1 dimensional gravity, the classical metric for isolated sources is asymp
totically conical [13J: 

2 ( a )2 2 2 2 ds '" dt - --dcfi - dr - r dcfi 
27r - fJ o ~ cfi < 27r - fJ (3.1) 

where fJ is the total deficit angle and a is proportional to the total angular momen
tum. Such a metric admits two asymptotic ISO(2, 1) symmetries, time translation 

and spatial rotation 

For the generator G of gauge transformations defined by equation (2.4), 

SG = - f PaSwall + volume terms 

8E 

(3.2) 

(3.3) 

(3.4) 

where the subscript II denotes the component tangent to 8~. (Because of the 
boundary terms in (2.2), there is no Ta contribution.) Hence for an asymptotic 
time translation (3.2), we must cancel the boundary variation by adding a term 

(3.5) 

to G. 
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Figure 2. The contour defining H can be deformed to give a product of holonomies. 

Classically, H = [1, the total deficit angle. When:E = JR.2 - {:Z:a}, there is a 
useful trick for evaluating this quantity. In the frame for which (3.1) holds, the 
only component of w at infinity lies in the a = 0 direction. Hence 

Tre-iH.1o = Tr Pexp{i / waid:z:iJa} = Tr (11 Aa) 
8E a 

(3.6) 

where the holonomies A" are given by (2.6), and the last equality comes from de
forming the contour of integration through regions of zero curvature (see figure 2). 
On the other hand, in the fundamental representation of 80(2,1), 

Tr e-iH.1o = 1 + 2 cos H (3.7) 

For the case of two Wilson lines, for instance, this means that 

H ml m2 . ml . m2 (Pl· P2) cos- = cos-cos- - Sln-Sln- -_. 
2 2 2 2 2 mIm2 

(3.8) 

where 

(3.9) 

This expression agrees with the result of Deser et al. [14] for the addition of deficit 
angles. From the classical solutions described in [14], it may be checked that the 
symbols P and m, which we introduced to parameterize the holonomies, really do 
have interpretations as momenta and masses. Note also that in the fundamental 
representation of 80(2,1), the Hamiltonian H - and for that matter the masses 
moo - are only determined mod 271". This is an early sign of the ambiguity in 
the lifting from 180(2,1) to 180(2,1); it will reappear when we try to evaluate 
scattering amplitudes. 
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a 

Figure 3. The holonomies around a pair of punctures (a) change under the action 
of the braid group (b). 

4. BRAIDS 

We now have a Hilbert space and a Hamiltonian for 2+ 1 dimensional gravity. 
The Hamiltonian is essentially the same as that of Deser and Jackiw [2] and 't Hooft 
[3], and it gives the same differential equations for scattering amplitudes as those 
proposed by Jackiw. But we have not yet seen any sign of the conical boundary 
conditions so crucial to these other analyses. 

To understand the origin of these boundary conditions, we must examine more 
carefully the symmetries of the theory. We saw above that diffeomorphisms in 
2+1 dimensional gravity are equivalent on shell to p gauge transformations, and 
thus are factored out when we gauge-fix. However, the proof of this equivalence 
starts with the infinitesimal form (1.4) of the transformations, and, strictly speak
ing, only holds for those transformations which can be reached by exponentiating 
infinitesimal ones. There remain the diffeomorphisms which are not isotopic to the 
identity, which must still be factored out. 

For a manifold ffi. x (ffi. 2 - {Xl>}), such diffeomorphisms are generated by Dehn 
twists around the punctures Xl>' At first sight, such transformations appear to 
have no effect on the holonomies A", which are defined in terms of coordinate
independent integrals. If we look more carefully, however, we see that the definition 
(2.6) of Au depends implicitly on a choice of generators for the fundamental group 
11'1 (1; - {Xl>})' A Dehn twist has the effect of changing this choice of generators, 
as is apparent in figure 3a-b: when one puncture is wrapped around another, the 
relevant holonomies change by conjugation. This is the well-known action of the 
braid group on the fundamental group of a punctured surface, and it gives the 
relevant action of the mapping class group on the holonomies. 

If we wish to consider the full diffeomorphism group to be a symmetry of 
our theory, we must demand that the wave functions 1/; be invariant under this 
action. Note that the generalization from ffi.2 to an arbitrary two-manifold 1; 

is straightforward; there will be new elements of the braid group coming from 
the possibility of wrapping punctures around handles, but the properties of the 
resulting group are well-understood [15,16]. 

For concreteness, let us specialize to the case of two punctures. Our Hilbert 
space then consists of square integrable functions of two momenta PI and P2, the 
Hamiltonian is given by (3.8), and it is apparent from figure 3 that the action of 
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the braid group is 

Al f-+ A2A1A2- 1 = (A2AdAl(A2Ad-1 

A2 f-+ (A2AdA2(A2Ad-1 
( 4.1) 

The momenta p after the transformation will thus differ by an 50(2,1) matrix 
A2Al from the initial momenta. This matrix, in turn, determines an operator 
Ql on the Hilbert space 'H., and states must be invariant under its action. 

Note that once again a 211" ambiguity has appeared. The action of the braid 
group on 50(2,1) holonomies is determined geometrically, but its lift to an opera

tor acting on 'H. is not unique. Instead, Ql generates an 50(2,1) transformation 
characterized by a rotation by an angle 211"n - H, with the integer n undetermined. 
Indeed, a simple calculation shows that 

( 4.2) 

where 

. H( Pa ) 
sm 2 1PT ( m2. ml) Pla ( ml. m2 ) P2a = COS-Sln- - + COS-Sln- -

2 2 ml 22m2 

+ ( . ml . m2) (Pl x P2)a 
Sln-Sln-

2 2 mlm2 

( 4.3) 

and 

IPI = H - 211"n ( 4.4) 

Roughly speaking, Pa is the momentum of the center of mass, and in a suitable 
frame at infinity - i.e., after an appropriate 50(2,1) transformation at * - the 
condition of invariance under the braid group can be shown to be [9] 

( 4.5) 

where P is a suitably defined relative momentum and t is the angular momentum 
operator for P in the center of mass frame. 

We can now determine the integer n from physical arguments. In the limit 
of small masses, equation (4.5) should reduce to the ordinary projection from 

50(2,1) to 50(2,1) in order to recover the correct fiat space limit. We must 
therefore choose n = 1; any other value will give a wave function defined not on 
the plane, but on an n-fold branched cover of the plane. 

If we now take 'IjJ to be an eigenstate of H with eigenvalue E, we have pre
cisely recovered 't Hooft's description [3] of the Hilbert space and the Hamiltonian 

for two-particle scattering. Equivalently, viewing t as a generator of rotations, 
equation (4.5) is the condition of invariance under rotation by 211" - E; this is 
precisely Deser and Jackiw's conical boundary condition. At the same time, we 
have avoided some of the ambiguities of the earlier approaches: 'IjJ need not be an 
energy eigenstate, and the generalization to more than two particles and to more 
complicated topologies is clear. The price we have paid is in 211" ambiguities; other 
choices of n in (4.5) may eventually be of interest, but for now their significance is 
not understood. 
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5. THE EMERGENCE OF SPACE AND TIME 

One striking feature of this analysis may have implications for quantum gravity 
in 3+1 dimensions. A long-standing problem in quantum gravity is the "break
ing of general covariance," that is, the appearance of an approximately classical 
spacetime structure in a theory which is initially diffeomorphism-invariant and 
which involves a sum over all metrics. The problem can be thought of as one of 
symmetry-breaking: the metric must acquire an expectation value which is not 
diffeomorphism-invariant. It is evident that such symmetry-breaking has occurred 
here, since our scattering amplitudes have clear spacetime interpretations; it is of 
interest to understand exactly how this has happened. 

We can recover the spatial structure more explicitly from our Hilbert space by 
Fourier transforming the wave functions tf;: 

(5.1) 

The condition of invariance under the braid group then becomes 

(5.2) 

which means that y acts as a coordinate on a cone with deficit angle E. Recall, 
however, that p originated not as a local spatial variable, but as a parameter 
characterizing a holonomy. We have thus built a spatial geometry out of a set of 
variables which had no obvious local geometric interpretation. 

To understand this better, consider the classical version of equation (5.2). The 
relevant classical holonomies are 180(2,1) matrices 

where for spin zero sources we can take J = q x p. Conjugation of one such a 
holonomy by another represents parallel transport in 180(2, 1), that is, translation 
and rotation of p and q. In particular, for a classical solution with two holonomies 
3 1 and IXi2 , conjugation by 3 1 corresponds to the transformation 

q2 --4 q1 + 3 1(q2 - qt} 

P2 --4 3 1P2 
(5.4) 

Invariance under such a transformation means that although q2 looks like a flat 
coordinate, it is really only locally flat; in fact, (5.4) is a typical matching condition 
for a coordinate in a classical solution for 2 + 1 dimensional gravity with point 
sources [14). The requirement of invariance under the braid group thus allows us 
to reconstruct the classical geometry from the parameters q which label 180(2,1) 
holonomies. In the quantum system, the translations pa no longer appear in the 
holonomies, and the conical geometry becomes fuzzy, but its presence can still be 
felt in the boundary condition (4.5). 

549 



Finally, let us turn to the role of time in our quantization of 2 + 1 dimensional 
gravity. Our construction of the Hamiltonian, and thus our interpretation of dy
namics, was possible because we worked in an asymptotically locally flat space, 
which allowed us to define time translations as translations at infinity. But 
2 + 1 dimensional gravity is a topological theory, and infinity is not really such 
a special point. In a compact space ~, we can instead choose a preferred puncture 
Xo to play the same role. 

In particular, Xo can serve as a basepoint for the holonomies of Wai around the 
remaining Xa. Wave functions will now depend on the holonomies An, 0: I- 0, and 
not on Ao, but there is no inconsistency here: for a closed space ~, the holonomies 
are not all independent, but satisfy one relation which can be used to eliminate 
Ao. We can then define time translations as translations at Xo. Equation (3.6) will 
again determine the generator of such translations, provided that Ao is omitted 
from the trace on the right hand side. The world line of Xo thus serves as a clock 
with which we can measure time evolution of the rest of the universe. Similar ideas 
have been proposed in 3 + 1 dimensions, but it has never been clear how to isolate 
a "clock" variable. 

Canonical quantization of 2 + 1 dimensional gravity thus successfully repro
duces the physically intuitive results of Deser, Jackiw, and 't Hooft for point par
ticle scattering. In principle, it provides a framework in which those results can 
be unambiguously extended to more complicated topologies and larger numbers 
of particles. At the same time, it provides a simple model in which some of the 
deeper conceptual questions of quantum gravity can be addressed. 
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ABSTRACT 

We investigate perturbation theory for a non-abelian Chern-Simons gauge 
field theory. Three regularization methods are examined. It is shown that 
regularization by introducing a conventional Yang-Mills action makes the 
theory finite to all orders and yields a finite integer-valued renormalization 
of the coefficient k of the Chern-Simons term at one loop, and we conjecture 
no renormalization of k at any higher order. We have found that dimensional 
regularization does not respect gauge invariance at two loops, where 
logarithmic divergences first appear. A variant of this approach called 
regularization by dimension reduction is shown to obey both the Ward identity 
and quantization condition and gives zero renormalization of the theory to 
three loops. By explicit calculation, We also demonstrate vanishing of the 
beta-function for k and therefore absence of a scale anomaly to three loops 
and no general covariance anomaly in two- and three-point functions to two 
loops. 

INTRODUCTION 

In this school, people have been talking about three dimensional Chern
Simons (CS) gauge theory. The topics that have been discussed in previous 

talks(l) are mainly concerned with the topological aspects of the theory. Here 
we shall take a different perspective of conventional perturbative quantum 
field theory. 

The action that describes the non-abelian CS gauge theory is a three
form integrated over a three-manifold M: 

Written version of the talk given by Wei Chen at the Workshop in the 
NATO/Banff Summer School, August 1989. 

Physics, Geometry, and Topology 
Ediled by H. C. Lee 
Plenum Press, New York. 1990 
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where d is the exterior derivative operator on M; and the one-form A takes 
value in the Lie algebra of the gauge group G. Instead of an overall 
coefficient k/4~ in action (I), we give the AAA interaction term a coupling 
constant g. However, as we shall demonstrate, the theory has finite 
renormalization, so the two expressions with k and g may be transformed into 
each other by a rescaling 

A-+gA. and 2 
4~/k-+g (1' ) 

or the inverse without any singularity. The expression (1) is obviously 
convenient for perturbative"expansion. 

We begin with a brief review of some novel features of the theory. The 
first is diffeomorphism invariance. To see this, let us perform a 
transformation over Scs through a Lie derivative, 

(2) 

where e is a vector field on the tangent space of M. The last term above is 
zero since L is a top-form on M, while the first term vanishes if aM 0 or 
el aM O. The very fact shows that CS gauge theory is a topological field 

theory since the action takes the same value in any coordinate system of the 
manifold M. Physically, this implies general covariance. Since the Lagrangian 
(1) is a three-form, it admits no spacetime metric g . (1) is invariant under 

/W 
any local deformation of the metric of the spacetime manifold M. As a result, 
the Hamiltonian of the system vanishes, 5S /5g = O. 

cs J.LV 
Secondly, the Lagrangian (1) is linear in derivatives. The variation of 

(1) with respect to Aa gives the "equation of motion" of Aa : 
J.L J.L 

o. (3) 

Actually (3) is a flat connection condition but not a wave equation of motion. 
Therefore, the gauge field All is not a propagating field. 

Taking into account the above features, perhaps one can say that pure 
topological CS theory has no local dynamics, so it has no classical physics. 

Moreover, although action (1) is invariant under an infinitesimal gauge 
transformation, 5A - D~, where D is the covariant derivative and ~ is an 
arbitrary zero-form taking value on the Lie algebra of group G, it is not 
invariant under the "large" gauge transformations that are associated with the 

non-trivial elements of the third homotopy group of the gauge group G(3): 

S "large" gauge. S 
cs transformations cs 

where n is the winding numbers of the map g: x 

S +ixConst.xn 
cs 

g(x). 

However, the story of quantum theory is different. 
appears in an exponential in the partition function, 

(4) 

Since an action 
f[dA)exp(-S [A) cs 

(henceforward we use Euclidean spacetime), those actions will describe the 
same quantum theory only if they differ by an integer multiple of 2~" 
Therefore, large gauge invariance will survive with the quantization condition 

4~/i - integer (or k - integer). (5) 

Eq.(5) is a topological condition. 
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(2 1,4) Topological quantum CS gauge field theory has been known' as an 
exactly soluble model and its contents are extremely rich. For example, it 
provides a three dimensional quantum field theory description for knot theory 
by associating link invariants with the expectation values of Wilson loops, 
WR(C) - TrRPexp(IcA), which is a main (if not only) sort of topological 

quantities in the field theory besides the Lagrangian itself. On the other 
hand, it has been related to 1 + 1 dimensional conformal field theory by 
establishing a correspondence between the conformal blocks and the quantum 
states. 

When coupled with matter, as a "background field", Chern-Simons (abelian 
or nonabelian) gauge field endows the matter fields with remarkable 

features (5) , such as fractional statistics and Fermi-bose transmutations, 
which are argued to have something to do with high Tc superconductivity, 

superfluids, and the quantum Hell effect. 

In this talk we shall consider perturbative non-abelian CS gauge field 
theory. A question arises naturally since CS theory is a topological 
theory, why does one need a perturbative analysis? Instead of answering the 
question, we like to raise a relevant question -- does CS gauge theory define 
a sensible quantum field theory? To have a definite answer, one has to 
understand the theory better. An incomplete list of what one perhaps wants to 
know about is as following: 

1. calculability of correlation functions of A's. 
JJ 

2. renormalizations of coupling constant g and gauge field A . 
JJ 

3. scaling behavior. 

4. anomalies. 

We shall see that perturbation theory can tell us something about these. 

Although the gauge field A in CS gauge theory is not a propagating 
JJ 

field as we mentioned above, an A-propagator -- the lowest order two-point 
function of A field is still well-defined (we shall work in the Landau 
gauge) : 

a b (6) 
p v 

And from action (I), an AAA-vertex -- the lowest order three-point function of 
A field -- is 

~ (7) 
JJ v 

(The Faddeev-Popov ghosts are temporarily ignored.) As we shall see, the 
antisymmetric structure of the two- and three-point functions in spacetime 
indices leads to very interesting results. 

As in conventional quantum field theories, the two- and three-point 
functions will get corrections from loop diagrams in general. Since the only 
parameter, the coupling constant g, is dimensionless, the theory is obviously 
renormalizable and it is necessary to regularize divergent Feynman diagrams in 
loops calculations. 

The miracle here is that, as we shall see, at least to three loops there 
are no singularities in either individual diagrams or ones combining pertinent 
regularized Feynman diagrams when regularization parameters go to limits. This 
implies that one has neither to introduce counterterms to absorb singularities 
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(technically), nor refer to "bare" quantities as unobservable or unphysical 
(conceptually). What we have in the perturbative CS theory will be finite 
renormalizations at least to the order we have studied. It provides the 
possibility that both the "bare" coupling constant, g, which appears in the 
tree-level action (1) and the renormalized one, gr' are physically meaningful: 

the former accords to the lowest order observable and the latter the quantum 
corrected one to proper order. 

Furthermore, we shall show that the renormalized quantity depends on 
the regularization scheme. Therefore, in the finite renormalization case, 
perhaps different (reasonable) regularization methods define different quantum 
field theories, since they give different quantum corrections to the same 
classical theory. 

In this talk, three types of regularization will be examined. We shall 
discover that dimensional regularization fails at the two-loop level since it 
does not respect the Ward identities. And regularization by dimensional 
reduction gives zero remormalization to at least three-loop order in 
perturbative theory. It seems that the theory is perturbatively trivial in the 
calculation of two- and three-point functions with this regularization. While 

F2 regularization(6) leads to a finite renormalization. At one-loop order the 
coupling constant g gets a finite correction which satisfies the quantization 
condition. It implies a shift of k: 

(8) 

where c2 (G) is the value of the quadratic Casimir operator of the group G in 

the adjoint representation, such as c2 [SU(N)] - 2N. We argue that the higher 

order corrections should not modifies the shift (8). Otherwise the 
corresponding quantization condition could not be obeyed. 

Since the coupling constant g is quantized, the beta function for g 
should be zero, i.e. the quantum theory must be scale invariant. 

However, this point is not perturbatively obvious so needs to be 
verified. Also, it remains to make clear whether peg) is identically zero or 
whether it vanishes only for quantized values of g. As is known, the latter 
case occurs in WZW model. But since the regularized CS field theory has only 
finite renormalization, peg) of this theory must be zero. Hence there is no 
scale anomaly in CS quantum gauge field theory. We shall demonstrate this by 
explicit calculation to three-loop order. 

Aside from scale invariance, the classical action (1) has two other 
symmetries general covariance and gauge invariance. Therefore it is 
important to check whether they survive quantization. Now suppose these 
symmetries remain, what should the renormalized CS action look like? 

First of all, it can not be spacetime metric dependent. Otherwise 
general covariance will be violated. Therefore only local three forms 
containing ArAdAr and ArAArAAr are allowed in the renormalized action, where 

Ar is renormalized gauge field. 

Secondly, the relative coefficient of these two terms must coincide with 
the one in the tree-level action so that the small gauge transformations 
remain a symmetry. This means that if there are neither local gauge nor 
diffeomorphism anomalies, the renormalized action can only take the same form 
with action (1) with the bare quantities A and g replaced by the renormalized 
ones Ar and gr. 
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Furthermore, if the large gauge transformations remain a symmetry, the 
renormalized coupling constant must satisfy the quantization condition (5). 

However, we do not know if this is the case before completing the 
renormalization procedure. As an example, we can not exclude a finite nonlocal 
term like 

(9) 

(where F is the field strength) which would imply a diffeomorphism anomaly. 
PV 

Loop diagrams can contribute to the action (9) if they contain even numbers of 

the 

loop 
will 

three order antisymmetric tensor ear~. This is the situation of any odd
ar~ 

gauge field self-energy diagram. The contraction of even number of e 
give rise to symmetric spacetime tensors. 

Nevertheless, we shall find that the cancellations between the gauge 
field loops and the ghost loops are so complete that no term like (9) appears. 
And no other noninvariant terms have been found in the two- and three-point 
functions to two loops. 

This Lecture will be arranged as follows. In sect.(2) we point out the 
subtlety of an axial gauge choice for C5 theory in Euclidean spacetime, 
introduce covariant gauge fixing first, and discuss powercounting. It is shown 
that the actual ultraviolet behavior of the theory is much better than what is 
expected by naive powercounting. Then in sect.(3), we describe the three 

regularization procedures. The most interesting one is the F2 regularization, 
which actually makes the theory finite! In this section, the renormalization 
constant and the Ward identities are also defined. Explicit calculations for 
one-loop and two-loop are given in sect.(4) and (5), respectively. We find 

that F2 regularization gives finite renormalization at one loop; dimensional 
regularization breaks the gauge symmetry of the theory at two loops; and the 
regularization by dimension reduction respects all Ward identities but gives 
no renormalization up to three loops. Finally, sect.(6) gives a summary of our 
result. 

2. Gauge Fixing and Powercounting 

It seems that 
temporal gauge, say AO 

the simplest gauge fixing of the theory at hand is the 
O. In this case, the ghosts decouple and the 

interactions in action (1) disappear. The action now reads 

(10) 

Action (10) looks like a free theory. Of course it is supplemented with a 
gauge constraint Fij O. However this is unseen perturbatively. Therefore the 

perturbation theory in this gauge seems trivial. 

However, since we work in the Euclidean spacetime 53, the gauge 
transformation to the temporal gauge is illegal: If the spacetime manifold is 
compact, it can not be done without introducing singularities in the gauge 
connection A. If the spacetime manifold is open, the generator of gauge 
transformation is identity at infinity and the change in the Chern-Simons term 
in action (10) will not be proportional to a correctly quantized integer. 
Therefore, the theories described by actions (1) and (10) are not identical. 
However, their perturbative structure must be very similar. 

Hence we like to have a linear covariant gauge fixing, aPA - 0, as this 
P 

sort of gauge condition can be realized on a compact spacetime. Meanwhile we 
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also introduce Faddeev-Popov ghosts through the standard procedure. The 
corresponding action is 

J 3 .. ,- 1 '"' 2 ,",V -S f - Md >4gTr[- -a-(8 A ) +g 8 cD cJ. 
g. . I' '"' '"' V 

(11) 

The action (1) and (11) is BRST invariant, and the BRST charge is nilpotent, 

Q2 _ O. The BRST invariance is very useful for deriving the Ward identities. 

Adopting a covariant quantization, one unavoidably introduces a metric. 
It obviously breaks the general covariance of the gauge fixed classical 
action. Furthermore, it is impossible to regulate ultraviolet divergences 
without a metric, i.e. using any cutoff implies use of a distance scale which 
only makes sense when there is a metric. Fortunately, we shall see that the 
renormalized action is cutoff independent. Thus the metric introduced in 
regularization does not appear in the final results. On the other hand, there 
have been arguments that the metric introduced in gauge fixing does not affect 
the final results either. The first is that in path integral approach, it has 

been shown that(2)the combining result of the two metric dependent terms in 

(11) is a topological invariant upto a metric dependent phase factor which is 
controllable at least at one-loop order. Secondly, if we consider the BRST 
canonical quantization of CS gauge field theory, we find that (also see ref. 

(10» although the energy momentum tensor, T'"'v, is no longer zero due to the 

action (11), it is a BRST commutator: T'"'v - [Q, X,",v J , where X,",V is a curtain 
operator. It turns out that the energy momentum is not measurable, i.e. 

<physIT,",vlphys>-O, because Qlphys>-O. Furthermore, in this talk we provide new 
evidence by demonstrating perturbatively that the metrics introduced by either 
gauge fixing or regulating do not bring new terms, especially like (9), into 
the renormalized CS action. 

The Feynman rules for the ghost propagator and the ccA vertex are as 
usual: 

a b --_ .... -+----
P 

and 

where we have chosen the flat metric, g'"'v = S'"'V, and 
The advantage of this gauge is that the calculations 

and it avoids potential infrared singu1arities(7). 

(12) 

(13) 

the Landau gauge, f3 ~ 00. 

are greatly simplified 

Let us consider the ultraviolet behavior of the theory. From the Feynman 
rule, we know that the propagators (6) and (12) have dimensions of momentum 

-1 -2 P and p ,respectively; the AAA vertex is dimesionless, and the ccA ohe is 
linear in p. If we denote the superficial degree of divergence of a diagram r 
by D(r), naive power counting shows that it is 

D(r) - 3 - E, (14) 

where E-EA+Ec ' while EA and Ec are the number of external gauge fields and 

ghost lines, respectively. (Eq.(14) is different from the one, 
1 

D'(r) 3 - EA- 2Ec (see reference (11), say) by standard power counting. The 

reason is that the ghost external lines in any diagram r always appear in 
pairs and the two external ghost lines in each pair are connected by internal 
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ghost line(s), then one of the 
external ghost lines in a pair has a 

two ccA vertices associated with the two 
factor of external momentum (by the 

Feynman rule (13». This means that the two ccA vertices actually contribute 
to the superficial degree of divergence for a given diagram by only one but 
not two. It turns out that each pair of external ghost lines makes D'(r) one 
less. This results our formula (14).) Eq.(14) tells us that only two- and 
three-point functions in this theory are superficially divergent. 

But, remember that the non-negative superficial degree of divergence of 
a given diagram does not mean that the diagram is necessarily divergent. 
Symmetries may render the ultraviolet behavior of some diagrams better. We 
should look at it more carefully. 

First of all, we shall show that all two- and three-point functions are 
convergent at the one-loop level (Fig.l), although they have superficial 
degrees of divergence D - 1 and 0, respectively. 1) As in any three-point 
diagram the divergent terms (according to D - 0) are three powers of internal 
momentum, the actual degree of divergence for them is D -1 (under the 
integrand over the internal momentum). Namely, they are actually convergent. 
2) The one diagram for the ghost self-energy vanishes because in that diagram 

CTrA there is one antisymmetric tensor E coming from the internal gauge field 
line, and its three indices have to contract with one internal and one 
external momentum; then the contraction gives zero. 3) In the one-loop 
correction to the gauge field self-energy, each diagram contains an even 

number of ECTrA • Since the gauge field two-point function is transverse in the 

external momentum p, it is in proportion to (6pvp2_pppv). On the other hand, 
the gauge field inverse propagator only has the dimension of mass. Therefore, 
the gauge field two-point function is ultraviolet convergent at one loop. Let 
us emphasize this point with an explicit calculation. Consider a typical 
Feynman integral in the one loop gauge field self-energy diagrams: 

(15) 

Above we have analytically continued the integral to w - 3-E dimension (E is a 
small positive quantity) so that the integral is precisely defined. Then 
introduce Feynman parameters and integrate over the internal momentum k as 
well as the Feynman parameters through a standard procedure, we get 

(15') 

We have no singularity when ~3. This completes the proof of the convergence 
of one loop. 

Now we turn to two-loop diagrams (Fig.2). At this level, every gauge 

field self-energy diagram contains an odd number of ECTrAtherefore the gauge 
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JJIIA field two-point function takes the form of ITO(p)E PA; while every ghost 

self-energy diagram contains an even number of Eq~A so it takes the form of 
- 2 IT(p)p. Remembering that the gauge field and the ghost two-point functions 

have dimensions of p and p2, respectively, ITo(p) and U(p) therefore the two 

point functions at two-loop level should be logarithmically divergent, a bit 
better than the linear divergence of naive powercounting. We shall also verify 
this directly from the diagram calculation. 

On the other hand, the two types of three-point functions at the two
loop level are actually convergent. To see this, we notice that in every two-

loop three-point diagram there exists at least one Eq~A that must contract 
over all its three antisymmetric spacetime indices with three momenta carried 

by internal gauge field line(s) or ccA vertex(es). On the other hand, the 
diagram has only two independent internal momenta. Therefore the contraction 
must contain the external momentum. In this way, the superficial degree of 
divergence D - 0 is decreased by at least one and the three-point functions 
at two-loop level are certainly ultraviolet convergent. 

For higher loops, a similar analysis is available but much more 
complicated. Generally speaking, the ultraviolet behaviors of odd-(even-)loop 
diagrams are similar to those of one-(two-)loop ones, because their 
antisymmetic tensor structures are similar. Particularly, like one-loop 
diagrams, we have demonstrated that all three-loop diagrams are convergent. 

Anyway, since there are divergences in, e.g. two-loop two-point 
vertices, regularization is needed. 

3. Regularization, Renormalization, and Ward Identities 

We shall consider three types of regularization. The first, called F2 
regularization, we supplement the action (1) and (11) with a Yang-Mills term 

(16) 

The cutoff a above has dimension of mass and will go to infinity at the end of 
calculation. At first sight, this regularization makes the theory 
powercounting super-renormalizable at the price of introducing the metric and 
complicating the Feynman rules. It respects BRST symmetry of the theory. The 
Feynman rules for gauge field two- and three-point vertices now contain a 
symmetric part: 

a .... b ,sab a (2,sJJII JJ II a JJIIA ) 

p2(p2+a2) 
p -p p - E PA 

JJ P II 
(17) 

and 

~I~ ... b i abc JJIIA a .... -gf [aE -(r-q),s -(q-p),s -(p-r),s J. 
JJP q II 

a JJ IIA A JJII II AJJ 
(18) 

With this regularization, we shall still work in the Landau gauge. According 
to action (16), a dimensionless four-gauge field vertex is also involved. 
However, since it has good ultraviolet behavior and any contributions 
associated with the vertex will go to zero as a goes to infinity, we can 
simply ignore it. 

Let us make a powercounting analysis about the regularization. With a 
-2 finite, the two-point vertex (17) behaves at large momentum like p for the 

-3 symmetric part and p for the antisymmetric one. While the three-point 
vertex (18) behaves like p and constant for the two parts, respectively. The 

561 



ghost propagator and ccA vertex are not affected. Since in the most divergent 
parts, we lose one power in each AAA-vertex but gain one in each AA-propagator 
with this regularization, we expect that the ultraviolet behavior of higher
loop diagrams will be improved. 

Precisely, powercounting shows that all diagrams are superficially 
divergent except for two-point functions at one-loop which are superficially 
linear divergent and three-point functions at one-loop and two-point functions 
at two-loop which are superficially logarithmically divergent. 

Surprisingly, these superficially divergent diagrams turns out to be 

convergent I The F2 regularization makes the theory finite. The reasons for 
this have been discussed in the last section. Let us see how it works. First 
of all, in anyone-loop three-point diagram, the superficially 
(logarithmically) divergent terms are odd-number powers of the integral 
momentum, so three-point functions are actually convergent under integrals 
over internal momenta. Secondly, due to the regulator (19), the antisymmetric 

-3 part of the gauge field propagator behaves at large momentum like p ,much 
-1 

better than p as before. Therefore the antisymmetric parts of two-point 
functions have good ultraviolet behavior, i.e. they are convergent by naive 
powercounting. Finally, for the symmetric part of two-point functions, 
although the degree of superficial divergence is D - 1 at one-loop order and D 

- 0 at two-loop, the tensor structures is of 

!IT (p)(6~vp2_p~pv) for the gauge field. a e 

- 2 form iIT(p)p for the ghost and 

As a result, ll(p) and IT (p) are 
e 

actually convergent. Now we have completed the statement that 
regularization the loop corrections of two- and three-point 
therefore the theory turns out to be finite. We shall show later 
finiteness remains when a ~ ~. 

with F2 
functions 
that the 

We now consider dimensional regularization. It has the obvious advantage 
that it does not complicate the Feynman rules so higher orders in perturbation 
theory are more accessible. According to this approach, all tensors should be 
defined on the regularization dimension w = 3 - E. But there is an ambiguity 

urA in the dimensional continuation of antisymmetric tensor E • We do not know 
urA how to analytically continue E to w. However one may try to define the 

contraction between €urA and the dual in w dimension: €u9~ 

with 

(-6 r -6A -r -A ) ( 1) 9 ~-6 ~6 9 r w- , 

- w. 

(19) 

(20) 

It certainly works at one-loop, since one-loop diagrams are actually 
convergent as we have discussed in the last section. We shall find that 
dimensional regularization leads to finite corrections to the two-point 
functions at the two-loop level where logarithmical divergences first appear. 
Unfortunately, the resulting renormalization constants satisfy neither the 
quantization condition nor the Ward identity. It means the failure of applying 
dimensional regularization in CS gauge theory. 

An. alternative approach is the regularization by dimensional reduction. 

This approach has been used to regulate supersymmetric field theories(13). The 
tensor algebra is performed in three dimensions before the Feynman integrals 
are worked out and only the dimension of the integrations is analytically 
continued. Namely, we have 
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(21) 

This procedure appears to preserve the symmetries of the theory and give no 
relative correction at all to at least two loops. We conjecture that in this 
scheme there is no renormalization to all orders in perturbative theory. 

Next let us consider renormalization. Notice that the inverse A
propagator should take the form: 

(22) 

And the gauge field three-point function is 

abc ' igf (Z (p,q,r)£ ,-Z (p,q,r)[(r-q) 6 ,+cycle]+···). g PVA g P VA 
(23) 

There exist two possible sources for the symmetric terms in eqs.(22) and (23). 

The first is the contractions of even number of eOT .\ brought in by the A
propagators and the AAA-vertices. (By the way, it is the case for all odd-loop 

diagrams in dimensional regularization and thus dimensional reduction.) In the 
2 F -regularization, even the Feynman rules themselves contain symmetric terms. 

In the latter case, we have 

Z (p,q,r) - l+T (p,q,r), 
g g 

The exact A-propagator is then 

!J. (p)
pV 

(22') 

(23') 

(24) 

It looks like a propagating gauge field(3,7) with mass eZA(p)/z~(P). With e~, 
the propagating components of A-field are infinitely massive and the A-field 
does not propagate. 

The renormalized ghost-propagator and cCA-vertex are 

ab ab 2 
~ (p) - -i6 /Zgh(P)P, (25) 

and 

-abc r .\(p,q;r) Z (p,q;r) - .1+T (p,q;r), 
g g 

(26) 

where we have denoted the ghost-wave function and ccA-vertex renormalization 

constants with Zgh(P) and Zg(p), In the theory at hand, the ccA-vertex (26) at 

even-loop levels probably contains terms that involves £OT.\ (the propagator 
(25) has no the problem since it has only one external momentum and no 
spacetime index). Nevertheless, such terms in (26) as well as the symmetric 
parts in gauge field propagator (22) and vertex (23), if not vanishing, would 
bring into renormalized action new terms. 
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Fortunately, it is not the case. The explicit calculations to the order 

we have studied show that after removing the regulator Z~(P) - Z~(p,q,r) 0 

and no extra term appears in Eq.(26). Particularly, the gauge field propagator 
takes the form 

6. (p) - -p.v 
1 

2 
ZA(P)P 

(27) 

Eq.(27) shows that it is ZA(P) that plays the role of the wave function 

renorma1ization constant of gauge field. 

Furthermore, we shall see that the renorma1ization constants are 
independent of external momenta, i.e. 

on. (28) 

From the wave function and the vertex renormalization constants, it is 
easy to define the renorma1ized coupling constant 

(29) 

In the last equality we have applied the Ward identity for the two- and three
point functions, which must be satisfied if gauge invariance survives 
quantization. 

Finally, the invariance under large gauge transformations requires the 
renorma1ization coupling constant gr obey the quantization condition 

2 
4~/gr - integer, (or kr integer) , (30) 

which is called the topological Ward identity(7). 

In the next two sections, we shall examine whether The three 
regularization schemes described here preserve eqs.(29) and (30). 

4. One Loop Structure 

Since, as we have demonstrated, at one loop CS gauge field theory is 
actually finite, it seems that the result at this order should be independent 
of regularization schemes although a regularization is necessary so that 
Feynman integrals are precisely defined. 

The exception is F2-regu1arization. Although the Yang-Mills regulator is 
so effective that all two- and higher-loop ultraviolet divergences are cured, 
it is unable to solve the similar problem at one loop; therefore a further 
treatment such as dimensional continuation of Feynman integral is necessary. 

More interesting, the existing F2 term at one loop dramatically leads to a 
finite quantum correction to the coupling constant g. In ·other words, it 

1 
provides a shift Zc 2 (G) to the overall coefficient k when the cutoff ~~. So 

perturbation theory in this case is not trivial as it is in the other two 
regularization methods we are examining, which produce no correction at all. 

Thus let us first consider the F2 regularization. With F2 term, the 
Feynman rules (see eqs.(17), (18), (12), and (13» therefore the calculations 
are much more complicated. Fortunately, most calculations for one loop 
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correction could be found in ref.(3,7,8) where the authors studied the three 
dimensional massive Yang-Mills theory with the Chern-Simons action as a mass 
term. 

The simplest diagram is the ghost 
contribution from the antisymmetric term in 
trivially zero and we have (see eq.(25» 

self-energy, (c) 
the gauge field 

Thus 

ii(p) 
322 2 d k k p -(k·p) 

1-( 2-_)-3 --;:2F-'~";;2~2~2'---' 
.. k (k+p) (k +9 ) 

of Fig. 1. The 
propagator is 

(31) 

(32) 

where &ab~C2(G) - fadcfdcb. It is obviously ultraviolet convergent. Performing 

the integration and taking the limit ~, we get 

- - 1 2 ll(p) - ll(O) - - 121fg c2(G). (33) 

Fig.(l.a) and (l.b) give the gauge field self-energy corrections. The 
contribution will be divided into two parts: the terms with an odd number of 
ur.\ 

f go to llo(p) and others to lle(p) (see eq.(22) and (22'». For lle(p) , the 

exact value is not important. What we need to know is whether it is finite or 

it goes infinity more slowly .than 9 does when ~ so that z~l~ - O. We have 

verified that it is the first case. The value of llo(p) is important for 

renormalization, after some tensor algebra we have (also see ref.(7» 

2 
_g_9_C~2 (_G_) I_d_3_k_ 

llo(p) - 2 3 
2p (211') 

2 2 2 2 2 2 [k p -(k·p) ](5k +5k'p+4p +29 ) 

k2(k2+92) (k+p)2[(k+p)2+92] 
(34) 

The integral is also convergent. Performing standard Feyruian integration and 
taking ~, it turns out that 

By eq.(33) and (35) we have the wave function renormalization constants 

(36) 

and (37) 

Next we consider three-point functions. The net result of corrections to 

the ccA vertex from (f) and (g) of Fig.l is zero once ~: The one_fur.\. term 

of (l.f) cancels against the three_fur.\. term of (l.g); The one_fur.\. terms of 

(l.g) go to zero and the non_fur.\. terms cancel against each other between 
(l.f) and (l.g) when ~. This is in agreement with the arguments by 

Taylor(l4)that to any order one has 
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Z 
g 

1. (38) 

The AAA-vertex correction is given by (d) and (e) of Fig.l. The purely 
u,.'\ 

E part of gauge field loop (l.e) cancels against the ghost loop l.(d) and 

the odd-number E U "'\ part of (l.e) tends to zero when e~. The remaining part 
of (l.e) thus is ultraviolet convergent. Since the theory with the 
regularization at this order is finite, the Ward identity (29) must be 
satisfied. Therefore, instead of doing the tedious Feynman diagram 
calculation, we are able to simply use eqs.(36-38) and Ward identity (29) to 
get the coupling constant renormalization constant Z . The result is 

g 

Z 
g 

Z 3 2 
-z=--'!~!- - 1 + Sifg c 2 (G). 

gh A 
(39) 

Now we come to the crucial point 
(30). By definition (29), 

checking quantization condition 

(40) 

(40) shows the renormalized coupling constant gr satisfies the quantization 

condition (30) since c2 (G) is always an integer. (40) also implies the shift 

of k: 

(8) 

which has first been given by Witten(2,12) . 

However, the shift can not be obtained in the other two regularization 
methods, which we shall consider next. 

Actually, there is no difference between dimensional regularization and 
regularization by dimensional reduction for one loop calculations since the 
theory is finite at this order. Therefore it is unnecessary to discuss them 
separately. 

The Feynman rules are given by eqs. (6), (7), (12), and (13) in the 
present case. 

By inspecting the Feynman rules and one-loop diagrams of Fig.l, we know 
that at this level one must have (see eqs.(22), (23), (25), and (26»: 

Z -Z -Z -Z A gh g g 1. (41) 

The reason is that everyone-loop two- or three-A vertex diagram includes 
u,..\ 

factors of an even number of E so it will not contribute ZA or z· while 
g' 

everyone-loop diagram of the cc or ccA vertex includes factors of an odd 

number of EU"'\ therefore it will not contribute to Zgh or Zg. 

Thus the only possibility for any , , 
contribute to ZA or Zg' the symmetric part of 

one-loop diagram of Fig.l is to 

two- or three-A vertex, or add 

new terms to eq.(24) or (25). Any non-zero contribution as such would mean an 
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anomaly or non-renormalizability. Below we shall find that such a case does 
not occur. 

First, it is easy to see that the ghost self-energy (c) of Fig.l is 

trivially zero since it contains an (aT~, all three spacetime indices of which 
must be contracted, but there are only two momenta an internal and an 
external one, i.e. 

(42) 

Then let us show that each of remaining six diagrams in Fig.l is finite. 
Furthermore there is cancellation between the pairs, (a) and (b), (d) and (e), 
and (f) and (g): 

(43) 

(44) 

0, and 

(45) 

To complete this section, we have seen that the F2-regularization leads 
to a finite renormalization and dimensional regularization as well as 
dimensional reduction give zero renormalization. No anomaly has been found in 
the calculations of the two- and three-point functions at one-loop level with 
any of the three regularization schemes we have used. 

s. Two Loop Considerations 

Logarithmic divergences first appear at the two-loop order. And the F2 
regularization makes the theory finite by powercounting and symmetry analysis. 
Therefore at this level especial interest is in dimensional regularization and 
dimensional reduction. We shall find in this section that dimensional 
regularization is not suitable to CS gauge field theory because it does not 
satisfy Ward identities, Dimensional reduction is free of such problems. 

The two-loop two- and three-point vertices are collected in Fig.2. From 
the diagram structures and the Feynman rules, we see that, contrary to the 
one-loop case, these two-loop diagrams only give corrections to the 

renormalization constants ZA' Z , Z h' and Z but no others. This is because g g g 
that each gauge field two- or three-point vertex has factors of an odd number 

of EqT~ and each ghost-ghost or ghost-ghost-gauge vertex has an even number of 
aT~ 

E 

According to our analysis in section 2, all two-loop three-point 
vertices are essentially convergent, therefore the different regularization 
schemes used to regulate superficially divergent Feynman integrals should not 
give different final results. In fact, as we shall show, the two-loop 
corrections to three-point functions turn out to be zero. 
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First of all, the planar three-leg diagrams in Fig.2 are canceled in 
pairs. To see this, we pair the planar diagrams of Fig.2, denoted by (1) and 
(L), (m) and (M), and so on. It can be seen, in the two diagrams of each pair, 
some parts are the same but the remaining different parts are just these that 
form one of the one-loop pairs of Fig.l with the expression given by one of 
eqs.(43-45) , which cancel within the pair. 

Secondly, the nonplanar three-leg diagrams of Fig.2 vanishe individually 
because of the symmetry of gauge group indices. To see this, we pick one such 
diagram and cut anyone of two crossing internal propagators, then we get a 
one-loop four-point vertex connecting with a bare three-point vertex through a 

propagator. A four-point vertex has a gauge group factor denoted by Tabcd , 

which is equal to feagfgbhfhcifide for an one-loop diagram. It is easy to 

verify that Tabcd is symmetric under the exchange of two indices which are not 

neighbor, i.e. Tabcd _ Tadcb _ Tcbad. On the other hand, the bare three-point 
vertex has a factor of the gauge group structure constant, and two of its 

three indices will contract with two non-neighboring indices of Tabcd due to 
the Feynman diagram structure. Each nonplanar two-loop three-point vertex has 

such a group factor Tabcdfjbd and is therefore zero. 

Then we come to two-point functions. It seems that the cancellation 
mechanism used in the planar three-point vertices is also suitable to the two
point vertices of Fig.2 since they have similar sub-diagram structures. 
However we must be very careful since we are dealing with logarithmically 
divergent diagrams. In fact, we shall find that surprisingly the two-loop 
contributions to two-point functions are without singularities and that the 
final results are different in the different regularization schemes we have 
used. Particularly, the complete cancelation mentioned above only occurs in 
the dimensional reduction approach. 

Let us first consider dimensional regularization. Here we do not know 
ur). 

how to continue E into noninteger spacetime dimension w-3 - E. Instead of 

attempting it let us try to define the contraction between E~r). and its dual 

E~ as E~r).f~ _(Xr X). _Xr X). )r(w-l) with X~~-w, eqs.(19,20). The 
",0" ",0" 0" " ° Y' 

regularization procedure will be as follows. We contract all antisymmetric 
tensors, according to eqs.(19,20) first, and then perform Feynman integrals, 
the dimension of which will have been analytically continued to w. 

In this approach, two-point functions will get finite corrections. We 
shall first work out the radiative correction of the ghost propagator. The 
corresponding diagrams are (g), (h), (i), (j), and (k) of Fig.2. The last one, 
Fig. (2.k) is zero since it contains a sub-diagram Fig. (l.c) which we have 
shown vanishes. And the first two give: 

4 ab 
(2.g) - ir(w-l)g R Il(w), (46) 

4 ab 
(2.h) - -ig R Il(w), (47) 

where 

(48) 

The factor r(w-l) in (2.g) is from the contraction of two of its four E~ro, 
and the Feynman integral is 
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E q~p k,E k P q 

'I' ° '" r 'I It 
22222 

k q (k+q) (k-p) (q+p) 
(49) 



The primary divergence of (49) is logarithmic. Through the standard Feynman 
integral procedure, a simple pole r(3-w) can be isolated: 

(49') 

, 
where the Feynman parameter integral Il(w) is a finite number when ~3: 

(50) 

From (2.g) plus (2.h) we can extract a factor l-r(w-l), which is zero as ~3, 
apart from the factor r(3-w). A simple calculation gives 

[1-r(w-l)]r(3-w) - l-~, when ~3, (51) 

where ~ - 0.5772 ... is the Euler constant. Surprisingly, the singularity is 
gone when the two singular diagrams are added together. 

The other couple of diagrams to the radiation correction of the ghost 
propagator gives 

where 

1 dWk 
- -r(w-l)I--

32 (4~)3 

222 
(k·p) -k P 

k\k+p) 2 

(52) 

(53) 

(54) 

The bracket in the first line in Eq.(54) is the contribution from the one-loop 
two-point vertex insertion. Like Il(w), the integral (54) is primarily 

logarithmically divergent and it gives a simple pole: 

(54') 

A relation like eq.(5l) is 

2 3-w 
[1-(w-2) [r(w-l)] )r(~) - 2(3-~) as ~ 

therefore (2.i) plus (2j) is not divergent either. 

Adding together (2.g, h, i, j), out of divergent diagrams, we have a 
finite correction to the ghost self-energy at two-loop: 

4 2 
g [c2(G)] 

32(4~)3/2 
(3-~). (55) 

The result is finite and independent of external momentum p. 
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Next we calculate the radiative correction to the gauge 
IlV>' 

two-loops. Contracting ITIlV(p) with E P>.' we have ITo(p) = 

(see eq.(22». The contributions to ITo(p) from (a-f) of 

followings: 

I 4 ab 4 
(2.a) - --zg R [r(w-l)] (w-I)II(w), 

2p 

(2.b) -

I 4 ab 
(2.c) - --zg R II(w), 

p 

(2.d) (2.b), 

I 4 2 ab 2 
(2.f) - --zg [c2 (G)] 0 [r(w-l)] (w-2)I 3(w) 

8p 

where II(w) is given by eq.(48) and 

After some algebra, 

IT 
o 

we finally obtain 

4R ' 
g 3 (7-6~)II(3) 

4(411") 

3-w 
r(-2-) 2 

---------p 
64(411")3/2 . 

4 2 
g [c 2 (G)] 

+ --------(3-~). 
256(411")3/2 

field at the 
1 I.W>' 

>.IT,w (p) --f p 
2p2 
Fig.2 are as 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

It is remarkable that without invoking any counterterms the 
singularities cancel between ghost loops and gauge field loops and a finite 
result is obtained. Unfortunately, either the Ward identity (29) nor the 

quantization 

but ZA ... Zgh 

condition (30) are satisfied by these results, since Z = Z = 1 
g g 

by Eqs.(55) and (63). The fact forces us to abandon dimensional 

regularization in CS gauge theory. We attribute this to the ambiguity in the 
or>. 

dimensional continuation of the antisymmetric tensor E 

On the other side, let us show that if one insist on defining 
antisymmetric tensors on three dimensions, the ambiguity may be avoided. 

of Ear>. and its dual is defined as E¢r>.€~ 
'1'0'1 

Especially, the contraction 

oT
0 0>''1 - OT'10>'O' with O¢¢ - 3, eq.(21). The strategy we shall take is that 

when regularizing a potentially divergent Feynman integral, all f ,will be 
Ill/" 

extracted from the integral first, and then the rest will be analytically 
continued to w-dimension. This method is so-called the regularization by 
dimensional reduction. Now we shall see how it works at this level. 

Based on the contraction (21), we simply fix all w that come from the 
contractions between E ,to 3 in (2.a) to (2.j) and find that the complete 

IlV" 
cancellations happen between (2.a) and (2.b), (2c.) and (2.d), and so on. 
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As a result, with the regularization by dimension reduction we have 
obtained no corrections to both two- and three-point functions. Therefore we 
have zero renormalization up to two-loop order. It will be correct also at 
three loops because at this order (and any odd-loop order) the diagrams will 
not contribute to the renormalization constants. It is obvious that the 
regularization by dimensional reduction does respect all symmetries, although 
trivially, at least to two loops. 

To conclude this section, we would like to make an comment on F2_ 
regularization at two loops and beyond. Although there is no reason to exclude 

non-zero corrections to renormalization constants in F2 -regularization at 
higher-loop order, it is unlikely to add new term to the shift of 

1 
k ~ k r - k + 2 c 2(G), eq.(8). In other words, the renormalized coupling constant 

2 g c 2(G) 
- (1 - --u;-)g (64) 

should not be changed at two-loop order and beyond, if the quantization 
condition (30) remains. To see this, suppose gr get a correction at two loops, 

4 
-=!!L 
2(42f)2' 

where B is a non-singularity number. Then the quantization condition 

2 
requires B~ be an integer for a fixed constant B but an arbitrary integer 42f 

4; . The only possibility is B-O. 
g 

6. Conclusions 

Now we return to the questions we asked at the beginning of the Lecture. 
By the above analysis of two- and three-point functions, we can say that the 
CS gauge theory does define a sensible quantum field·theory in the sense of 
perturbation theory. 

In the explicit calculation of two- and three-point functions up to two 
loops, we have found no gauge, general covariance, or scale anomalies with 

either the F2 regularization or the regularization by dimensional reduction, 
while dimensional regularization is ruled out since it is not gauge invariant 
at two loops. Furthermore, the metric introduced in regularization does not 
break the general covariance of the theory so that the renormalized action is 
independent on the metric but takes the same form as the bare action with the 
bare quantities replaced by renormalized ones. 

More interesting, the perturbation theory which 
respects the requirement of topological considerations 
condition of k or g. 

is defined locally 
the quantization 

The new lesson here is about finite renormalization. We have 
demonstrated that dimensional reduction leads to no renormalization up to 
three loops. And to higher orders, we have reasons to believe that the theory 
is finite, even though it probably does not continue to have zero 

renormalization. On the other hand, we have shown that the F2 -regularization 
essentially makes the theory finite to any order and gives a finite shift of 

1 
the overall coefficient k by 2c2(G) at one loop order. 
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The advantage of a theory with finite renormalization is that we do not 
need to invoke ambiguous counter terms to absorb singularities coming form loop 
corrections or attribute the bare quantities as unobservable or physically 
meaningless infinities. A reasonable explanation in this case seems to be that 
both bare and renormalized quantities are physically meaningful: the former 
are classical quantities and the latter are quantum ones. 

Since CS gauge field theory is of this sort, it faces another problem. 
Starting from a given classical CS action (a fixed classical coupling 
constant), with regularization by dimensional reduction we do not get quantum 

correction as we have seen, but with the F2-regularization we do. Then the 
problem is which procedure should we trust? A priori, we have no reason to 
prefer either since both of them obey all symmetries of the theory. A 
possibility is that different proper regularization schemes define different 
reasonable quantum theories. 

Finally, since the renorma1ized theory is finite, it is obvious that the 
beta-function for the only parameter of the theory is exactly zero, i.e. the 
theory is free of scale anomalies. 

This talk is based on the work in ref.(9). Recently, perturbative Chern
(10 11) Simons theory has been discussed also by other authors ' . 
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For the Artin braid group B, we give two types of N-state represen-
n 

tations for N =2,3,4,5,6. 

1. Introduction 

The theory of braids and knots is related to many topics in physics. 
Recently a connection between knot theory and the theory of exactly solv
able models in statistical mechanics and many body systems in two dimen
sions has been discovered [1-5]. Central to this is the Yang-Baxter rela
tion which is a sufficiency condition for the transfer matrices to commute 
in those models. Exploiting the similarity between the defining relation 
of Artin's braid .group B and the Yang-Baxter relation, various represen-

n 

tations of B have been obtained from statistical models at criticality. 
n 

The Markov trace defined on B is used to construct topological invariants 
n 

for knots and links. State models associated to link diagrams have been 
shown to be partItlon functions of certain statistical models. For 
instance, Kauffman [6] has defined a state model for the Alexander-Conway 
polynomial which can be seen as the low temperature limit of the partition 
function of a generalized Potts model. Methods for constructing link 
polynomials via the braid group or a diagrammatic approach rely on a two
dimensional definition of link polynomials. Recently within the context 
of a solvable topological quantum field theory in 2+ 1 dimensions, Witten 
[7] has proposed an intrinsically three-dimensional definition of the 
Jones polynomials. This idea has been carried further and a new hierarchy 
of link polynomials has been derived from a topological Chern-Simons gauge 
theory [8]. The braid group is of interest in its own right, as the fun-
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damental ~oup of the configuration space of n indistinguishable particles 
in two dimensions. Braid group representations are related to strange 
statistics (neither Bose or Fermi) in quantum mechanics in 2+ 1 dimensions 
[9-12] and quantum field theory in 1 + 1 dimensions [13] and to the mono
dromy of multipoint correlation functions in two dimensional conformal 
field theory [14,15]. 

In an earlier paper [12], we proposed an algorithm for constructing 
N-state representations of B of the maximally symmetric type (defined in 

n 

section 2); from this family of representations one can derive an infinite 
sequence of link polynomials. The N=2 case in this family corresponds to 
the famous Jones polynomial. The method consisted of solving a set of 
equations of the Yang-Baxter type. The resulting family of solutions had 
been iust discovered by Akutsu and Wadati [1,2]; their method consisted 
of extracting representations of B from exactly solvable N-state vertex 

n 

models in statistical mechanics at criticality. Recently our method led 
to the discovery of a new family of N-state representations of B; solu-

n 

tions for N=2, 3 and 4 were given [16,17]. 

The object of my talk (M.C.) is to give a detailed account of those 
representations. In section 2 solutions to both families of representa-
tions are given up to N=6. 

2. N-State Representations of B 
n 

Artin's braid group B [18,19] 
n 

tors (elementary braids) g, I!: , ••• ,g 
I ~ n-I 

is generated by a set of (n-l) genera

and their inverses subject to the 

following necessary and sufficient defining relations 

li-jl ~ 2 (2.1a) 

(2.1b) 

An element fJ in B , called a braid, is a word in the g.'s 
n 1 

.... , (I. E 71. 
1 

Let V be an N-dimensional vector space and R E End(V ® V) be an N2 x N2 

matrix that has an inverse. The mapping 

p : B 7 End(V®n) 
n 

(2.2) 

with 

p(g) = I ® ... ® I ® R ® I ® .... ® I 
i I i-I i+2 n 

(2.3) 

is a representation of B, where I E End(V) is the identity matrix, 
b . t . h .th n • V ® n d R h .th 

the 

and 
Let 

su sc9P 1 means tel vector space m , an acts on tel 
(i+l) vector spaces. The form of (2.3) insures that (2.1a) holds. 
us now consider (2.1b). Component wise: 
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(2.4) 

and therefore 

(2.5a) 

b b b b I b.,k b. l,b. 2 
.. J 1 ... J i-I J 1+3 ... J D r (R)m (R) 1 (R) 1+ 1+ 

a 8 a a La. ,81+2 8i ,m k,l 
1 i-I 1+3 Dk,l,m 1+1 

(2.5b) 

It is understood that a summation will always be from 1 to N. It follows 
from (2.1b) and (2.5) that p is a representation of B provided R satis-
fies the Yang-Baxter relation D 

k,l,m 

r Rml Rak R bc 
L 8 t rm kl 

k,l,m 

(2.6) 

Our approach in constructing representations of B consists of solv-
D 

ing (2.6) directly. The solutions we seek are of the "charge conserving" 
type meaning that 

Rab = 0 if 
cd 

a+b :j: c+d . (2.7) 

For N=2, this condition constrains R to those appropriate to the six
vertex state models. Because of (2.7), the R-matrix is block diagonal 

Al 0 
A2 

o 

A -A' N N 
A' 

N- 1 

'A' 
1 

(2.8) 

where the submatrices A and A' are m x m and R is an N2 X N2 matrix. We 
m m (N) 

further demand that all elements in the upper left triangle in the sub
matrices A and A' be identically zero, and all other elements in those 

m m 

submatrices be non zero. We now note certain symmetries of the YB rela
tions (2.6). 
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Consider the diagonal N2 X N2 matrices 

(SI)~ = ~ exp[a1(a+b)] 

(S)~ - ~ exp[aJq,'(a) + q,'(b))] , = 2,3, ... 

(2.9a) 

where the a, are arbitrary constants and the q,' arbitrary functions. It 

is easy to show that if R(N) satisfies the YB relations, so does SRS·1, 

where 

S = II S,. , (2.9b) 

The algorithm used to solve (2.6) consistl in solving for solutions that 
are invariant under transposition (Red = Red). More general solutions are ab 
then obtained by using the transformation (2.9). For the N-component 
model, only N-l of the S,'s, including SI' are effective; they introduce 

N-l asymmetry parameters. See [12] for example. 

Let us use 
[YB] = (r,s,t,a,b,c) (2.10) 

to denote the set of 6 indices in (2.6) that s~fies a particular YB 
relation. Consider the matrix element (R(N»ab and the following 

transformations 

"charge conjugation" (a,b,c,d) ~ (N-a+l,N-b+l,N-c+l,N-d+l) 

"parity change" (a,b,c,d) ~ (b,a,d,c) (2.11) 

"time reversal" (a,b,c,d) ~ (c,d,a,b) 

The set of YB relations are invariant under a CP transformation 

(a,p,},,).) ~ (N-p+l,N-a+l,N-).+I,N-}'+I) (2.12) 

To every YB equation there is a corresponding CP conjugate 

[YB] = (r,s,t,a,b,c) ~ [YB]cp 

(N-t+ I,N-s+ I,N-r+ I,N-c+ I,N-b+ I,N-a+ 1) (2.13) 

Under a CP transformation 

CP 
A ~A' 
m~ m 

(2.14) 

This CP symmetry will manifest itself in the solutions of (2.6). 

We have solved (2.6) for N = 2,3,4,5 and 6; throughout we normalize 
to Al = 1. Under the constraints described above, there exists two families 

of solutions. These will be referred to as the maximally symmetric (MS) 
and the non-maximally symmetric (NMS) families. We now describe some of 
their properties: 
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(a) A and A' are symmetric under a T transformation; 
m m 

(b) Denote the submatrices of the MS and NMS families by X (t) and 
m 

A (t;O) respectively. NMS solutions depend on N only through the 
p;ameter 0); for N=3,4,S and 6 and arbitrary values of t, (1)=(1);1 where 

(l)N=e21CiIN• The MS and NMS solutions differ in their CP properties. Under 

CP transformation 

X (t) ~ X, (t) = X (t) 
m m m 

(MS) (2.ISa) 

for the MS solutions, and 

(NMS) (2.1Sb) 

for the NMS solutions. It is easy to show that in both cases (trivially 
in (2.1Sa» the CP transformation is unipotent. Note that (2.1Sb) imposes 
that AN(t; (I) be CP invariant. The NMS solutions satisfy the following 

relations (tr ;;;; trace) 

(2.1Sc) 

and therefore 

tr(R(N» = N tr(AN) ; (2.1Sd) 

where [X] is the largest integer not greater than X. The MS solutions do 
not satisfy (2.1Sc) and (2.1Sd). 

(e) The two families of solutions are related by (see Appendix A) 

(2.16) 

The submatrices for N = 2,3,4,S and 6 are 

m = 2, ... ,N 

and 

a2 = [ ~ Xo] 

a3 = [ : 1 

(Y X ill XO,I ] 1 0,1 
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0 

0 0 
a4 = 

0 1 YIXI 

1 (Y X )112 
2 0,2 

X (Y X )112 
1 2 0,2 X O,I,2 ] 

(2.17) 
0 

0 0 

as = 0 0 1 

0 1 (Y X )"2 
1,2 1,2 

Y X 
2 1,2 

1 112 (y-Iy X )112 X (Y X )/2 X ] (Y3X 03) 
1 2,3 0,1,2,3 1,2 3 0,3 0,1,2,3 

o 
o 0 

o o o 
o 0 1 Y2X 2 

o 1 (Y X )/2 X (Y X )/2 Y X 
1,3 1,3 2 2, 3 1,2 3 1,2,3 

1 (Y X )112 (y-Iy X )112 X (Y - Iy X )/2 ZI Z2 
40,4 I 3,40,1,3,4 2 1 3,40,1,3,4 

where 

ZI = X (Y X ) 112 
1,2,3 4 0,4 

Z = X 
2 0,1,2,3,4 

X = XX 
s,t... s t 

Y YY .... 
s,t... s t 

for the NMS solutions we have that 

c = co (m-i)(m-j) 
ij 

(J.. = (2m-i-j)/2 
1J 

X = 1 - co't , 

and for the MS solutions 
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c .. = 1 
lJ 

a.. = [(2m-i-j)(N-m + 1) + (m-i)(m-i-l) + (m-j)(m-j-l)]/2 
lJ 

(MS family) 

(2.19) 

In Appendix A the NMS solutions are given explicitly up to N=5. For the 
MS solutions, R(N) satisfy the following reduction formula 

N P N 1 
II (~ +(-)"t ') == ~N - [1' ,(t) ~N-. = 0; p. == 2(2N-s)(s-l) 

• = 1 ,=1 

(2.20) 

For the NMS family the reduction formula is 

NaN 
II (R +(_)8 OJ • t'-I) == RN - [f.(t)RN-. = 0; as == ! (s-I)(s-2) 

s = 1 s =1 

(2.21) 

from which the recursion relation for generating the set of functions f 
s 

for N from the set for N-I can be derived, provided OJ is treated as a free 
parameter (but not a root of 1): 

(2.22) 

The pattern of the reduction formulas and the algorithm used to obtain the 
MS and NMS representations lead us to suspect that, although (2.16), 
(2.17), (2.20) and (2.21) have been established only up to N=6 they may be 
generally true for all N. 

The existence of the NMS family of braid group representation raises 
many interesting questions. First the MS family of braid group represen
tations has been shown to be associated to a family of link polynomials; 
the N =2 case being the Jones polynomial. Is there also a family of link 
polynomials associated with the NMS family? By letting the spectral para
meter of a family of N-state vertex model tend to infinity, Akutsu and 
Wadati obtained the MS family of braid group representations. Is there a 
family of statistical models whose limit would give us the NMS family? 
Finally, it is well known that the MS family can be derived from the quan
tized universal enveloping algebra of SL(2,C). Is there a quantum group 
corresponding to the NMS family? 

Akutsu and Wadati [1,2] obtained the MS family (up to N=4) of R
matrices from a series of vertex models which included the 6-vertex model 
of Lieb and Wu and the 19-vertex model by Zamolodchikov and Fateev; the 
procedure consisted in letting the spectral parameters tend to infinity. 
It is easily verified that the N=2 case of the NMS family can be obtained 
from the free fermion model of Fan and Wu [20]; the cases N> 2 remain an 
open question. The relation of the Alexander-Conway polynomial with the 
N=2 case of the NMS family has been discussed by Lee and Couture [16] and 
Kauffman [21]. See the contribution by H.C. Lee in these proceedings for 
a detailed discussion on the quantum group structure associated to the NMS 
family of solutions. 
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APPENDIX A 

In this appendix we give the NMS solutions for N = 2, 3, 4 and 5 
explicitly. In all cases 

A = I 
1 

N=2 

A' = -t 
1 

N=3 

A' 
1 

N=4 

A' = we 
1 

o 

wt 

wt 

A' 
2 

i w(tX )112 
0,1 

o 0 

o 

N=5 

580 

wt 

t(Y X )112 
2 0,2 

(tY X )112 X ] 
1 0,1 01 

A' 
3 

I-t ] 

-tX ] 
1 

o 

[ :'t' 

wtY I Xl 

e 
_w3(w3ey X )112 

I 1,2 

X (t Y X )112 
1 2 0,2 

X ] 
0,1,2 

(A.I) 

(A.2) 

(A.3) 

(A.4) 



0 

0 0 
A4 = 

0 oit 312 (J)t Y I XI 

e12 t(Y X )112 
2 0.2 

X (t Y X )112 
I 2 0.2 

X ] 
0.1.2 

0 

0 0 
A' = 4 (J)t"2 2 2 

0 

0 

A, = 0 

0 

t 2 

with 

and 

where 

0 - (J) t YIX2 

(J)4t 'l2 -(J)e(y X )112 
2 1.3 

(J) 3 X (t 3y X )112 
2 2 1.3 

-tX ] 
1.2.3 

0 

0 (J)4 t 2 

(J)3 t 2 (J)2 t 3 1 2 (Y X )112 
1.2 1.2 

(ey X il2 
3 0.3 

t (y- I Y X il2 
1 2 • 3 O. 1.2.3 

X - XX .... 
s.t.... s t 

Y = YY .... 
&,t,.u s t 

(J) 

~ k Y = \ (J) 
~ k~O 

Y2XI.2(J)t 

X (tY X ) 112 
1.2 3 0.3 

X ] 
0.1.2.3 
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Link Polynomials and Solvable Models 

Abstract 

Tetsuo Deguchi 

Institute of Physics, College of Arts and Sciences, 1 

University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan 

Through a general method we construct link polynomials from exactly solvable models in 

statistical mechanics. Various examples are explicitly shown. From the crossing symmetry 

we derive link polynomials with the graphical calculation. By use of transformations we 

obtain different link polynomials from a solvable model. 

1 Introduction 

The Yang-Baxter relation is a sufficient condition for the solvability of models in statistical 

mechanics and field theories such as I-dimensional quantum spin chains, 2-dimensionallattice 

systems, many body systems in (1 + 1 )-dimensions, etc .. [1,2,3,4,5,6,7] For various models this 

relation is written in terms of the operators Xi(U) as [1,3,13,14], 

Xi(U)Xi+1(U + V)Xi(V) ::: Xi+1(V)Xi(U + V)Xi+l(U), 

Xi(U)Xj{V) ::: Xj(V)Xi(U), Ii - il ~ 2. 

1 Address after April 1, 1990: Department of Physics, Faculty of Science, 

University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan. 

Physics. Geometry. and Top%llY 
Edited by H. C. Lee 
Plenum Press. New York. 1990 

(1) 
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The Yang-Baxter relation in this form has an advantage that we can easily see connection 

of solvable models to the braid group. 

Recently, the Yang-Baxter relation has been found to be a key to several fields in math

ematical physics. Various link polynomials [8,9,10,11,12] and their extensions are obtained 

from exactly solvable models through a general method. [13,14,15,17,18,19,20,21,23,24,25,26, 

27] The purpose of this paper is to show a general theory for construction of link polynomials 

from exactly solvable models in statistical mechanics. 

The outline of this paper is given in the following. In §2, vertex models, IRF models and 

factorized S-matrices are introduced. In §3, the braid group and the mothod for construction 

of the representations are explained. In §4, link polynomials are constructed. The crossing 

symmetry is used for the graphical calculation of the link polynomials. In §5, some examples 

are shown. In §6, transformations of solvable models are explained. In §7 we give concluding 

remarks. 

2 Exactly solvable models 

2.1 Solvable models in statistical mechanics 

Let us explain solvable models in two-dimensional statistical mechanics. [3,24] There are two 

types of solvable models, vertex models and IRF models. (Fig.1) Let us first consider vertex 

(a) 

a 

Fig. 1 (a) vertex configuration (scattering process) {i,j, k,l}. 
(b) IRF configuration {a, b, c, d}. 

models. The Boltzmann weight (statistical weight) w( i,j, k, lj u) of a vertex model defined 

is for a configuration {i,j, k,l} round a vertex. Here the parameter u is called spectral 

parameter which controls the anisotropy (and strength) of the interactions for the model. 

The Yang-Baxter relation is a sufficient condition for the commutativity of the transfer 

matrices of the model. In this sense it gives the solvability of the model. There are various 

methods to calculate physical quantities (free energy, one-point function, etc.) for the solvable 
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models, such as Bethe ansatz method, corner transfer method, inversion method, etc .. [3,28] 

Models whose Boltzmann weights (or matrix elements) satisfy the Yang-Baxter relation are 

called to be solvable. For vertex models the Yang-Baxter relation is given by 

L web, c, q, r; u)w(a, k,p, c; u + v)w(i,j, a, bj v) 
abc 

= L w(a,b,p,qjv)w(i,c,a,rju+v)w(j,k,b,Cju). 
abc 

(2) 

Letus consider IRF models. The Boltzmann weight of an IRF model w(a, b, c, dj u) is 

defined on a configuration {a, b, c, d} round a face (Fig.l). 

IRF models have constraints on the configurations. The symbol b ~ a denotes that the 

"spin" b is admissible to the "spin" a under the constraint of the model. If the conditions 

b ~ a, a ~ d, b ~ c and c ~ d are all satisfied, then the configuration {a, b, c, d} in Fig.l is 

called to be allowed. Th.e Boltzmann weights for not-allowed configurations are set to be o. 
For IRF models the Yang-Baxter relation is written as 

L web, d, c, aj u)w(d, e, I, Cj u + v)w(c, I, g, a; v) 
c 

L wed, e, c, b; v)w(b, c, g, aj u + v)w(c, e, I, gj u) (3) 
c 

The IRF configuration a, b, c, d in Fig.l corresponds to the vertex configuration in Fig.l by 

i = a - d, j = b - a, k = b - c and f = c - d. vVe refer to this correspondence as Wu-Kadanoff

Wegner transformation [34,18]. In general, we can transform any (unrestricted) IRF model 

into a vertex model by taking the Wu-Kadanoff-Wegner transformation and taking a limit 

[18] which brings "the base point" Wo of the IRF spin states into infinity:wo -t 00. 

2.2 Factorized S-matrices 

Let us introduce factorized S-matrices. We write the amplitude of the scattring process: 

i -t k, j -t f as S;1(u) (Fig.l), where u is the rapidity difference. In general, the "charge" 

variables i, j, k and f of S;~( u) take vector values (weight vectors). The factorized S-matrices 

represent the elastic scattering of particles where only the exchanges of momenta and the 

phase shifts occur. The rapidity difference of the scattering particles can be depicted by the 

angle in the diagram. It is known that factorized S-matrices are mathematically equivalent 

to corresponding solvable vertex models. [29] 

When sj~(u) is non-zero only for the case i+ j = k+f, we say that the model has "charge 

conservation" property. [13,14,23,24] 
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The Yang-Baxter relation for the S-matrices reads as 

LS~(U)S::(U + V)S;b(V) = LS::(v)S~(u + v)st~(u). (4) 
IJbc IJbc 

This relation is often referred to as the factorization equation. [1,6,5,7] 

2.3 Basic relations 

The Boltzmann weights for most of solvable models satisfy the following basic relations in 

addition to the Yang-Baxter relation. [13,14,18,19,23,24] In this subsection we write the 

relations in terms of the factorized S-matrices. 

1) standard initial condition 

(5) 

2) inversion relation (unitarity condition) 

'E s;t(u)S;':..( -u) = p(u)p( -U)OiiOjk, (6) 
mp 

where p(u) is a model-dependent function. 

3) second inversion relation (second unitarity condition) 

'"' im( ) kp ( ) ( r(m)r(p) )1/2 () ( ) 
{;;;, Spi ,\ - U Smj ,\ + U· r(i)r(j)r(k)r(i) = pup -u OijOkl' (7) 

We call the parameter ,\ crossing parameter (crossing point) and {rei)} crossing multipliers. 

4) crossing symmetry (Fig.2) 

I 

S~k( u) = Si!('\ _ u) (r(i)r(i») i , 
Ji k. r(j)r(k) (8) 

Here, we have used the notation J for the "antiparticle" of j. We assume that r(J) = 

IXk 
i J _ 

i I 
= (r(i)r(I»)1/2 ~ 

. r(j)r(k) j~k 

Fig. 2 Crossing symmetry. 

1/r(j). Note that the second inversion relation and the crossing symmetry define the crossing 

multipliers. 
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The Boltzmann weights for most of IRF models satisfy the basic relations corresponding 

to (5)-(8). For example, the crossing symmetry is 

( tP(a)tP(c)) 1/2 
w(a,b,c,d;u) = w(b,c,d,a;A - u) .,p(b).,p(d) , (9) 

where {.,p(l)} are the crossing multipliers for the IRF model. Crossing multipliers {.,p(l)} for 

an IRF model are related to those for the corresponding vertex model by r2 (j) = tP(b)/tP(a), 

when j = b - a and b - a. 

The above relations have the following physical meanings. [13,14,18,19,24] The standard 

initial condition indicates that there is no scattering between two particles with zero relative 

velocity. The crossing symmetry is a relation between s-channel and t-channel scatterings. 

For the 2-dimensional lattice systems the symmetry describes the invariance of the system 

under 90 degree rotation. Note that from the standard initial condition and the crossing 

symmetry, the inversion relation and the second inversion relation are derived. We shall 

see the basic relations and the Yang-Baxter relation are related to the local moves on link 

diagrams, known as the Reidemeister moves in knot theory. 

2.4 Yang-Baxter operator 

In order to see the connection of exactly solvable models to the braid group we introduce 

Yang-Baxter operator Xi(U). [13,14,18,23,24] The operator is, in statistical mechanics, a 

unit constituent of the diagonal-to-diagonal transfer matrix. [3] For factorized S-matrices we 

define Yang-Baxter operator by 

Xi(U) = L Sd:(U)f1) ® ... ® e~i2 ® e~+I) 
"bed 

®I(i+2) ® ... ® fn}. (10) 

Here J<i)denotes the identity matrix and eab a matrix such that (eab)jk = 8ja8kb' The Yang

Baxter operators{Xi(u)} satisfy the following relations (Yang-Baxter algebra), 

Xi(U)Xi+I(U + V)Xi(V) = Xi+I(V)X.(u + v)X'+I(u), 

X.(u)Xj(v) = Xj(V)Xi(U), Ii - jl ~ 2. 

(11) 

(12) 

In terms of the Yang-Baxter operators, the Yang-Baxter relation for vertex models and IRF 

models is written in the same form. 

3 Braid group 

3.1 Braids and closed braids 

We introduce braids and the braid group. [30] The braid group Bn is defined by a set of 

generators, bI, ... , bn-I w.hich satisfy 
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Ii - jl ~ 2. (13) 

It is known that any oriented link can be expressed by a closed braid. The equivalent 

braids expressing the same link are mutually transformed by a finite sequence of two types 

of operations, Markov moves I and II. The Markov trace iP(·) is a linear functional on the 

representation of the braid group which have the following properties (the Markov proper

ties ): 

I·iP(AB) iP(BA), A,B€B n, (14) 

II. iP(Abn) TiP(A), 

iP(Ab;;l) = fiP(A), 

A€B n, bn€Bn+l, (15) 

where 

T = iP(bi), f = iP(bil), for all i. (16) 

From the Markov trace we obtain a link polynomial 0'(.) as [13,14,23,24,25] 

.. -I f 1 (A) 
O'(A) = (Tfr-2 (-»" iP(A),A€B n 

T 
(17) 

Here e(A) is the exponent sum of b/s in the braid A, which is equivalent to the writhe of the 

link diagram. For instance, if A = btb2"2b3bI1, then e(A) = 4 - 2 + 1 - 1 = 2 . 

3.2 Construction of the braid operator 

The braid operator G( + );, the inverse operator G( -)i and the identity I are given by [13,14] 

G(±)i 

I 

lim Xi(±U)/p(±u), 
"-00 
Xi(O). 

(18) 

(19) 

The limit U -+ 00 (more precisely, an infinite limit in a certain direction in the complex 

u-plane) requires that the Boltzmann weights be parametrized by hyperbolic (trigonometric) 

functions. Hereafter we write the matrix elements of the braid operator as 

(20) 

Then we can express the braid operator (18) constructed from the Yang-Baxter operator as 

It is sometimes convenient to write the matrix elements of the braid operator 

(22) 

where 0b is the Kronecker delta. We can also construct braid operators for IRF models by 

the formula (18). [18,20,22,23,24,25] 
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4 Construction of link polynomials 

4.1 Construction of the Markov trace 

We shall obtain link polynomials by constructing the Markov trace on the representations of 

the braid group derived from the solvable models. The Markov trace takes the follwing form 

[13,14,23,24,25] 

¢1(A) = Tr(H(n)A) A B 
Tr(H(n))' € n, 

(23) 

For the models with the crossing symmetry (and the second inversion relation), r(p) is nothing 

but the crossing multiplier of the model. We present sufficient conditions for the Markov 

properties explicitly. We can show that the trace ¢1(.) defined in (23) is the Markov trace by 

proving for the Markov property I the "charge conservation" property and for the Markov 

property II the following conditions: 

(independent of a). (24) 

The T-factors are related to x(±) as fIT = X( - )Ix( +). 

We can prove the extended Markov property, [18,20,23,24,25] which is an extension of 

the Markov property with finite spectral parameter. 

"LX:k(u)h(b) = H(u;1'])p(u) ( independent of a), 
b 

where the function H( u; 1']) is called characteristic function. 

For IRF models we introduce a "constrained trace" Tr(A) 

[18,20,23,24,25]: 

(io : fixed) 

where the symbol L;- represents the summataion over admissible 

(25) 

(26) 

multi-indices i. : f.+! ~ l.for i = 0, ... , n - 1 with fa being fixed. Then the Markov trace 

¢1(.) is written as 
A _ Tr(A) 

¢1( ) - Tr(l(n))' 

where len) is the "identity" operator for n strings. 

We can prove the extended Markov property also for IRF models. [18,20,23,24,25] 

4.2 Graphical calculation 

(27) 

The crossing symmetry is significant in algebraic and graphical aspects of the knot theory. 

For solvable (vertex and IRF) models with the crossing symmetry, the Yang-Baxter operator 
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becomes the Temperley-Lieb operator at the point u :::: A. [19] In fact, setting 

E;:::: X;(A), (28) 

we find that the operators {E;} satisfy the following relations [31] 

E;E;:u E; :::: E;, 

E?-
1 

• :::: qiE;, 

E;Ej :::: EjE;, Ii -;1 ~ 2, (29) 

where the quantity ql/2is related to the crossing multipliers rea) (or 1jI(i» by [13,14,18,19] 

!. Lr2(j), q2 :::: for S-matrix (vertex model), (30) 
j 

:::: 
L 1jI(b) 
b-IJ 1jI(a)' 

for IRF model, (31) 

where in (31) the summation is over all states b allowable to a. The relations (29) are the 

defining relations of the Temperley-Lieb algebra. 

Fig. 3 Scattering with u = A corresponds to annihilation
creation process. 

Let us consider the graphical meaning of the relations (29). From the crossing symmetry 

and the standard initial condition we have (Fig.3) [19,23] 

:::: (a)r(c»ts~(O) 
r(b)r(d) be 

:::: r(a)6(a,b)· r(c)6(c,d), (32) 

where 6(a,c) :::: 6ac is the Kronecker delta. We can regard the elements r(c) 6(c,d) and 

rea) 6(a,b) as the weights for the pair-annihilation diagram and the pair-creation diagram, 

respectively(FigA). Then, the Yang-Baxter operator at u :::: A is depicted as the monoid 
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diagram, by which the Temperley-Lieb algebra is explained. This interpretation is consistent 

with a fact that the energy at the point A is related to the pair-creation energy. 

a b b 

~ ~ ~~ c d b 
(1) (2) (1) (2) 

a /! ax! 
CXd c ""'d ~~ /a a,\ 

(3) (4) (3) (4) 

Fig. 4 Elements of link diagram. 
(1) pair-annihilation diagram: r(c)5c,d; (.,p(a)/'rP(b»lf2. 
(2) pair-creation diagram: r(a)5".b; (.,p(C)/'rP(b»1/2. 
(3) braid diagram with €= -1: G~~(+); G(a,b,c,d;+). 
(4) braid diagram with E = 1: Gj( -); G( a, b, c, d; -). 

For IRF models, the weights {'Ij;(a)f1j;(b)p/2 and {7f;(C)f1j;(b)}1/2 correspond to the pair

annihilation and pair-creation diagrams, respectively (FigA). 

x X 
c = 1 c =-1 

Fig. 5 Sign €( C). 

We can formulate link polynomials with the crossing symmetry directly on link diagrams. 

Link diagram t is a 2-dimensional projection of a link L. The writhe wet) is the sum of 

signs for all crossings Ci in the link diagram (Fig.S): 

wet) = I:C;€(Ci), (33) 

We calculate statistical sum Tr(t) on the diagram t by the rules given in FigA. The link 

polynomial for the link L is calculated as 

(L) = -wet) Tr(t) 
ex C Tr(Ko) , (34) 
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where Ko is the trivial knot diagram (a loop) and the constant c is defined by a relation 

GiEi = CEi, (35) 

or by 
1 

C = (~~~~r (36) 

It is easy to see that a(L) is invariant under the Reidemeister moves (Fig.6), and therefore 

a(L) is a topological invariant of the link L. 

I ~ 
II x ) 

Fig. 6 Reidemeister moves. 

Thus we have shown that the link polynomials constructed from solvable models with the 

crossing symmetry can be graphically formulated. The monoid diagram and the weights 

for the creation and annihilation diagrams were used by L.R. Kauffman for the Bracket 

polynomial which gives a graphical calculation of the Jones polynomial. [32] The graphical 

calculation is named "state model". We have remarks. The graphical formulation applied 

to closed braids yields the Markov trace (Fig.7). For the link polynomials with the cross

ing symmetry, the formulation based on the Markov trace is equivalent to the graphical 

formulation. This viewpoint is consistent with the braid-plat correspondence [33]. 

The link diagrams are considered as the Feynman diagrams for the high energy processes 

of charged particles and the link polynomials as the scattering amplitudes. At the lowest 

point in the diagram there occurs a pair creation and at the highest point a pair annihila-, 
tion. Further, if we regard the link diagrams as distorted 2-dimensional lattices, the link 

polynomials are considered as the partition functions. 
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To conclude this section, we put emphasis on the fact that the crossing symmetry has the 

algebraic and graphical meanings. Algebraically, the symmetry leads to the Temperley-Lieb 

algebra (and the braid-monoid algebra). 

Fig. 7 Equivalence of the Markov trace and the graphical 
calculation. 

Graphically, the pair-creation and pair-annihilation diagrams are introduced through the 

crossing symmetry. 

5 Various Examples 

5.1 N-state vertex model 

From the N-state vertex models a hierarchy of link polynomials are obtained by the general 

method presented in §3 and §4. [13,14] The model corresponds to the factorized S-matrices 

with spin 5 particles, where N = 25 + 1. For the case N = 3, there are 19 vertex config

urations. [35] The Boltzmann weights of the N -state vertex model can be systematically 

calculated by using recursion relations. [34] Therefore, an algorithm for construction of the 

hierarchy of link polynomials has been established. [13,14] 

From the N-state vertex model (asymmetrized by the symmetry breaking transformation) 

we get the braid operator which satisfies an N-th order relation: [13,14] 

(37) 

where for j = 1,2,···,N 

(38) 

We call a relation for G; such as the relation (37) reduction relation of the braid operator. 

The crossing multiplier for the asymmetrized N-state vertex model is [13,14] 

Ie= -5,-5+1,"',5, (39) 
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where 

s = (N - 1)/2. (40) 

The extended Markov property [18,24] is satisfied with the characteristic function given as 

[23,24] 

The constants T and 'f are 

H(UjA) = sinh(NA-u). 
sinh(>. - u) 

T = 1/(1 + t + ... + tN-I), 

'f = t N- I /(l + t + '" + tN-I). 

(41) 

(42) 

(43) 

It is remarkable that there exists an infinite sequence of link polynomials corresponding 

to the N-state vertex models (N = 2,3,4,5",,), [13,14,24] The N = 2 case corresponds 

to the Jones polynomial. [9] In the N ~ 3 cases we have new link polynomials. From the 

reduction relation, we obtain the skein relations (the Alexander-Conway relations) for the 

link polynomials: 

(1 - t)t!a(Lo) + t2a(L_), (N = 2) ( 44) 

t(1 - t2 + t3)a(L+) + (t4 - t S + t7 )a(Lo) 

-t8a(L), (N = 3) (45) 

t 3/ 2(1 _ t 3 + t S _ t 6 )a(L2+) + t6(1 _ t2 + t3 + t S _ t6 + t8)a(L+) 

(N = 4). (46) 

In (44), by L+, Lo and L_ we have denoted links which have the configuration of b;, b? and 

bi l , at an intersection. Similarly, L2+, L+, Lo and L_ in (45) and L3+, L2+, L+, Lo and 

L_ in (46) should be understood. 

We can also present a general expression for the braid matrix derived from the N-state 

vertex model. The symbol (!(N,c) denotes the charge submatrix acting in the sector of the 

total charge e (e = i + j = k + e). 

I 

«(!(N,c»)mn = (_l)m+n (Qn_l,N_lcl_m(tlcl)Qm_l,N_lcl_n(tlcl)) 2 , 

for m,n = 1,···,N -lei, (47) 

where 

Q () (t;m)(tzjm) n n 2 

mn Z = ( ) ( Z t , tjm - n (t;n) tz;n) 
(48) 

(Zj n) = (1 - z)(l - zt)··· (1 - ztn - l ) for n ~ 1, 

= 1 for n = 0, 

00 for n ~ -1. (49) 

The general expression of the braid matrix was obtained in the following way. We first 

obtained recursively the general expression of the regular representation matrices [17] of 
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the composite braid operator in the composite string representation (the operator is the 

composite operator constructed from the generators of the Hecke algebra.). By comparing 

the regular representation matrices with the braid matrices derived from the (asymmetrized) 

N -state vertex model, we found the expression of the matrix elements. We can also check 

(43) from the knowledge of the composite Yang-Baxter operator. 

5.2 Graph state IRF model 

We can construct solvable IRF models corresponding to arbitrary graphs in any dimensions. 

[36,18] Let us express the constraint of the model by a graph. In the graph each point 

represents the spin state. When a spin c is admissible to d then the point for c is connected 

to the point for d. For ADE type graphs the models are called ADE models. [37] There also 

exist solvable models with elliptic parametrization for extended Dynkin diagrams [36,38]. 

Let us construct the graph state IRF models. [18] We solve the eigenvalue equation for 

the graph 

L ¢(b) = A¢(a), (50) 
b-a 

where the summation is over all spin state b admissible to a. For example square lattice 

graph we have 

¢(a) = sin(a· n + wo), (51) 

where a= (al,a2) and n = (nbn2)' Constructing the Temperley-Lieb operator 

(52) 

we have the Yang-Baxter operartor 

sinh()' - u) ( sinh u ) 
Xi(U) = sinh()') 1+ sinh()' _ u) Ei . (53) 

From the models we have braid operator by taking the limit u -+ 00 and the Markov trace 

on the braid group representation by using the crossing multipliers. The link polynomial 

satifies the second degree skein relation. 

We can consider vertex models corresponding to the graph state IRF models under the 

Wu-K ad an off-Wegner transformation and the base-point-infinity limit. [27] We call them 

vertex models in TL class. [18,19,27] From these vertex and IRF models we have multi

variable braid matrices.[27] 

5.3 ABeD IRF models 

The IRF model corresponding to affine Lie algebra A~~l (B!,!), C!,!), D!,!» is called A~~l 
(B!,!), C!,!), D!,!» model. [39] The crossing parameter). and the sign factor 17 are defined as 

). = mw/2, 17 = 1 for A(l) 
m-l' (54) 
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>. = (2m -1)w/2, 0- = 1 for B~), 

>. = (m + l)w, 0- = -1 for cg), 
() (1) 
m - 1 W, 0- = 1 for DTn , 

where w is a parameter. The reduction relations are 

with 

(Gi - 1)(Gi + ,.2) 

(Gi -1)(Gi - j3)(Gi + ,.2) 

(1) o for ATn- I , 

= 0 for B~), c~) and D~), 

-iw r A(I) B(I) C(I) d D(l) e lor m-l' m, m an m , 

j3 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

The extended Markov property is proved and the characteristic functions are calculated as 

H(u) 

H(u) = 

sin(mw - u) f A(l) 
sinew _ u) or Tn-I' 

0- sin(2). - u) sin(o-w + >. - u) 
sine>. - u)sin(w - u) 

for B~), cg) and D~), 

(62) 

(63) 

(The explicit forms of the crossing multipliers are given in [17]). Using the reduction relations 

and the Markov traces, we obtain the (generalized) skein relations: 

where 

a(L2+) = (1 - t + j3)e-i(2Hw(u-I». a(L+) 

+(t + j3t - j3)e-2i(2Hw(U-l)) • a(Lo) 

_tj3e-3i(2Hw(u-I)) . a(L_), 

for B~), cg) and D~)' 

t=e-2iw • 

(64) 

(65) 

(66) 

For A~~l model, the Alexander polynomail is obtained by the limit m -- 0, while m = 2 

corresponds to the Jones polynomial. 

Link polynomials thus obtained are one-variable invariants for each fixed m. It is noted 

that m is independent of t. We now have two variables t and m. The link polynomial 

constructed from A~~l model corresponds to the two-variable extension [10,11] of the Jones 

polynomial. The link polynomails from Bg), C~), D~) models correspond to the Kauffman 

polynomial [12]. We thus have explicit realizations of the Kauffman polynomial and the 

two-variable extension of the Jones polynomial (HOMFLY polynomial). The braid matrices 

constructed by Turaev [40,41] correspond to the vertex-model analog of the present braid 

matrices constructed from A~~I' B~), cg), D~) IRF models. From the IRF models we can 
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construct braid matrices and the Markov trace for the vertex models by the Wu-Kadanoff

Wegner transformation and the base-point-infinity limit. [18] For example, from A-type IRF 

models we derive the multi-state vertex models [42] related to SU(n). From the Markov trace 

[20] for the IRF model we have that [40] for the vertex model. 

6 Transformations of solvable models 

6.1 Transformations 

The solvable models with charge conservation condition are invariant under several transfor

mations. [34,24,27] We introduce symmetry breaking transformations (or gauge transforma

tions) [34] for factorized S-matrices (equivalently, for the Boltzmann weights of the vertex 

models ): 

'k -ik 
Sjl(U) -+ SjAu) ik CXij,kl( u )fJij,ki"Yij,kI8ij,klSjl (u), (67) 

CXij,kl( u) = exp[it· (k - r -l + J)u] (68) 

fJij,kl = exp[ii· (l- r - k + J)], (69) 

1ij,kl exp[w(k ·l- r· J)], (70) 

8ij,kl = exp[7rv'-lcJ + k) . €'], (71) 

where w is a free parameter, it and ii are arbitrary vectors, and t is a vector such that 

(J +k) ·tis an integerfor any weight vectors J and k. Using these transformations C, P and T 

invariances for the S-matrices can be broken. There are symmetry breaking transformations 

for IRF models corresponding to those for S-matrices. [18,23,24] 

The transformed matrix elements satisfy the crossing symmetry with 

r(k) = r(k)exp[-2k. p.]. (72) 

Under the transformations the standard initial condition and the first inversion relation are 

invariant. The second inversion relation holds for the transformed matrix elements with the 

crossing multipliers modified as (72). 

6.2 Deformation of solvable models 

We shall show that the symmetry breaking transformation changes algebraic structure of the 

Yang-Baxter operator. Let us take the 6-vertex model. We set fJ = 'Y = 8 = 1 and consider 

only the transformation CXij,kl(U) in the following discussion. We assume that the vector It 
is parallel to the weight vectors and write it simply as J.L. The Boltzmann weights of the 

6-vertex model are given by 

S-1/2 -1/2( ) _ sinh('\ - u) 
-1/2 -1/2 U - sinh'\ , 
-1/2 1/2( ) 

Sl/2 -1/2 U = 1, 

= Sl/2 1/2 () _ sinh u 
-1/2 -1/2 U - sinh'\ . 

(73) 

(74) 

(75) 
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They satisfy the standard initial condition and have the crossing symmetry with the trivial 

crossing multiplier: r(j) = 1 for j = ±1/2, We see that the Yang-Ba.xter operator of the 

6-vertex model satisfies a cubic relation: 

( X( ) _ sinh("\ - u) 1) 
• u sinh..\ 

( sinh u ) 
Xi(U) - (1 - -.-)1 

smh..\ 

( sinh U ) 
x Xi(U)-(1+ sinh ..\)1 =0. (76) 

If we apply the symmetry breaking transformation O'ij,kl( u) with I' = ±1/2 to the 6-vertex 

model, then we have an "asymmetrized" 6-vertex model with the nontrivial crossing multi

pliers: 

r(k) = exp(-k"\), 

r(k) = exp(k..\), 

1 1 
k = ±-, for I' = -, 

2 2 
1 1 

k = ±"2' for I' = -"2' 

The transformed Yang-Ba.xter operator Xi(U) satisfies a quadratic relation: 

(Xi(U) - Sin!~~ ~ u) 1) (Xi(U) _ sin:i~~: u) 1) = o. 

Further, we can decompose the Yang-Baxter operator Xi ( u) as 

Xi(U) = p(u)(1 + f(u)Ei), 

where 

p(U) = 
sinh(..\ - u) 

sinh ..\ 

feu) 
sinh ..\ 

= sinh("\ - u)' 

(77) 

(78) 

(79) 

(80) 

(81) 

and Ei is the Temperley-Lieb operator. For the symmetry breaking transformation O'ij,kl(U) 

with arbitrary 1', we find that the transformed Yang-Ba.xter operator Xi( u) satisfies a cubic 

relation. The Yang-Ba.xter operator satisfies a quadratic relation only when I' = ±1/2. 

By changing the value of the parameter 1', we get different representations of the braid 

group from the Yang-Ba.xter operator. Hereafter in this sub-section, we set 

t = exp(2"\). (82) 

The braid matrices are given in the following. (i) I' = ~ 

~(+)~ [~ 
0 0 

J I 
0 -ti 

I 
-ti 1 - t 

0 0 

(83) 

(ii) -~ < I' < ~ 

~(+)~ [~ 
0 0 

J I 
0 -ti 

-tr 0 

0 0 

(84) 
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(iii) Il = -~ 

~(+)~ (~ 
0 0 

~) 1 
1-t -t2 

-tt 0 
(85) 

0 0 

The braid matrices for the cases (i) and (iii) are equivalent if we interchange up-spin and 

down-spin. They have the Markov traces. It is remarked that they satisfy the defining 

relations of the Hecke algebra [9]: 

GiGj = GjGi, for Ii - jl ~ 2, 

G~ = (1 - t)G; + tI. 

The operator G; can be decomposed into the Temperley-Lieb operator as [9] 

G; = J -ttEi. 

In the case (ii) , the operator Gi satisfies a cubic relation: 

(Gi - J)(Gt - tI) = o. 

6.3 6-vertex model and link polynomials 

(86) 

(87) 

(88) 

By making use of the general method presented we shall construct the Markov trace for 

the braid group representations derived from the 6-vertex model. From the asymmetrized 

6-vertex model with Il = ±1/2, we obtain the Jones polynomial by using the transformed 

crossing multipliers in the trace. The Jones polynomial has a quadratic skein relation corre

sponding to the quadratic reduction relation. 

For the symmetric 6-vertex model with Il = 0, the crossing multiplier is equal to 1 and 

then the Markov trace is a trace on the braid matrix (the case (ii» with the trivial matrix 

just (H = J). We thus obtain a link polynomial with a cubic skein relation: 

(89) 

where Ln+ is the link which has n twist at a crossing point in the link diagram. This link 

polynomial is also obtained by soving directly the defining relation of the braid group with 

the assumption that the braid matrix does not satisfy the charge conservation condition. [43] 

The link polynomial (89) for a link with two strings is determined by the linking number 

of the link. Thus, from the 6-vertex model we 09tain two different link polynomials, the 

Jones polynomial and the link polynomial related to the linking number. [27] It is remarked 

there are many multi-variable link polynomials related to the linking number. [27] 

We have a comment. In the case of the symmetric 6-vertex model, the Markov trace is 

given by the ordinary trace: ~(A) = Tr(A). Therefore the partition function for the 6-vertex 

model on a lattice automatically becomes the Markov trace and also the link polynomial. 
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7 Concluding Remarks 

We have shown that various link polynomials are systematically constructed from exactly 

solvable models. 

The existence and properties of the link polynomials [13,14] constructed from the N

state vertex model [34] can be proved also by the construction of composite models (fusion 

method) in terms of the Temperley-Lieb algebra and the graphical formulation derived from 

the crossing symmetry. [19] Note that the combination of the crossing symmetry and the 

Temperley-Lieb algebra characterize the link polynomials. 

We can construct composite solvable models from the graph-state IRF models and vertex 

models in TL class. [18,19,27] From these composite models we obtain the link polynomials 

constructed from the N-state vertex models. [19,27] 

Due to the limited space we have omitted the discussion for construction of two-variable 

link invariants [16,17,23,24,25] which may be regarded as two-variable extension of the link 

polynomials constructed from A type composite vertex and IRF models. In the papers 

[16,17] an algorithm for calculation of the two-variable link invariants for any links has been 

established, and some examples have been given. 

Some class of braid matrices obtained from vertex models related to Lie algebras can be 

reconstructed by using the knowledge of q-analogue of universal enveloping algebra of the 

Lie algebra. [41,44] For example, the matrix elements of the braid operator obtained from 

the N-state vertex model are also calculated by using the knowledge of sU(2) [45]. 

Recently, there are some attempts to obtain braid matrices by solving directly the defining 

relation of the braid group. [43,46] Connection of these braid matrices to solvable models is 

an interesting problem. 

There are several problems in physics related to the braid group. [47,48,49,50,51] In

terestingly, solvable models and conformal field theories share many mathematically similar 

points in common. [52,53,54,55,56,57,58] Through the fusion rule, mathematical structures 

analogous to IRF models appear in conformal field theories. [58,59,60] It may be instructive 

to compare the viewpoints of field thoeries and statistical mechanics. 

It seems that there are many interesting problems concerning applications of link poly

nomials to physics, chemistry and biology. We hope that the knowledge exhibited in this 

paper will be helpfull for studying those applications of the link polynomials. 
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INTEGRABLE RESTRICTIONS OF QUANTUM SOLITON THEORY 

AND MINIMAL CONFORMAL SERIES 

Ancl.rl:! LeClair 

Newman Laboratory 
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ItMca, New York 14853, U.S.A. 

For special values of the sine-Gordon theory coupling, we restrict the Hilbert space of 

the theory in a way that preserves the integrability by using the underlying quantum group 

structure. We argue that the new theories renormalize to the c < 1 minimal conformal 

series. We discuss generalizations to affine Toda theories. 

1. Introduction 

Conformal symmetry in two-dimensional quantum field theory is generically a property 

of a massless theory, or of the renormalization group fixed point of a massive theory. The 

general principles of conformal symmetry are well understood [lJ, and for example, lead to 

a complete classification of unitary theories with central extension of the Virasoro algebra 

c:$ 1 [2J. 
A physically well motivated problem is to find a massive quantum field theory whose 

behavior at a renormalization group fixed point is described by a given conformal field 

theory. It is this problem we wish to address in the case of the minimal c < 1 series. Given 

a conformal field theory, there is no reason to believe that there exists a unique quantum 

field theory that flows to it. We therefore significantly limit the number of possibilities by 

requiring the field theory to be integrable. Complete integrability as it is usually defined 

in field theory requires an infinite number of commuting and conserved quantities. A 

conformal field theory is integrable in this sense. Loosely speaking, the theory can be 

solved exactly because there are as many constants of the motion as there are degrees of 

freedom. Further, we require that the theory be local and relativistically invariant. A well· 

known example occurs at c = 1/2, where the massive theory is a free Majorana fermion. 

Here, the integrability is trivial since the theory is free. Generalizations to the rest of the 

minimal series were until recently unknown. 
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There is good reason to expect that massive models that flow to the minimal series 

will possess novel features from the point of view of local quantum field theory. We will 

see some of these features in the course of this talk. The reason is that the minimal 

models have an interesting new superselection structure. By this we mean the structure 

of charge sectors and the intertwining fields between them. For a description of this, I 

refer you to J. Frohlich's lectures at this school[3]. In the context of conformal field theory, 

this is the structure of conformal blocks and chiral vertex operators [4]. The existence of 

novel superselection structures is a possibility in lower dimensional quantum field theory, 

and it should be stressed that conformal symmetry is not a requirement[3J[5]. Thus, we 

expect that the superselection structure of a minimal model will not be broken when the 

conformal invariance is broken by making it massive. As we wili see our construction is in 

this spirit, since it relies on techniques relevent for descriptions of the superselection rules 

of conformal field theory. For applications to particle theory, it is the manifesta.tion of the 

superselection rules on multiparticle asymptotic states that is of interest. 

Perhaps the most celebrated integrable field theory in the particle physics literature 

is the sine-Gordon (SG) model. It has the Minkowski space action 

(1.1) 

As we will see, in the deep ultraviolet this theory is a free boson with c = 1. We will argue 

that for 

f32/87r = p/(p + 1), (1.2) 

where p is an integer ~ 3, there exists a coupling-dependent restriction of the SG Hilbert 

space that preserves the integrability, and these new theories flow to 

6 
c = 1 - (p + l)p . (1.3) 

We will propose a novel type of exact S-matrix for the new theories that is a sort of con

finement of the original SG S-matrix [6]. Our method centers on the Yang-Baxter equation 

and its associated quantum group structure, and parallels recent results in conformal field 

theory [7][8][9][1O]and Chern-Simons theory [11][12]. 

The remainder of this lecture is organized as follows. In section 2, we will review 

some results from the SG model. In section 3 we will analyze the conformal structure and 

derive the relation between f32 and c. Section 4 will describe the relation to some classical 

lattice statistical mechanics models, from which we derived some inspiration. In section 5 

the exact method of Quantum Inverse Scattering (QISM) will be reviewed. The restricted 

sine-Gordon (RSG) model will be described in section 6. In section 7, the relation to the 

method of Zamolodchikov for perturbing a conformal model to obtain a massive integrable 

model will be studied. 
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2. Sine-Gordon Theory 

We summarize here some known exact results concerning the SG theory [13][14][15). 

The renormalization of the theory was studied by Coleman where he also showed that 

the theory is equivalent to the Massive Thirring Model (MTM). For 0 < f32/87T < 1, the 

coupling f32 is unrenormalized. All infinities can be removed by normal ordering the cos</> 

interaction, and absorbing them into the mass parameter m. The renormalized mass is 

(2.1) 

where r is a cuttoff. The spectrum consists of solitons and antisolitons of mass M. 

8m/,', where " is a loop correct'ed coupling: 

" = f32/(1 - f32/ 87T ). (2.2) 

The solitons are the Thirring fermions. There are also N soliton-antisoliton bound states 

of mass 

Mn = (16mh')sin(n,' /16), (2.3) 

n = 1,2,· . N, where N is the largest integer less that 87T /,'. The S-matrices of these 

particles were found by exploiting the topological U(I) symmetry, crossing symmetry, and 

unitarity. Sklyanin, Takhtajan, and Faddeev developed the QISM to solve the model in a 

way that preserves the integrability. 

3. Conformal Analysis 

From the form of the renormalized mass (2.1) , we see that mr goes to zero in the deep 

ultraviolet. This is a fixed point of the renormalization group equation for m r • Thus at 

this fixed point the cos</> interaction disappears, and we are left with a free boson. Define 

Euclidean coordinates z = (t + ix)/2, z = (t - ix)/2. For convenience rescale the SG field 

tjJ in (1.1) to tjJ = tjJ' f3 /..;47r so that the Euclidean propagator is 

</>'(z,z)</>'(w,w) "" loglz - w12 • (3.1) 

The traceless energy-momentum tensor at mr = 0 is then 

(3.2) 

(The z sector is identical). The central charge c is defined by the operator product expan

sion 

T(z )T( w) '" c/2(z - W)4. (3.3) 

Thus we recover the well-known result that the SG theory flows to c = 1 for all 0 < 
f32/87T < 1. 

607 



In [6] the following consistency argument was given for c as a function of (P for the 

restrict cd SG model. Expand cosq, in terms of exp(±i(1q,' /V4-i). Suppose that one of 

the operators exp(±i(1q,' /V4-i) has anomalous dimension (1,1) at the fixed point. Then 

m would be dimensionless, and the theory would not necessarily flow to c = 1, due to 

the presence of the remaining operator in the action. This anomalous dimension can be 

accomplished if at the fixed point Tu has an additional background charge term 

Tn = ~8zq,' 8zq,' - iV200 8!q,'. (3.4) 

The anomalous dimension d of an operator O( w) is defined by the operator product ex

pansion 

Tn(z)O(w),... -dO(w)/(z _w)2. (3.5) 

Take O( w) to be exp( i(1q,' / V4-i). (Taking instead exp( -i(1q,' / V4-i) is related to the fol

lowing by a Z2 symmetry.) Then 00 is fixed to be a solution of 

1 = (12/81r - 200(1/-rs;. (3.6) 

For T(z) of the form (3.4) , by (3.3) , 

c = 1- 240~, (3.7) 

where 00 is the function of (1 defined in (3.6) . Inserting the value (1.2) for the coupling 
(12, we get (1.3) . 

To summaxize, we have assumed that the RSG model has a background chaxge at 

the fixed point, and we have found a consistency condition for this charge as a function 

of the SG coupling (12. There axe two refinements of this argument. First, note that our 

consistency condition implies that exp( -i(1q,' /V4-i) disappears at the fixed point leaving 

a Liouville action 

(3.8) 

Liouville theory is known to have a background charge classically, i.e. there exists an 

improved traceless energy-momentum tensor for the action (3.8) , with background charge 
00 = -",f21r /(1. By taking into account normal ordering, the authors of (16) have computed 

the quantum corrections to the classical background chaxge. The result is given by the 

relation (3.6) . Secondly, in [17] renormalization group flows for the SG model with an 

explicit background charge term Rq, in the action, where R is the scalar curvature, were 
studied, and axe consistent with the above picture. 

Energy momentum tensors with the background chaxge term are familiar from the 

Feigin-Fuchs description of the minimal models [18]. The Feigin-Fuchs construction begins 

with the Hilbert space of a free massless boson and reaches the minimal model Hilbert 

space by removing the null vectors. This essential truncation of the Hilbert space can 

be formulated as a cohomology problem [19]. It is therefore clear that the restriction of 

the Hilbert space in the RSG model ( to be described in section 6) is analagous to the 

Feigin-Fuchs truncation, and must reduce to it in the massless limit. 

4. Classical Lattice Statistical Mechanics 

A classical lattice statistical mechanics model in two spacial and zero time dimensions 

consists of a set of defined Boltzman weights for a given configuration of degrees of freedom 
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on a two dimensional lattice. The degrees of freedom are spins or their generalizations. 

There is a well-known correspondence between classical statistical mechanics and quantum 

mechanics, where Boltzman's constant corresponds to Planck's, and partition functions 

become path integrals. In this way a statistical mechanics model may be related to a 1+1 

dimensional lattice Hamiltonian system. There are a class of statistical models that are 

exactly solvable. In the case of the 8-Vertex model, solved by Baxter, the corresponding 

Hamiltonian is the XYZ Heisenberg spin chain [20]. It has the Hamiltonian 

(4.1) 

where J",lI,Z are free parameters, q",lI,Z are Pauli matrices, and M is the number of lattice 

sites. 

There is a well established connection to sine-Gordon theory. Luther has shown that 

in the continuum limit the XYZ model becomes the massive Thirring model [21]. Using 

the relation between SG and MTM couplings, Luther has shown that 

(4.2) 

The 8-Vertex model at criticality is known to be e = 1, consistent with our discussion 

of the fixed point of SG. Andrews, Baxter, and Forrester (ABF) [22], discovered that for 

special values of the 8-Vertex parameters, the allowed configurations of spins could be 

truncated and the resulting model could still be solved exactly. Huse [23] in turn realized 

that the new models constitute the c < 1 minimal series at the critical point. See also [24]. 

We relate the special values of the 8-Vertex parameters to the SG coupling. In Baxter's 

parametrization 
J /J = _ cn(21])dn(21]) 
z" l-ksn2 (21])' 

(4.3) 

where en, dn, and sn are Jacobi elliptic functions [20] . The special values of I] are!] = 

I</(p + 1), where I< is a complete elliptic integral, and p is an integer::::: 3 [22) . The 

elliptic modulus of the above functions measures the distance from criticality, where k = 0 

is critical. In the continuum limit, k and the lattice spacing are taken to zero simultaneously 
while maintaining a finite mass. For this reason k = 0 is not necessarily the critical regime 

in the continuum. Taking this limit in (4.3) one finds the expected values of the SG 

coupling (1.2) . 

A wide generalization of the ABF result has been obtained by the Kyoto school [25)[26), 

and Pasquier [27)[28). The classification of models parallels the classification of simple Lie 

algebras. As we will see in the next section there is an analagous generalization of SG to 

affine Toda theories, where SG corresponds to SU(2). We will return to the affine Toda 

generalizations of the RSG model. 

Pasquier has described the truncation of the statistical models at criticality in terms 

of spccial propertics of quantum groups. It is this technique that we will use to restrict 
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the SG theory, to be described below. The reason the techniques at criticality in the 

statistical model are applicable to the off-critical continuum theory is that one takes k to 

zero in going to the continuum. In principle, one can use the identification of Luther to 

deduce the implications of the ABF restriction on the Bethe-ansatz states of MTM. We 

do not chose to pursue this line of work. Henceforth, we will be working directly in the 

continuum. 

5. QISM for Affine Toda Systems 

In this section we review some classic results on QISM as applied to affine Toda 

theories. For a review see [29][30J. The classical Toda theories are studied in [311132J. To 

motivate the discussion, recall how we diagonalize the Hamiltonian for a single free boson. 

The field is expanded in terms of Fourier components 

tjJ(x,t) = J dk [a(k)e- ikz + a*(k)eikz ] . (5.1) 

With the creation-annihilation operators a(k) and a*(k) one can construct a particle Fock 

space. The inverse scattering method of solving classical soliton equations is a general

ization of Fourier analysis for integrable non-linear equations of motion. The aim of the 

QISM is to find the analog of the creation-annihilation operators. 

The integrability of a classical soliton equation is most clearly revealed through its 

zero curvature representation and its relation to affine Kac-Moody algebras [33J. Let 9 be 

a Kac-Moody algebra, and {ei,/;,hiji = O,··,r} a Chevalley basis of generators of 9 , 
satisfying 

[hi,hjJ = 0, 

[hi,ejl = [(jiej, 

[ei, IiJ = Oijhi 

[hi, lil = -!(ji/j. 

(5.2) 

The generalized Cartan matrix [(ij is normalized to be 2 down the diagonal. To simplify 

the discussion, we consider only the case where 9 is untwisted, in which case r = rank(g). 

For zero central extension of 9 , there exists a representation of 9 with generators T .. ~n, 

where T" is a generator of the simple Lie algebra g, and ~ is a parameter (in integrable 

systems theory, A is called the spectral parameter). A representation of the Chevalley 

basis in terms of generators of the simple Lie algebra 9 is 

hi = Io:~) 12 o:(i) . H 

2 
ho =-lfW"'·H 

i = 1, .. ,r (5.3) 

where 0:(;) are simple roots, '" is the highest root, and Ea(i) ,Hi are Cartan-Weyl generators 

of g. The gradation of 9 is only meaningful up to automorphismB of g. The above gradation 

is called the homogeneous one. Another useful gradation is the principle gradation, where 
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the Chevalley basis is as above except that for i = 1, .. ,r, ei = )'.Ea(l), Ii = )..-IE_a(I). 

The relation between the two gradings for an element a Egis 

(5.4) 

where IT = )..t, t measures the length ofaroot: [t,Eal = length(cx)Ea, and h = length(1jJ)+l 

is the Coxeter number of g. 

For the generalized Toda theories, we define the gauge fields 

a+ + A+ = e-f>/2a+ef>/2 + m ef>/2 Ae-f>/2 

a_ + A_ = ef>/2a_e-f>/2 + m e-f>/2 Aef>/2, 

(5.5) 

where a± = a", ± at, c/J = :L~=l c/Jihi, and A = :L~=o ei, A = :L~=o f;. The field equations 

for the Toda fields c/Ji are then written as F+_ = [a+ + A+, a_ + A-l = o. These field 

equations follow from the action 

(5.6) 

The SG theory corresponds to 9 = su(2), and c/J -+ ic/J/2. 

That the Toda field equations have an infinite number of conserved currents follows 

from: i) There exists a gauge transformation w(a± + A±)w-l = a± + a± such that a± E 

Ker(AdA ). ii) K er(AdA ) is infinite dimensional and abelian. Since the zero-curvature 

condition is gauge invariant, this implies a+a_ - a_a+ = o. The infinity of conserved 

currents are generated by jl'(>') = el'f/af/()..). The dimensions of the conserved densities 

modulo the coxeter number of 9 are given by the exponents of fJ • 
In the quantum theory, a fundamental role is played by the monodromy matrix, which 

is a Wilson line of the gauge field: 

T{)") = 'Pexp (-i: A"dX) . (5.7) 

'P denotes path ordering, and the fields are taken to be periodic, with period 2L. In (5.7) 

the gauge field is taken to be in a representation of g, with generators acting on vector 

space V. The aIoremelJ.tioned gauge transformation implies 

T()") = w-I(L)exp(-f a",dx)w(-L). (5.8) 

Thus the classical integrals of motion can be recovered by expanding tr T()") in powers of 

>. • It is these integrals of motion that are promoted to the quantum theory. Quantum 

integrability requires that the integrals of motion commute as quantum operators. Suppose 

that upon imposing the canonical commutation relations on the fields c/J , the monodromy 

matrix satisfies the following quantum operator equation: 

(5.9) 

611 



where Tl('\) = T('\)®l, T2 (JL) = l®T(JL). !R is an ordinary c-number matrix acting on V® 

V. Then trT('\) generates quantum commuting integrals of motion, i.e. [trT('\) , trT(JL)1 = 

o. 
Using the regularization techniques in [151 one can show that (5.9) reduces to the 

following conditions on !R : 

!R('\/JL)(hi ® 1 + 1 ® hi) = (hi ® 1 + 1 ® hi)!R('\/JL) 

!R(,\f 1')( ei ® K;l + I<i ® e;) = (ei ® I<i + I<i-1 ® ei)!R(,\f 1') 

!R(,\/JL)(J; ® I<;l + I<i ® J;) = (Ii ® 1<i + I<;l ® J;)!R(A/JL) 

(5.10) 

for all i = 0, ··r, where I<i = exp( (ifP /16)a{i)2 hi). The authors of [341[351 have found the !R 

matrices satisfying (5.10) for arbitrary 9 and V defined by the fundamental representation. 

The result for SU(n) in the homogeneous gradation is 

!R(x, q) = (x - q-2) L Eoo ® Eoo + q-l(x - 1) L Eoo ® Epp (5.11) 
a o#p 

+(1 - q-2)( L +x L )Eop ® Epo, 
o<p o>p 

where x = '\/1', q = exp(-ifJ2/4), and Eop are unit matrices for the fundamental repre

sentation, i.e. (Eop)'Y~ = lio'Ylip~, i = 1,· ·n. Furthermore, it can be shown that!R satisfies 

the Yang-Baxter (YB) equation 

(5.12) 

The above relation is an equation in V ® V ® V, and the subscripts refer to the vector 

spaces where the matrix is not unity. 

Let us now specialize to the SG theory. We take V to span the two dimensional spin 

1/2 representation of su(2). !R is then the 4 x 4 matrix given in (5.11) . The monodromy 

matrix is a 2 x 2 matrix of operators 

( A(A) B(A») 
T('\) = C(,\) D('\) (5.13) 

whose commutation relations are given by (5.9) . We have seen that A(A)+D(A) generates 

the infinite number of integrals of motion. Remarkably, it was found in [151 that the 

operator B('\) serves as a creation operator for the states that diagonalize the Hamiltonian, 

thereby providing an algebraic Bethe ansatz solution of the model. 

6. Restricted Sine-Gordon Theory 

We will now use the Yang-Baxter structure of the last section, especially its associated 

quantum group structure, to restrict the SG Hilbert space. The main requirement is to 

preserve the integrability. 
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A continuation of our line of discussion would necessarily involve a description of 

the restriction at the level of the Bethe ansatz states in the QISM. The main technical 

difficulty in pursuing this is the filling of the Dirac sea. We have not solved this important 

problem. Instead we describe a restriction of the SG S-matrix. Physically the restriction 

then becomes less obscured by technical problems. Furthermore, since the algebraic Dethe 

ansatz provides a derivation of the usual S-matrix, it is clear that our restriction implies a 

corresponding restriction of the Bethe ansatz. In fact, we use the fact that the Yang-Baxter 

structure for the S-matrix follows from that for !R, making this argument very plausible. 

Complete integrability leads to factorization of the S-matrix, i.e the N-body S-matrix 

can be expressed in terms of 2-body S-matrices [14]. This is because the conservation laws 

imply the complete momentum distribution is conserved. We first describe the unrestricted 

SG S-matrix for the values of the coupling (1.2) . At this coupling there is a repulsive force 

between the solitons, thus they don't bind to form bound states. There is a U(l) symmetry 

in the theory underwhich solitons and antisolitons have charge +1 and -1 respectively. 

Let us arrange the soliton and antisoliton states into an isovector 10 = ±1/2}, where h is 

the U(l) charge and hlo} = 2010}. This two dimensional vector space will be denoted as 

V. We parametrize the energy and momentum of a particle in terms of the rapidity (J : 

pO = mcosh(J,pl = msinh(J. (6.1) 

From the explicite form of the soliton-antisoliton S-matrix given in [14] and equation (5.1l) 

one finds 

5(8) = s(8)!Rprin(x = eS7r9/'r' , q = _e-is ,,2!-t'). 

In (6.2) s(8) is a scalar function of the rapidity difference 8 = 81 - 82 : 

s(8) = -i sh(87r (i7r _ 8))r(87r)[(1 + i88 )r(l- 87r _ i 88 ) 
7r 'Y' 'Y' 'Y' 'Y' 'Y' 

IT R,,(8)Rn(i7r - 8) 
n=1 Rn (O)Rn (i7r) , 

Rn(8) = r«2n + 1)~;r + i~nr(1 + (2n - 1)~;r + i~)' 
!Rprin is the !R matrix of (5.1l) in the principle gradation 

IDprin( ) ID( h) -1 
""12 X = 0"l2"" X 0"12' 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

where 0"12 = ,xt ® p,t , and x is again ,x/p,o (In (6.5) , h = 2, the coxeter number of 

su(2». The relation (6.2) it is not at all obvious from what we have said so far. It can be 

heuristically explained as follows: !R determines the commutation relations of the creation 

operators of the Bethe ansatz and moreover, in 1+1 dimensions the interchange of particles 

is an interaction. 

The multi particle S-matrix is computed as follows. In the far past there are N particles 

(solitons or antisolitons) located at Xl < X2 < ... < XN, with momenta PI > P2 > ... > PN. 
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figure 1 

After N(N - 1)/2 pair collisions the out state again consists of N particles (no particle 

creation). Since the set of momenta is unchanged in each pair collision, the outgoing 

particles have the same set of momenta but are now located at Xl > X2 > .,. > XN. One 

can assign a space-time picture to this process. For example, 3-particle scattering is shown 

in figure 1. A fixed momentum is assigned to a straight line with slope proportional to 

_pl. The successive 2-body scatterings are denoted by a crossing, as in figure 2. Sums 

figure 2 

over intermediate states are assumed. Thus, 3-particle S-matrices are matrix elements of 

523(023)513(013)512(012), where Ojj = OJ - OJ. The consistency relation displayed in figure 

1 is ensured by the YB equation (5.12) for lR. 

For convenience, we define a braid-type S-matrix S = PS, where P is the permutation 

matrix: Pu ® v = v ® u, u ® v E V ® V. The 2-body S-matrix diagram of figure 2 

is now (O'~I ® (O'~IS(012)IO'l) ® 10'2). In terms of S a diagram for 3-body scattering for 

example is shown in figure 3. The horizontal lines in figure 3 will he given meaning 

shortly. For the process displayed in figure 3, the S-matrix is computed as matrix elements 

of S12(012)S23(OI3)S12(023), where a vertical line corresponds to a single vector space V. 

figure 3 
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Due to (6.2) and (6.5) , the multiparticle S-matrix elements can be computed from the 

matrix elements of PlR up to a computable multiplicative constant, and a gauge transfor

mation. For convenience we rescale PlR to 

(6.6) 

2 2 2 

R = q L EO'O' ® Eo-O' + L Epo- ® Eo-p + (q - q-l) L EfJfJ ® E(w (6.7) 
0'=1 o¢P=1 o>P=l 

plk satisfies the YB equation by virtue of the Hecke algebra relations satisfied by R (36) 

(R- q)(R+ q-l) = 0 

R21R32R21 = R32R21R32 • 

(6.8) 

"Te will now define a restriction of the multisoliton Hilbert space that preserves the 

factorizability of the S-matrix and thus preserves the integrability. The technique we will 

figure 4 

use to restrict the model relies extensively on some results from the theory of quantum 

groups (37)[38]128). The technique was used by Pasquier in his study of the ABF models at 

criticality. It is the 50-called Vertex/RSOS correspondence. For a discussion in the context 

of conformal field theory, see [8)[10) . 

In order to describe the restriction, we first make a change of basis in the space of 

states. Ordinary su(2) is not a symmetry of our system, thus organization of states into 

irreducible su(2) multiplets is not useful. A meaningful change of basis is provided by the 

quantum-su(2) algebra Uq(SU(2» [39)[40)[41). Uq(SU(2» is generated by J:±., h satisfying 

[h,J:±.) = ±2J:±.. (6.9) 

The distinguishing feature of the relations (6.9) is that they allow the analog of addition of 

angular momentum: given two representations of the algebra, one can find a new represen

tation on the tensor product space. This in turn implies that Uq (SU(2» has a well defined 

representation theory. Formally it is said that Uq(SU(2» admits a comultiplication ~ . (). 

provides a representation of Uq (SU(2» on V ® V via 

~(h)=l®h+h®l (6.10) 

~(J:±.) = qh/2 ® J:± + J:±. ® q-h/2. 
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Similarly, one can define A{N) on y®N. Note that as q -+ 1, we recover the usual su(2) 

algebra and comultiplication. The comultiplication allows one to generalize many of the 

ordinary group theory constructions such as Clebsch-Gordon decompositions. 

Consider an incoming N-soliton-antisoliton state whose U(l) quantum numbers are 

specified by some vector in y®N. A meaningful change of basis for y®N is to decompose it 

oC, 0(2 ocN-1 OCN 

~I ~I • • ~I ~I 
0 

jN j. jN-1 

figure 5 

into irreducible representations of U,(SU(2». This is because the S-matrix commutes with 

this decomposition. In other words, the S-matrix does not mix different representations of 

U,(SU(2». That the S-matrix commutes with the comultiplication A{N) follows from t~e 

defining relations (5.10) for ~ and the form of the comultiplication (6.10) . More precisely, 

we write 
y®N = ED,.,. yjN, (6.11) 

where yjN is an irreducible representation space of U,(SU(2» of dimension 2iN + 1, and 

:T denotes the history or 'path'ofthe decomposition: :T = {h = 1/2,h, ···iN},ii+l = i;± 

1/22:0. The new basis of states is l:TiM), -iN =::; M =::; iN, and is related to the previous 

basis with q-Clebsch-Gordon (q-CG) coefficients (iImlihm2IJ,M),. Graphical techniques 

have proven to be very useful in quantum group theory. Denote a q-CG coefficient as in 

figure 4. Then a statel:TiM) is represented as in figure 5. The other objects we need are 

the q-6j symbols (q-analogues of Wigner-Ra.cah coefficients) defined in figure 6. The q-CG 

and q-6j symbols were computed in [38] . They are given by 

{; : ;}, = (_1)-II-Hc+d+2e([2e + l][2J + 1])1/2 A(abe)A(dce)A(acf)A(dbf) 

(2:( -1)"[z + l]!([z - a - b - e]![z - d - c - e]![z - a - c - Il! (6.12) 

[z - d - b - J]![a + b + c + d - z]![a + e + d + J - z]![b + e + c + J - z]!)-I). 

Above, in the sum over z only terms with positive argument within the bracket are kept, 

and 

In]! = In][n - I]. ·11], [0] E 1, 

A(abc) = ([-a+ b+ c]![a - b+ c]![a+ b- c]!)1/2 
la+b+c+1] 

(6.13) 

(6.14) 

Let us return to the braid-type S-matrix diagrams, as in figure 3. The q-CG decom

position before and after a pairwise collision is signified by horizontal lines. To compute 

the S-matrix in this basis, we need only the matrix elements of R, which are 
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j21 j31 L J1 j2 jl2 ~. 
-

jl . JIM 
j23 j3 J J23 

jl2 ~ J1 J,M 

figure 6 

jl-I jl ji+1 

.. I XI·· 
.' .' 

Jl-I Jl Ji+ 1 

figure 7 

(6.15) 

where Cj = j(j + 1). This matrix element is depicted graphically in figure 7. ii-I is 

represented graphically as in figure 7 with an inverted central crossing. 

Special properties of representations of Uq(SU(2» for q a root of unity are the key to 

restricting the model. Here, q2(P-l) = 1. For q a root of unity the q-CG and q-6j symbols 

become singular (-+ (0) unless one restricts the allowed spins: j :$ j ma>; = (p - 1)/2 - 1. 

That is, for q a root of unity, there are only a finite number of representations of Ug(SU(2», 

labeled by j with j belonging to the set {D, 1/2,1" . jmar}. I refer you to Keller's lecture 

for a discussion of this point [42]. This leads us to restrict the N-body SG Hilbert space 

as follows: in the q-CG decomposition (6.11) we require all spins ji in oJ to be less than 

jma:r. The RSG S-matrix is then defined by the braid-type diagrams as before using (6.15) 

, with the restricted Hilbert space assumed. Remarkably, it turns out this new S-matrix 

still satisfies the YB relations, sin.ce ii in this restricted basis continues to satisfy the Hecke 

algebra relations. The reason is connected to the fact that there are only a finite number 

of representations of Uq(SU(2». This is a non-trivial result, and we do not prove this 

here but merely point out that by modifying the innerproduct, one can project out the 

unwanted states, i.e. 

min(it+j,,jmu) 

tr' (1 . ® 1 . ) = " tr' (1 .), 
VJl VJ2 ~ vJ 

(6.16) 
j=lit-hl 
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where tr'(a) = tr(aq" ® q"), ilJi2 :5 imaz, and hli, m) = 2mli, m). 

Due to the fact that ~,i+l is diagonal in the J.l quantum number in (6.15) , one can 

effectively mod it out, and consider the RSG S-matrix as acting only on the j-quantum 

numbers that define a path. Thus the U(l) quantum numbers of the original soliton 

states becomes confined in the RSG model. The S-matrix scattering diagrams then have 

quantum numbers in the regions between lines taking values in the set {O, 1/2, 1,·· ·imcu:} 

and correspond to the 'shadow world' diagrams in [38]. 

We point out that the q-6j symbols that define the RSG S-matrix are precisely the 

same as those that describe the braid matrices for the minimal model it flows to. These 

braid matrices are induced by the monodromies of the conformal blocks. \Ve do not know 

the general principle that would inply this, but see it as further evidence for our conjecture. 

7. Perturbations of Conformal Field Theory 

Zamolodchikov has developed a scheme for generating massive integrable quantum 

field theories as perturbations of conformal field theories by relevent operators. By ex

amining the field content implied by the Virasoro characters he can demonstrate some 

non-trivial integrals of motion for the perturbed theory [43][44]. Let us set up some defi

nitions. There exists the minimal model M p / q with 

(7.1) 

where q = p + 1 corresponds to the unitary minimal series. There are primary fields wm,n 

with dimensions 

~m,n = 1/4 [~(n2 -1) + ;(m2 -1) + 2(1- nm)] , (7.2) 

where m and n are integers over a finite range. 

Let us return to the conformal analysis of section 3. H exp( i(3¢/ / V47r) develops anoma

lous dimension 1,1 due to the background charge, then using (3.5) we can compute the 

dimension of the other operator in the action exp( -i(3¢' /V4-i). It turns out to have di

mension (p - l)/CP + 1), the dimension of the Wl,3 primary field. Thus we conclude that 

the RSG model is a perturbation of the minimal series by the Wl,3 operator. 

An explicit result relating our work with the Zamolodchikov method was found by 

Eguchi and Yang [45]. These authors invoked the Feigin-Fuchs description of the minimal 

models, then studied the effect of the perturbation. They found that the Feigin-Fuchs field 

then became a solution of the SG equation of motion. The relation between (32 and c is 

the same as derived in section 3. It must be stressed that this does not imply a direct 

connection between SG and perturbed Mp / p+1, since SG does not have a background 

charge, nor is its Hilbert space restricted at is fixed point. Equations of motion do not 

reveal the structUre of the Hilbert space. Of course the above is entirely consistent with 

RSG theory. 
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We now discuss generalizations of our results to affine Toda models. For the same 

reason as in the su(2) or SG case, the action (5.6) by itself has no direct connection with 

a minimal series; it must be restricted. Recall from our conformal analysis of section 3 

that at the fixed point RSG was described by a Liouville type equation of motion. The 

generalization for 9 affine Toda field theory is the simple g Today field theory, which is 

known to have improved traceless energy-momentum tensor. Furthermore, for the simple 

g Toda field theories there exists an analagous Feigin-Fuchs construction of the resulting 

W-algebra symmetry [46][47], leading to the minimal series with 

( h(h + 1») 
c = r 1 - pep + 1) , (7.3) 

where r = rank(g), and h is the Coxeter number of g. The analog of the perturbing field 

q,I,3 is a field of dimension (p-h+l)/(p+l). Eguchi and Yang have extended their result to 

the W-algebra series, and found the generalized Feigin-Fuchs fields satisfy the equation of 

motion resulting from the action (5.6) . Again, this result does not indicate the spectrum. 

The study of this question is complicated by the fact that at the coupling (J2 that relate 

to the W-series, the action is not Hermitian. To see this, note that rJ2 is positive, thus 

the kinetic term is made positive by tPi -+ itPi, taking the potential to exp(iI{ijtPj). Only 

for su(2) is this potential real, due to the symmetry t/> -+ -t/>o Thus for the affine Toda 

models we cannot strictly speaking describe a restriction, since the unrestricted model is 

sick. Nevertheless, we conjecture that the W-series perturbed by the analog, of the q,I,3 

operator has S-matrix of the RSOS form, and follows from the restricted !R matrix of the 

affine Toda models. The necessary q-group theory is easily generalized. 

For the lowest element of the series (7.3) , i.e. p = h + 1, Fateev and Zamolodchikov 

have proposed exact S-matrices. They are the minimal solution to the S-matrix with r 

particles with the masses that follow from the action (5.6). See also [48][40)[50]. Thus 

it is clear that the lowest theory in the series is special, to the extent that the spectrum 

follows simply from the Lagrangian. In the case 0 < c < 1, which occurs for AI, Es, A2 , 

E6 and E 7 , at c = 1/2,1/2,4/5,6/7, and 7/10 respectively, there is no contradiction with 

our results since the minimal model is now being perturbed by a different operator. For 

example, for Es, the c = 1/2 theory is perturbed by <PI,2 rather than <PI,3. 

8. Conclusion 

Though we have not proven that the S-matrices of section 6 describe models that flow 

to the minimal series, we have given a number of arguments supporting this conjecture. At 

the critical point, the structure of the Hilbert space follows from projecting null vectors, 

i.e. it follows from Virasoro algebraic structure. Our work provides intriguing evidence for 

an algebraic structure that plays this role in the massive model. 

A study of the spectrum and its physical interpretation will be reported elsewhere in 

work done with D. Bernard [51]. 

Independently, Smirnov [52] has considered restrictions of the SG model at different 

values of coupling than the ones considered here. He looks at 
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(32/87r = 2/(2n + 3). (8.1) 

At this coupling the unrestricted model has both bound states and solitons. His restriction 

is of a different nature than ours in this case, in that he simply removes the solitons from 

the asymptotic states, and does not rely on the quantum group structure. Again this 

changes c from 1 to the value (7.1) with q/p = 2/(2n + 3). The relation between c and 

(J2 is the same as we derived in section 3. Smirnov's technique is to examine the form 

factorS of certain local fields and demand that upon restriction the theory remains local. 

He argues that the background charge is thereby induced. The resulting S-matrices were 

arrived at independently by using Zamolodchikov methodology without reference to SG 

theory in [53]. Though the restriction at our values of the coupling is more complicated 

since it removes states from the multiparticle Hilbert space rather than simply the single 

particle Hilbert space, perhaps his techniques will generalize. The combination of our 

results with Smirnov's suggests there is a general result for every model M p / q • 
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1. Introduction 

In this paper we report three main results: (a) An algebraic-geometric 
construction of universal link invariants in quantum groups based on 
Reidemeister's theorem; (b) A similar construction of universal tangle 
invariants -- diagrammatically a tangle is a link diagram with one exter
nal edge cut -- and a proof showing that, with a certain restriction on 
the quantum group, the set of all tangle invariants forms a subset of the 
centre of the quantum group; (c) A demonstration that a classical simple 
Lie (and Kac-Moody) algebra can be at least twice deformed to give a 
"twisted" quantum group with an associated twisted Hopf structure -- the 
classical Alexander-Conway link Polynomial is the simplest link invariant 
constructed from the twisted quantum group of u(2). These results are 
used to derive a number of theorems on the quantum group invariants of 
tangles, knots and links and their representations. They are also used to 
give insight to our understanding of the relation between quantum groups 

* Based on presentation given at Workshop on Physics, Braids & Links, 
Banff NATO AS! on Physics, Geometry & Topology, Banff, Alberta, Canada, 
1989 August 14-25. Work supported in part by a Canadian NSERC Grant and a 
NATO Coli. Res. Grant. 

Physics. Geometry, and Topology 
Edited by H. C. Lee 
Plenum Press, New York, 1990 
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and conformal and topological field theories. It appears that, effec
tively, only the maximum Abelian subalgebra of the Hopf structure of the 
quantum group acts in these theories. It is shown that a tangle to a link 
in knot theory is what a "Wilson tangle" is to a Wilson line in the Chem
Simons-Witten topological field theory. The tangle theorem derived in (b) 
asserts that the set of all Wilson tangles forms a U(l) group, which is a 
natural holonomy group of the CSW theory. 

In the last few years eviden~ has been accumulating to show that link 
invariants and quantum groups .2,3 provide an underlying structure common 
to a lar~e and diverse array of topics in m~ematics and 10w-dimensi~!J 
physics lDcluding brM\\ group representati0lls, knot and link theory,-
fractionf.!. 6s~tistics, exactly solvable statistical J'nd lattice 
model~~' ,4, ,I conformal field theo~ in two dimensions 1 and quantum 
theory and topological field theory 8 in three dimensions. Most con
structions of link invariants in quantum groups have been based on repre
sentation theory. In this scheme, a representation of the universal 
9l-matrix of the qu,vtum group is used to generate a representation for 
Artin's braid group, fJgm which a link inv\riant is then constructed 
using Markov's theorem. Recently Lawrence, still utilizin~ the braid 
group and Markov's theorem, constructed a link invariant that IS a univer
sal (i.e., representation independent) invariant of the quantum group~ Our 
construction is based on Reidemeister's theorem21 ; it makes reference to 
neither the braid group nor Markov's theorem. While our approach is very 
geometric, we also make full use of the algebraic properties of the quan
tum group. 

Our construction is similar to thi state-model construction of link invar
iants (not universal) by Kauffman, also based on Reidemeister's theorem 
(but not in the context of a quantum group). It is closest in spirit to 
Witten's construction in the context of a topologically invariant field 
theory in three dimensions -- in our construction one may view elements of 
the Hopf algebra as particles moving in a three-dimensional manifold acted 
on by the topological Chern-Simons action. 

Another aspect that sets the present approach apart from previous ones is 
the identification of three elements in the quantum group as fundamental 
for the construction of a universal link invariant. For terminology, by 
quantum group we shall mean the Hopf algebra, or the universal enveloping 
algebra Jt of the q-analogue 3' of the the Lie algebra p. The three funda
mental elements are the well-known universal matrix IFl E p' e p', the univer
sal element ~ E p', and the central element A E centre of p'. A careful 
study of the properties of these elements and their relation to the link 
invariant yields the second and perhaps most important result of this 
paper: the set of all tangle invariants in a quasitriangular quantum group 
whose ~ is not unipotent in 3' /centre forms a subset of the centre of the 
quantum group. We believe all quantum ~roups of simple Lie algebras belong 
to the above restricted type. The relatlOn between the tangle invariant r 
and the associated link invariant P is simple: since r is in the centre of 
p', r = ". eo' where eo is the identy element in p'; then P = ". Tr(~) to 
within a normalization (given explicitly in the text), where Tr maps p' to 
II: and is invariant under cyclic permutations of its argument. In matrix 
representation, Tr is just the trace of the matrix. One may view the uni
versal tangle invariants as an infinite set of Casimir operators of the 
quantum ~oup, and think of P as their ~-weighted traces. There is how
ever an Important difference in the relations between a Casimir operator 
and its trace in a Lie algebra and between rand P in a quantum group. In 
a Lie algebra, the ratio of the eigenvalues of a Casimir operator and its 
trace is just the dimension of the representation. In a quantum group the 
ratio, proportional to the eigenvalue of Tr(~), is a nontrivial functional 
of the representation and may also be a function of the deformation 
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parameter q, such that for many representations Tr(h) vanishes for certain 
values of q. There are also known representations for twisted quantum 
groups in which the eigenvalues of Tr(h) vanish identically. The point is 
that tangle invariants are the more fundamental invariants, and that it 
is possible always to normalize Yo but not always P, such that the eigen
value for the unknot is, say, unity. We show that the Alexander-Conway 
polynomial is precisely such a r whose corresponding P is identically 
zero. 

From the tangle theorem one can deduce a number of interesting conse
quences, some of which are: the group of all (quantum group) tangles is 
homomorphic to a U(1) group; any link invariant is the commuting product 
of invariants of irreducible tan~les (an irreducible tangle cannot be sep
arated into two tangles by cuttmg anyone of its strings); invariants of 
links that are nonisotopic but whose tangles factorize into the same set 
of irreducible tangles are degenerate. These results apply to universal 
invariants, but it is straightforward to take representations of such 
invariants, including the most general case of one representation for each 
component of a link. Except for accidental ones, the degeneracy mentioned 
above is generally removed when all the representations for the components 
in a link are distinct. 

A very current and far from completely understood subject is the relation 
between quantum groups and the CSW and conformal field theories. Whereas 
much previous discussions on quantum group invariants have focussed on 
their representation theory and have restricted q to be not an integral 
root of unity (probably because for such values of q the Hopf algebra has 
a complicated and not fully understood ideal), many properties of the CSW 
and conformal field theories can be identified with those -of representa
tions of the quantum group only if it is assumed that the value of q is 
some integral root of unity. These two points of view are reconciled in a 
universal link (or tangle) invariant whose representations are we11-
defined for any value of q. It turns out that the effect of q being equal 
to a certain integral root of unity is to set to zero the representation 
for the noncommuting sector of the quantum group. In other words, the 
effect is equivalent to restricting the quantum group such that only its 
maximum Abelian Hopf subalgebra acts in these theories; the fact that q is 
an intewal root of unity also makes the algebra of finite order. Since 
an AbelIan group is homomorphic to a U(1) group, this explains why all the 
field intertwinings in conformal field theory and all the Wilson lines in 
the CSW theory give simple phase factors. (Of course, the fact that these 
are simple phase factors does not necessitate the restriction mentioned 
above.) 

It appears that in conformal field theory the restriction on q can be 
traced to the requirement that a two-point correlation function has a U(1) 
monodromy group. Translated into the language of quantum group, it is a 
requirement that at(tfolR) is diagonal in " X,-'; !T is the transposition oper
ator. For all the representations of nontwisted quantum groups that we 
know, this restriction on q also assures that the representation of " is 
proportional to the identity matrix. This is consistent with the observa
tion that, whereas h is indispensible in the construction of quantum group 
universal link invariants, its role, if any, is invisible in Witten's con
struction of the representations of presumably the same link invariants in 
the CSW theory. For representations of twisted quantum groups, the mono
dromy restriction on q does not make the representation of h prpoportional 
to the identity matrix. Our feeling is that link invarian~ of the 
twisted quantum groups, such as the Alexander-Conway polynomial , as well 
as invariants of nontwisted quantum groups with arbitrary values of q, 
cannot be computed as a Wilson line without some modification to the CSW 
theory. 
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An interesting application of the tangle theorem to the CSW theory is the 
recognition that if one neglects to take the trace of the representation 
on one of the contours in Witten's Wilson line, then the resulting object 
-- we call it a Wilson tangle -- is a link invariant times the identity 
matrix. The U(I) group of Wilson tangles can be viewed as the natural 
generalized holonomy group of the CSW theory. It is generalized because 
not only can the closed loops defining the holonomy be knotted, they can 
also be mUlticomponent links. In fact the U(I) nature of tangles is more 
persistent than what is revealed in the CSW theory which, as mentioned 
earlier, sees only the Abelian structure of the quantum group. Another 
related application that will be developed elsewhere is the generalization 
of fractional statistics to nonscalar anyons, the representations of whose 
exchange algebra generate a nonunitary representations of the braid group. 

2. Quantum Group and Hopf Algebra 

Notation S' , 
S' 
q 

d 

m 

LI 

8 

S 

eg: : 
e : 

ff 

fR, 

4,~ 

A 

simple Lie algebra or bialgebra 

q-analoque of S' 

deformation parameter q == exp(h) 

Hopf algebra or quantum group of S' 

multiplication map S" ® S" ~ S" 

comultiplication map S" ~' ® S" 

counit map S"~' 

antipode map S"~' (antiautomorphic) 

basis for Borel subalgebra 'if_ of S" 

basis dual to eu for Borel sub algebra 'if+ of S" 

transposition operator in S" 

invertible universal R-matrix in d; fR, == e u ® eU 

invertible universal element in S"; 4==euS(eu), ~=S(eu)eu 

central element in S"; A == " 

For quantum group we adopt the definition of Drinfel'd.' Simply, given a 
simple Lie bialgebra S' with commutation bracket [,], we q-deform it to 
yield S" and then "quantize" S" by demanding that its commutation bracket 
{,} has as the small h limit [,]. The quantized 1", which we shall refer 
to as the q-analogue of S" has an associative multiplication m: S" ® S" ~ S": 
and a coassociative comultiplication LI : S" ~ $I' ®S". These induce a 
unique counit 8 : S" ~ S" which is a homomorphIsm, and a unique antipode 
S : S" ~ S" which is an antiautomorphism (i.e. S(ab) = S(b)S(a); a,b E 
S"). An algebra equipped with the set (m,LI ,8,S) is a Hopf algebra d. So 
a quantum group is a Hopf algebra. We shall use these two terms in the 
same sense. ThC60 presence of comultiplication implies that the Hopf alge
bra contains (?') , therefore the Hopf algebra is also referred to as the 
quantized universal enveloping algebra lJlt (?) of S'. As a simple example 

q 

consider the q-analogue of the Lie algebra 44:2), with generators H, X
and X+, and brackets 

[ H, X±] = ±2X± (2.1) 

[ X+, X-] = (qH_q-H)/(q_q-') (2.2) 
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which in the limit h ~ 0 are just the brackets of u(2) (We shall 
actually use the brackets [,] instead of {,} for ,'). The Borel subalge
bra «i is generated by H and X", and its dual «i l:)y Hand X+. Define 

- + 

k a qHI2 

Then the Hopf algebra .J is generated by {k± 1 ,x+ ,X} with 

LI(k) = k®k; LI(X±) = X± ®k + k-1 ®X± 

S(k) = k-1; S(X±) = _kX±k-1 

t(k) = 1; t(X±) = 0 

It is clear that the bases eO' and eO' contain the infinite sets 

{kP(X")q; p E 71., q E 17I.1} 

{ kP(X+)q; p E 71., q E 17I.1} 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

However, a representation of " may be finite. It has been shown3 that 
for any simple Lie or Kac-Moody algebra , there is a one-to-one correspon
dence between representations of , and (the untwisted; see § 7) ,'. 

If , is of rank r, meaning that it has r simple roots ai' i=I, .. , r, then 

" is generated by {H., X~, X.; i = 1, .. , r} with brackets 
1 1 1 

[ H., H. ] 
1 J 

= 0 

[ Hi' X~ ] = 

H 12 
and maps for k. == q i and X~ 

1 1 

S(k.) = k-1• 
1 i ' 

e(k.) = 1; 
1 

H -H 

S(X~) = -q P X~ q P 
1 1 

e(x~) = 0 
1 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

where the subscript P in (2.13) refers to the half sum of the positive 
roots of,. Given any root a, with the expansion in simple roots a. 

1 

a = n.a. 
1 1 

in the Chevalley basis, we defme 

H = n.(a e a./a2)H .. 
all 1 

(2.15) 

(2.16) 

There is a complicated relation2,3 between X~ and X± i~j, which we shall 
1 j , 

not give, since it will not be needed in this paper. 
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We now summarize the important properties of JI. Because eu and eU are 
dual bases, their multiplication and comultiplication are related by 

(2.17) 

LI(e ) = pup e ee . 
T T U p' (2.18) 

where m and p are c-numbers. Comultiplication is coassociative, 

(ideLl)LI(a) = (Lleid)LI(a), Va E p' (2.19) 

The counit is uniquely determined by LI and S by 

m(ideS)LI(a) = m(Seid)LI(a) = t(a)eo' Va E p' (2.20) 

eo is the identity element in p'. Define the skew antipode So by 

(2.21) 

Then So is the inverse of the antipode; SSo = SoS = id, with the 
properties 

The three most important elements in JI are the universal Ii'l-matrix 

1i'l55 eueeu E p'ep' 
and 

-' - euS(eu) = S-l(eu)eU E p' 

" !!II S(eu)eu = eUS-l(eu) E p' 

The following properties are well known:3,23,24 Ii'l is invertible with 

all = (S e id)1i'l = (id e SJIi'l 

It then follows that 

The Hopf algebra JI is quasitriangular if it skew-commutes with LI (a) 

(9-Ll(a»1i'l = J1lLI(a), Va E p' 

(2.22a) 

(2.22b) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

It iS29 possible to use eqs. (2.17,18,20,22,28) as constraints to con
struct a finite dimensional representation of a Hopf algebra. 

If JI is quasitriangular then ~ and " commute and their product lie in the 
centre of pi, 
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.u. = ""' .. l E centre of 1" (2.29) 

This means that in any representation 7C of 1" (or .4) l is a c-number and 
and 7C(~) and 7C(.l) are mutual reci1!rocals to within a factor of 7C(l). Eq. 
(2.30) and the invertibility of ~ and ~ are derivable from (2.21,22,26,28) 

(2.30) 

(2.31) 

Conjugation with respect to ~ and .1 are given respectively by 

.la.l-1 = g2(a) V a E 1" (2.32) 

For quantum groups of simple Lie algebras S is not an involution: S2(k.) 

= k. but g2(X±) ¢ X~. This means that ~ and .1 (do not) commute with (an~ 
1 ~ 1 

of) all the (X.) k. generators of 1". Therefore ~ and .1 lie in the invar-
1 1 

iant subalgebra 1" generated by the k.'s. It then follows that ~ has the 
1 

expansion 

~= (2.33) 

summed over the integer sets [P] = [p , ... ,p]. Similarly for .1. 
1 r 

The universal al-matrix is the key link between quantum groups and braid 
group representations, solutions of the Yang-Baxter equations, and exactly 
solvable lattice models. The universal elements ~, .1 and l are the essen
tial additional ingredients needed for the construction of universal link 
invariants and tangles, and for understanding why the action of quantum 
groups is restricted to their maximum Abelian Hopf subalgebra in conformal 
and topolopcal field theories. The operator relations in the direct pro
duct 1" ~S' ~S" 

follow immediately from (2.17,18 and 28), where al13 = eO'~eo®eO', and so on. 

The relations are valid when acting on any element a ® bEl" ® 1" • They are 
the universal versions of lpe fusion-braiding relations in conformal field 
theories in two dimensions. A customarily given, but weaker version of 
these relations is 

(2.34') 

Anothe~ important consequence of quasitriangularity is the quantum Yang
Baxter, or braid group relation19 

(2.35) 

The following is a dictionary between quantum group, field theory and 
diagrammatics. 
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Hopf Algebra 

element 

m,LI 

Field Theory 

field 

fusion rule 

intertwining 
of fields 

Diagrammatics 

The following relations involving the universal elements #, h- and A are 
crucial for the construction of link invariants. 

eO' #S(eO') = S(eO')heO' = A 

eO'S(eT) ® eTn-eO' = S(eO')eT ® eTn-eO' 

= eO'eT®e~(eO') = eO'eT®S(eT)n-eO' = eo®# 

We demonstrate the derivation of some of these relations: 

(2.35): 
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(2.36) 

(2.37) 

(2.38) 

(2.39) 



(2.35): 

(2.37): 

eO' "-S(eo.) = ~(eO')S(eO') = "-S(eO')eO' = M. = A. 

eO'S(e1)8eTt.e0' = eO'S(eT)8~(eT)eO' 

(2.40) 

= eo8h(id8S)lR·1lR = eo8h (2.41) 

The derivation of (2.32) is somewhat more complicated. Consider LI (a) = 
ui 8 Vi' V a E ,'. From (2.21) and (2.28) 

m(id8S)[ae-1(§eLl(a»lR] = m(id8So)[§eLl(a)] 

left-hand side = eO'viepS(J')S(u)eO' 

right-hand side = V.S·l(U.) = t(a)eo 1 1 

left multiply by e-r and right multiply by S(eT) on both sides and use 
eTe0' 8eO'S(eT) = ae-1lR = eo8eo to obtain 

V.("-S(U.)h·1 - S·l(U.» = 0 
1 1 1 

(2.42) 

Let a = k. and substitute LI (k.) = k. 8 k. into (2.42) to establish 
1 1 1 1 

(2.43) 

Let a = X~ and substitute LI (X~) into (2.42) and use (2.43) to establish 
1 1 

This proves the first part of (2.32). The proof of the second part fol-
lows a similar route. 

3. Universal Link Invariant 

By an ~component link19 we 3 mean the disjoint union of I closed curves 
without self intersection in R. A knot is a one-component link. Link 
invariants are maps of links classified by ambient isotopy. We consider 
link diagrams which are two-dimensional projections of links. In these 
diagrams curves still do ~'lt intersect, but they do cross. According to a 
theorem by Reidemeister, two unoriented links are equivalent (i. e., 
ambient isotopic) if their corresponding diagrams can be deformed to each 
other by a sequence of moves composed of the three Reidemeister moves : 

Reidemeister move I (3.1) 
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Reidemeister move II (3.2) 

Reidemeister move ill (3.3) 

/~ 
! J 

/ 

;\ 
We use the words link and link diagram interchangably. The strategy of 
using the Reidemeister moves to construct link invariants in an al~ebraic 
context is to assign algebraic meanings to the curves and crossings 10 the 
dia~ams above and show that the two sides in each of the moves are alge
bralcally equivalent. For quantum groups there is a crucial complication: 
because the q-analogue " (as well as ,) is noncommutative, the links are 
oriented, impliying that the curves in (3.1-3) must be directional, or 
have arrows attached to them. A sufficient generali,ation of the 
Reidemeister moves to cover the case of oriented links is the set 

Reidemeister move Ia (3.4a) 

Reidemeister move Ib (3.4b) 
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Reidemeister move IIa (3.Sa) 

Reidemeister move lIb (3.Sb) 

Reidemeister move ill (3.6) 

I / 

/~ 
KaufmannB has shown that given la, Ib, IIa, lib and III, it is sufficient 
to deduce invariance under other type ill Reidemeister moves in which one 
or two of the curves point upward. 

We begin by making the following rules. 

-- An arrowed curve is to be considered as an element in p'. 

A curve that does not cross with any other curve is assigned the iden
tity element eo E p'. 

-- A positive crossing is one in which the curve crossing from above is 
counterclockwise relative to the curve crossing from below; at a negative 
crossing the top curve is clockwise relative to the bottom curve. 

-- A crossing is labelled by a dummy Greek index (p, q, r, .. ) and consid
ered as an element in p' & p' . 

-- A positive (ne~ative) crossing is assigned a value fR, (ffefR,-l); more pre
cisely, at a posItive (negative) crossin~ ths. top curve is given a value 
eq (S(eq » and the bottom curve a value e (e). 
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-- Given a link diagram, deform it, without causing any new crossings to 
be generated or any existing ones to be eliminated, into one in which no 
two crossings are on the same lattitude; a section of a curve between two 
distinct crossings is an edge, and is said to have the right (wrong) 
direction if it is pointing generally downward (upward). 

-- A right-direction edge is assigned the value eo; a wrong-direction edge 

is assi~ned the element h (~), if it is a section of an anticlockwise 
(clockWIse) closed curve in the spliced diagram of the link. 

-- If a curve self crosses, then the section of the curve between the 
crossing is considered to be a wrong-direction edge and is assigned h (~) 
if it is anticlockwise (clockwise). 

-- Every wrong-direction edge is to be marked by a solid triangle pointing 
to its right (left) if it is assigned the value h (~). 

-- A spliced diagram is obtained from a link diagram by replacing all 
crossings in the manner given below; 

x ~)( 
a spliced diagram is thus composed of a set of noncrossing closed curves. 
Two examples are 

GD 

A completely labelled and marked trefoil is 
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The above rules for assignment, which are completely specified by the 
arrows, labels and triangular marks on a link diagram, map (but not 
uniquely so) each component of ?r link into an element of p' composed of an 
ordered product of eO', S(eO') , e , hand l. The assignment thus maps an 

I-component link into a direct product in ~I/ E.d. A possible result 
for the trefoil given above is 

eO'ePej. eO'epe'T:l 

Other possible results are obtained by cyclic permutations. 

We now show that the map is invariant under the oriented Reidemeister 
moves. First we note that it is invariant under move IIa by definition, 
since 1Yl1Yl- = eo ® eo. Note that because of intertwining, the negative cros-
sing is assigned /!fo1Yl- 1, not 1Yl- 1. That the map is invariant under move III 
follows from the braiding relation (2.35). Invariance under la, Ib and 
lIb, _which involve wrong-direction edges, come from the properties of II. 
and h: 

(3.7) 

See O')leO' eO' hS(eO') A (3.8) 

J~ f 
~( r....- ~ 

) 
ephS(eO') ®eO' eP = eP Jl.e0' ® e O'S(e p) = h®e 

0 
(3.9) 
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(3.10) 

The ri~ht-hand side of (3.8) has a factor of A, a central element in 51' 
which In general is not equal to the identity element. For example, under 
the rules given above, 

0-0 
0-0 

This suggests that the map needs to be properly normalized. The correct 
normalization factor, one for each component of the link, is 
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, (w -2N )/4 n 1 m m (3.11) 
m-l 

where A = le, w is the total number of times the mth component curve o m 
passes through a positive crossing minus the number of times it 'passes 
through a negative crossing, and N is the total number of h's and h's on 

m 

the component. Since each crossing is the intersection of two curves, the 
w's summed over all components is twice the writhe number, an invariant of 
the link. With this normalization, the examples given above become 

Finally, the normalized map is not unique unless each component is made 
invariruy with reseect to cyclic permutation of its ordered factors of 
eq's, e 's, h's and h's. For this purpose we define a map 

Tr : 11' ~ iC (3.12) 

that is invariant under cyclic permutation. The notation suggests itself: 
for each matrix representation TC of 11', we take Tr to be the trace in TC, 

denoted by Tr. Denote by a the element into which the mth component of 
TC m 

the link is mapped. We now have: 

Link Invariant Theorem. The map P 

P: Link~iC 
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by , 
P[L] = II 

m=l 

is a universal link invariant. 

(w -2N )/4 
X m m Tr(a) 

m 
(3.13) 

For the unknot, w=O, N=l and a=~ (") if it is closed (counter)clockwise. 
The link invariant is therefore X -112 times Tr(il,) or Tr("). But Tr(il,) = 
Tr(") because of the cyclic property of Tr. We therefore define 

• = X -112Tr(,,) = X -1I2Tr(~) (3.14) 

Note that .eo is an element in the centre of $I'. Thus we have 

The Unknot. 

ment • in ?'Ieo' 

The link invariant for the unknot is equal to the ele-

P[unknot] = • E ?'Ieo (3.15) 

It is important to realize that • is representation-dependent, but not a 
c-number. Thus one may not normalize a universal link invariant such that 
its value for the unknot is always, say, unity. The implication of this 
becomes clear when one considers a multirepresentation, which we shall 
also refer to as a multicolour, link invariant. Such an invariant is 
trivially obtained from (3.13). We have the following, 

Multicolour Link Invariant. Let L{n ; m=I, .. ,t} be , (possibly) dis-
m 

tinct representations of $I' ,then a (possibly) I-coloured link invariant is 

, (w -2N )/4 

(nl®---®n,)P[L] = II Xn m m Trn (am) (3.16) 
m= I m m 

where X n is value of X in the n-representation. 

4. Comparison with other Constructions 

There are a number of constructions of link invariants based on quantum 
groups_ We mention some of them for comparison; the lisJ is not intendefA 
to be complete. Several authors use Alexander's theorem2 and Markov's2 
theorem to construct the invariant via the braid group. Wadati and co
workers4 work with solutions of the Yang-Baxter equation (byt do not 
explicitly mention the quantum group), Reshetikhin3 and Turaev work in 
representation theory of the quantum group, whereas Lawrence9 works in the 
algebra r'. All employ an enhanced Yang-Baxter set {&?,vtt} where &? is the 
universa &?-matrix, (for convenience we shall use the language of algebra, 
although all references except Lawrence speak of explicit representations) 
and vtt E $I' (for which Turaev uses the notation f.,l, instead of vtt, Wadati, h, 
and Lawrence, X) satisfies the property 

[ vtt ® vtt, &?] = 0 

m(id®vIt)&?) = zeo; m(id®vIt)ff-&?) 

(4.1) 

(4.2) 

In our notation, vtt is just the univeral element A -112" and z is the square 
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root of the element X-I. Lawrence, the only one of the above authors who 
constructed a universal link invariant, does not however identify X as a 
universal element in ,'. 

In addition to being universal, another significant difference between our 
method and those mentioned above is our use of Reidemeister's theorem 
instead of Markov's. Unlike the other methods, it is not necessary in our 
method to first reduce a link to the equivalent closed braid; the invar
iant can be directly constructed on the link. At the same time, in our 
method it is straightforward to compute a link invariant from a closed 
braid, as illustrated below: 

(4.3) 

By definition all edges inside the box have the right direction, so they 
take values only at crossings. The only wrong-direction edges are those 
outside the box closing the braid counterclockwise, which is the standard 
convention. Therefore each wrong-direction edge is be assigned a value h, 
as indicated in the diagram above. What if one chooses to close one or 
more of the edges clockwise? Our rule says that each one of such edges be 
assigned a value "-. Since the resulting link is isotopic to the original 
one, the link invariant must not change. The diagram below suffices to 
show that this is indeed the case. 

(4.4) 

The first equivalence is from Reidemeister move I, and commutation of the 
wrong-direction edge with the braid is from moves II and III. 

Our construction is cl'lser in spirit to the bracket or state model con
struction of Kaufmann, also based on invariance under the Reidfimeister 
moves. We view it as being closest to a field theory construction. 8 The 
point is that in our construction the curves in a link are given primary 
attention -- crossings are treated as interactions which change the values 
of the curves, as opposed to the Markov construction where preeminence is 
given to the order of curves and their braidings at crossings. 

A final remark that will be expanded later: because our construction is 
completely universal, its validity depends explicitly neither on the pro
perties of any specific representation of 1" nor on the value of the 
deformation parameter q. In particular there is no intrinsic difficulty 
with our link invariant when q is equal to any rational root of unity. 
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5. Universal Tangle Invariant 

We describe how to get a tangle diagram from a link diagram L. Our con
vention, as before, is that an edge with an arrow. pointing downward has 
the right direction. First, use the rules given in section 3 to attach 
either h or ~ to all the wrong-direction edges in L. Then draw a box that 
completely encloses L. Now take any edge in L and pull it horizontally 
outside of the box. If the edge is wrong-directioned and has an h (h) 
attached to it, pull it to the right (left) of the box. If the edge is 
right-directioned . pull it either to the right or to the left of the box. 
If it is pulled to the right (left) of the box then give the edge an extra 
counterclockwise (clockwise) writhe and attach an ~ (h) to the resulting 
loop, which by definition is wrong-directioned. It does not matter 
whether the writhe has a positive or a negative crossing. The above man
ouver only involves a number of Reidemeister moves, so the new link dia
gram L' is isotopic to the original one. In other words, P[L'] = P[L]. 
Now remove all the attached h or h from L', cut the pulled-out edge and 
pull the top (bottom) end of the cut edge towards z= + 00 (-00). Remove the 
box. We shall call the resulting diagram a tangle T cut from the link L. 
It may be viewed as the two-dimensional projection of a tangle in three 
dimensions. It should have a right-directioned open string entering 
(leaving) the bulk of the tangle from (to) z=+oo (-00). Clearly there can 
be as many tangles cut from a link as there are edges in the link. Below 
are two examples: 

1- ---; ) 

~--~l~:& 

~t~i~fd 
By isotopy of (oriented) tangles we shall mean the invariance of a tangle 
under the (oriented) Reidemeister moves, with the restriction that no 
curve is allowed to move beyond either end of the tangle. It is clear 
that if we assign values to various parts of a tangle in exactly the man
ner that was described in section 3 for a link, then, before taking the Tr 
map@~ defined in (3.12), the tangle is also mapped into an element in 
(?') which is invariant under isotopy, 

(5.1) 

where, as before, the element a corresponds to the mth component of the 
m 

tangle. In our convention the first component refers to the cut string. 
To construct a tangle invariant, each element except a1 -- it has a 

natural order by virtue of the cut -- needs to be made cyclically symme
tric with respect to its product factors. This is again achieved with the 
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map Tr in (3.12). A tangle invariant ris an element in pi 

(w -2N )/4 
1{T]=X 11 a 

1 

~ (w -2N )/4 
II X m m Tr(a) E pi 

m 
m=2 

where wand N are defined as before. 

(5.2) 

If the tangle in (5.1) is cut from the link L, then the latter is mapped 
to either the element 

(5.3a) 

if the cut edge was originally closed counterclockwise, or to the element 

L~a~®a ®---®a, 
1 2 

(5.3b) 

if the cut edge was originally closed clockwise. Eq. (4.4) shows that the 
link invariant does not depend on which way the cut edge is closed. 
Therefore 

P[L] = X -lI~r( 1{T]h) = X -1I2Tr( 1{T]k) (5.4) 

It follows that 

Tr{ (1{T])( h-~ ) } o (5.5) 

for any tangle T. 

For convenience, we label tangles by the subscripts s, t,.. and write 
1{T] as r. Given two tangles T and T, define the product tangle T = 
s. s I 51 

T T as the tangle obtained by connecting the bottom end of T to the top 
5 I 5 

end of T. Then T and T are isotopic. 
t 5t Is 

- --
Equivalently, the links obtained by closing the two product tangles T 

51 

and T are isotopic. Since r is an isotopic homorphism of tangles, the 
ts 

set of all tangle invariants Z(T) forms an abelian subalgebra of pi, 

[r,r] = 0, 
S I 

r ,r E {set of all tangles} 
5 I 

(5.6) 

We now show that under a certain restriction on the quantum group, Z(T) is 
an invariant subalgebra of p'. First note that h commutes with all the 
commuting generators k. of p'. Therefore h can be spanned by the commut-

J 
ing subset {e[p]} in the basis ea , (see (2.33», which coincides with the 

commuting subset in ea , 
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r p. 
e[p]= ilk.l, 

j =<1 l 

The identity is eo = e(O] , and clearly, 

e[p]e(q] = e[p+q] 

(5.7) 

(5.8) 

The map Tr in (3.12) and (5.2) is just an inner product in this basis. 
Write 

(5.9) 

where the c's are expansion coefficients and summation over [P] is under
stood. Then for the untangle (whose closure is the unknot) 

(5.10) 

Similarly, since the tangle invariants live in the commuting sector of p', 
we write 

AfAT] - d(s) 
'L.L B - (q] e(q] (5.11) 

From (5.5,8), for any tangle T 
8 

d(B)c Tr(e e ) = d(B)c Tr(e ) = 0 
(q] [P] [P] (q] (q] (p] [p+q] (5.12) 

Since this equation must be satisfied by the complete set of infinite num
ber of distinct tangles, at least one of the conditions 

(i) 

(ii) 

c[p)Tr(e[p+q) = 0, 

d(B) = 0 (q] , 

for every [q] 

for all [q] *' [0] 

must be true. Suppose (i) is true. Consider the set {[ql} = {[-pl}. 
Then a necessary condition that all c's do not vanish is that the deter
minant of the Tr(e ]),s vanishes. Since e[p] span a (albeit infinite 

(p+q 
dimensional) linear vector space, and Tr is just the inner product, the 
determinant is, with proper normalization, proportional to the dimension 
of the vector space, which certainly does not vanish. Therefore we con
clude that all c's must vanish. Or equivalently, h=~. Since ~=A.h-l, (i) 
is not true unless 

,,2 = A. E centre of p' (if (i) true) (5.13) 

Note that (5.13) is a universal constraint on the algebra. A sufficient 
condition for it to be false is if it is false in any representation. As 
far as we know (5.13) is false for quantum groups of simple Lie algebras. 

We therefore consider the case when (5.13) ~s not true. Then condi
tion (ii) above must hold. In this case only d~~] *' 0, therefore 1fT] for 
every tangle is proportional to the identity element in p'. Note however, 
that althou~ 1fT] commutes with every other element in p', it is not a 
c-number tunes the identity element, but is an element in the centre of 
p',. it is representation-dependent. We therefore have 
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Tangle Theorem: Let.J be the quantum group of 51 that has a quasitri

angular Hopf algebra structure equipped with a noninvolutive antipode, p' 
the q-analoque of ?, 4 the universal element and A the central element of 
51' as defined in (2.24,29), and 4 2 is not in the centre of 51'. The 
tangle invariant r defined in (5.2) is a universal isotopic map of tangles 
to the centre of 51" 

'1fT] 5E 'JIT] eo E centre of 51" (5.14) 

Eq. (5.14) may be viewed as a generalization of the invariance under the 
Reidemeister move I. In what follows we restrict our considerations to 
quasitriangular quantum groups with noninvolutive antipodes and whose 4 2 

are not in the centre of 51'. As far as we know, all quantum groups of 
simple Lie algebras 51 belong to this category. We then have, 

Corollary: 'JIT] is a universal tangle invariant. 

Corollary: Let {T; L} be the set of tangles cut from the link L, 
P[L] be the universal link invariant defined by (3.13), 'JIT] be the 
universal tangle invariant defined by (5.2,14), then 

P[L] = • I,\f"-T ]. 
PL s ' V T E {T; L} (5.15) 

Corollary: 
invariant. 

The element • factors out from every universal link 

Recall that • X-112Tr(4) is an element in the centre of p'/eo' One 

needs to be careful in the interpretation of (5.15). For III a representa
tion of P, the colour (that is, representation) of • and ~ must be the 
same. This is not a problem when L is a knot. In this case, the ~s for 
all the T's cut from the knot are equal. . This means r maps the isotopy of 
knots, which is greater then the isotopy of tangles. Thus we may define, 
for the equivalence class of knots [K] 

Q[K] = ~ [any T cut from K] (5.16) 

and have 

Knot Theorem: Q[K] is a universal knot invariant. 

The discussion above applies also to monocolour links. Therefore we have 

Monocolour Link Theorem: 
colour links. 

Q[L] is a universal invariant for mono 

The representation versions of (5.14 and 15) were first c£njectured in 
ref. 26. A consequence of (5.14) was mentioned by Kauffman. 3 Note that 
for the unknot, P[unknot] = ., while Q[unknot] = 1. This difference 
between these two invariants is significant in representation theory. If 
rep(.) '* 0, then the representations of the two invariants differ by only 
a trivial normalization. B~~ there are representations of quantum groups 
for which rep(.) vanishes/' 8 then rep(P) becomes a trivial map -- all 
links mapped to zero, while !ep(Q) is not trivial. The well-known 
Alexander-Conway link polynomiae is precisely of this type. 

We make a few remarks on the consequences of (5.14-16). We shall use 
the notion of "decorating (a component of) a link with T" to mean cutting 
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the link at some point (on the component) and reconnecting it after 
inserting a tangle T at that point. If the undecorated component has 
value G in ,', then after decoration it has value G~. We refer to the 
link before (after) decoration as the skeleton (decorated) link. Since 
~ is in the centre of ,', the invariant of the decorated link depends 
only on which component of the skeleton link is decorated, but does not 
depend on where on that component T is inserted. 

Extended Casimir Operators of Quantum Group. Since Tr is invariant under 

cyclic permutation of its argument, r and P are invariant under similarity 
transformations of the basis. This, together with (S.14), means that the 
tangle invariants r can be viewed a set of infinite extended Casimir oper
ators of the quantum group. Like 11; the Casimir operators ~ of a classi
cal simple Lie (or Kac Moody) algebra ,_ also lie in the centre of,. Some 
significant difference between 1: and '(I is reflecta<l in the nonunipotency 
of~. For example in ,', e~ = eo and S(eu)Ae = 1 are invariants but 
eueu is not. In Lie algebras a Casimir operator often refers to Tr(~ 
instead of~. It is simply related to ~ by Tr(~eo = ~ Tr(eo). In a rep

resentation Tr(eO> is just the dimension of the representation. In quan

tum groups, t~ quantity analogous to Tr(~ is P, but P and r are related 
by Peo = 1- '1Tr(~), where Tr(~) is not simply related to the dimension 

of the representation unless ~ is unipotent. In fact, unlike Tr(eO> , 
Tr(~) can sometimes vanish. 

U(1) Group of Tangles. Consider the function 

q,[T] = 't[T]/1 't[T] I (S.17a) 

and let G I be the group of tangles equipped with the multiplication of ,', 
then G ' is an Abelian group, and 

q,: G ' -+ [O,2n] (S.17b) 

is a U(l) representation of G' . 

Chains. By an undecorated positive ~chain we mean a union of ~ 
circles, with the kth circle linked to the k+ 1st circle by two positive 
crossings, k= 1 to ~1. 

C0[ ... IO 
A Hopf link is an undecorated positive 2-chain. Write the invariant of the 
tangle obtained by cutting the Hopf link as 

"rHopf] a 9' 
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..J (5.18) 

Then the link invariant for the Hopf link is 

P[Hopf] = 9' 't' 

The tangle invariant for an I-chain is therefore 

~I-chain] = 9' 1.1 

and its link invariant is 

P[I-chain] = 9' 1-1 't' 

(5.19) 

(5.20) 

(5.21) 

The above generalizes straightforwardly to chains with a combination of 
positive and negative crossings. 

Chain of Tangles. Let L be a decorated I-chain whose mth component 

is decorated with the tangle T , then 
m 

(5.22) 

Link of Tangles. Let the skeleton L be an I-component link, and the 

decorated L' be obtained by decorating L with a set of tangles {T } any-
• 

where, then 

P[L'] = (II ~T ])P[L] 
. . (5.23) 

• 
Some tangle and link invariants calculated using (5.2) are given in ref. 
27. 

6. Factorization, Degeneracy, Representation and Classification 

From (5.15) and (5.23), the link invariant P for any link has the form 

P[L] = (product of l' 's)'r (6.1) 

We shall call a tangle nontrivial if it is not the cut unknot. Define an 
irreducible tangle as a tangle that cannot be seperated into two nontriv
ial tan~les by cutting a single line in the original tangle. A reducible 
tangle IS always the propduct of two or more commuting irreducible tan
gles. If the tangle T cut from a link L is irreducible, then from (5.15) 
all tangles cut from L must also be irreducible. This notion defines an 
irreducibles link. It follows that 
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Factorization Theorem. The link invariant P of any link is factoriz

able to a product of invariants of irreducible tangles and at least one 
factor of T. 

Completeness Theorem. The universal invariants ~] for the set of 

all irreducible tangles T and the element T are commuting generators of 
universal invariants for all links. 

If L is a split link with M disjoint parts, then clearly P[L] will have M 
factors of T. Thus 

Corollary for Split Links. Let L be a split link with M disconnected 

parts. Then P[L] is a product of invariants of irreducible tangles and M 
factors of T. 

Consider now the partition of the set {T} 
s 

decoration of an ~component skeleton link L. 

of irreducible tangles in the 

By a partition of {T } we 
s 

mean a division of {T } into ~ nonintersecting subsets X whose union is 
s m 

{T }. Two subsets are equivalent if they differ only by permutation of 
s 

member tangles (because tangles commute). A partition u is distinct from 
a partition v if not all their corresponding subsets are equivalent. Let 
L be obtained from L by decorating it with the u partition of {T }, where 

u s 
the mth component of L is decorated by all the tangles in the subset X 

m 

anywhere on the component. Similarly for L , where v is a partition dis-
v 

tinct from u. Then by (5.23) 

P[L] = P[L] 
u v 

(6.1) 

Since the partitions u and v are distinct, Land L are not necessarily 
u v 

isotopic -- whether they are isotopic or not also depends on L. If they 
are not isotopic, then (6.1) expresses a class I degeneracy. We define 
class I degeneracy as follows. Let L 1 and Lz be two nonisotopic links. 

Then L 1 and L z are class I degerate under P if rep(P[L 1 ]) = rep(P[L z]) 
when all the representations on Ll and Lz are the same. Below is an 

example. 

r -~\1~~~: rp-\ ,<..!), /<~ I \D I 
(~ y---
,-_....I -r. 

T. ' z. 

We therefore have 

Degeneracy Theorem. Let P be a universal link invariant constructed 

from a 'luasitriangular quantum group whose h Z is not in the centre of ,'. 
and let L and L be two nonisotopic links obtained from two distmct 

II v 
partitions u and v of tangle decorations on L. Then L and L are class I 

u v 
degenerate under P. 
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From this theorem it is easy to contruct any number of sets of nonisotopic 
links that are class I degenerate under P. The theorem also suggests that 
class I degeracy may be resolved by making the links multicolour. For 
this purpose we consider the representation of P. First consider the 
representation of ~ We say a tangle has ,components if the link from 
which it is cut has 'components. We always deSignate the cut component 
as the fIrst component of a tangle. We shall use the notion that. the 
(:n I GD:n2 GD ••• GD:n ,) representation of the universal link invariant P[L] is the 

link invariant of the (:n I ,:n2 , .. ,:n)-colour L. Thus we write 

(:n I GD:n2 GD·" GD:n ,)P[L] = P[L;:n I , .. ,:n ,] 

Similarly for r and ~ Thus 

(6.2) 

P[L; :nl, .. ,:n tl = 'J[T; :n I , .. ,:n ,] T (6.3) 
PI 

where T is obtained by cutting the component (with the colour) :nl. We 

call the colours :n 2'" ,:n ,of T its internal colours. 

Now consider the representation of an ~component irreducible skeleton 
link L decortated with the partition {X} of the set of irreducible 

m 

tangles {T}. If the invaraint of the skeleton is P[L;:nI, .. ,:n), then the 
invariant of the decorated link L' is 

P[L'; :n I , ... ,:n, ' internal colours of inserted tangles] 

~T ; :n , .. » 
s m 

where, except :n, the internal colours of the inserted tangles are not 
m 

given explicitly. Thus, if Land L are two coloured links obtained by 
u v 

decorating the skelton L with two distinct partitions, then their respec
tive invariants are not in general degenertate provided all colours in L 
are distinct. Conversely, if the two colours :no and :no of L are identi-

1 J 

cal, then the invariants of all the decorated Vs with partitions that 
differ only in the two subsets X. and X. are degenerate. In general, if 

1 J 
colours :n., .. ,:n are identical, then P[L] is insensitive to differences 

1 k 

in the partition of the union of the subsets (Xi"" Xk). 

ClassifIcation. The discussion above shows that coloured links are 
classified by the set: the irreducible ~component skeleton L; its colour 
:nl, :n2, .. , :ni the decorating tangles {T}; its partition (Xl' X2 ' .. ,X). 

7. Twisted Quantum Groups 

Here we briefly ~how that the Lie algebra Al can be twice deformed to 
obtain a quantum group that has a Hopf structure distinct from the Hopf 
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algebra of standard quantum group of Al as described in section 2. Let 

{H, X+, X-} be the generators of the q-analogue of AI' and call the 
deformation parameter ql instead of q. That is, [X+,X-] = (q~-q;H)1 
(ql-q;l). Now introduce Ho w~ich commutes with {H,X±} and another defor

mation parameter ~ and define 

(7.1) 

y± Ei ~H12 X± (7.2) 

Then we have a Hopf algebra generated by {k71, k;l, y+, Y-} with relations 

and maps 

±l 
k Y±k-l = (q a) y± (7.3) 

I I P2 

k y± k-l = (q la )±l y± (7.4) 
2 2 I '2 

LI(k ) = k ~k ; 
m m m 

m = 1,2 (7.6) 

(7.7) 

S(k ) = k- l 
m m 

(7.8,9) 

8(k)=1· 
m ' 

(7.10) 

This gives a twice deformed quantum group, which we shall call a twisted 
quantum group. The Hopf algebra of the twisted quantum grouy specializes 
to the standard one when ~ = 1, ql =q. For a generalization 0 this struc
ture to AN see ref. 34. 

Examples of represe~tations lof the twisted quantum group for the case 
ql~ = q, q/~ = q- Q) = q- exp(2:n"i/N) are known. 29 In this case the 

pair (kl,kl) can be reexpressed in terms of 

by 

Note that 

k == qHf2 ; Z E 

kl = k· kl = , 

ZN E centre of Hopf algebra 
i 

H 
(qQ)-If2) 0 Q)H12 

k-1z 

t I am grateful to Nigel Burroughs for suggesting this particular 
presentation. 
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so z is the Hopf algebra valued generators of ZN. In this case the twis
ted quantum group can be viewed as a deformation of a spontaneously broken 
A X Z. In terms of k and z, the Hopf structure of this twisted quantum 

1 N . 
group is27 

Y + y- _ 2 -1 Y- y+ k-2 (2 1)/( 1) i j q(l) = qz- (1)-

LI(k) = k8k ; LI(z) = z8Z 

S(k) = k-1 ; S(z) = Z-1 

e(k) = e(z) = 1 ; 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

(7.21) 

Actually this structure is valid even when (I) is not an integral root of 
unity. In that case the relation (7.13) will not be satisfied. However, 
if the N x N matrix representation of lR is required to be quasitriangular 
(see (2.28», then (I) must be an Nth root of unity. Comparing (7.16) with 
the Poisson bracket for the untwisted quantum group suggests that it is (I) 

that plays the role of deformation parameter eb for which the limit b~ 
can be taken. In a twisted quantum group q is the extra deformation 
parameter. 

We give a simple example in the case of S' = u{2,c), with N=2. That is 
with (I) = -1. The twisted S" has a 2 X 2 matrix representation with basis 

-112 0 112 0 0 ~ 

n(e1) = lo qll2)' n(e2) = lo _q312)' n(e3) [,,112 oJ' 
(7.22) 

cO 1'/lh 

lo 0 J, 
(1'/ = (l_q2)q-ll2) whose representations under antipode are 

(7.23) 
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The representations of fR, -' and X are 

-112 0 1 ~ 112 0 rO ~ ,0 ~ rO 1 
(1t&1t)fR = lo qll2]&~ oJ + lo -q3I2]&lo IJ + "L1 oJ&lo J (7.24) 

(7.25) 1t(-') = qll2 ~ -J ; 
Note that 1tCr) = 1t( X -1~r(-'» 
link invariant P[L] is trivial 
link invariant Q[L] is not. 
skein relation 

vanishes identically, so the corresponding 
all links are mapped to zero, but the 

It is easy to see that Q[L] satisfies the 

Q[L +] - Q[LJ = (q-l-q)Q[La1 (7.26) 

where, relative to L , one of the positive crossings in L is spliced in 
+ + 

Lo' and is replaced by a negative crossing in L _. (7.26) is just the 
Skein relation for the Alexander-Conway link polynomial. 2 2 This shows 
that, for the Alexander-Conway polynomial, it would be incorrect to say 
that the link polynomial P for the unknot can be normalized to unity. 
Rather, it is only the tangle polynomial Q for the the unknot that can be 
normalized to unity. Note that Q[L] still vanishes for all split links 
(see corollary for split links, section 6). 

A comparison with the 2 X 2 representation for the untwisted 51' of 64(2,«:) 
is instructive. In this representation one has 

(7.28) 

i1t12 'TeI2 Here 1t(.) does not vanish unless q = e . So when q '¢ e1 ,P[L] and 
Q[L] differ only by a L-independent nonzero factor. The skein relation 
for P (and for Q) is 

(7.29) 

So we identify P as the Jones polynomial. 7 When q = ei1t/2, P vanishes 
identically, but one still has the Jones polynomial, now given only by. ~. 
In this case, just like the Alexander-Conway polynomial, Q[L; q =el1t ] 

vanishes for all split links, except that the Alexander-Conway Q is still 
a function of q, whereas the Jones Q is a c-number. This illustrates the 
remark following (7.21) that the deformation parameter OJ in the twisted 51' 
corresponds to the parameter q in the untwisted ?, while the parameter q 
in the twisted 51' is extra. In the literature It is sometimes said that 
the link polynomials constructed in quantum groups are not well-defined 
when q is a rational root of unity. We see that this is not the case, at 
least for monocolour links, provided one always uses Q instead of P. 

Several other fmite dimensional representations of the twisted quantum 
groups of broken 64(2,«:) X ZN' N =3,4,5 and 64(n,«:) X Z2 are given in refs. 

28,34. For examples of link invariants see ref. 27. The construction of 
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representations of the twisted quantum groups where neither q nor (J) is a 
rational root of unity is an open problem. It is likely that such quantum 
groups only have infinite dimensional representations. A more detailed 
discussion of twisted quantum groups will be given elsewhere. 

8. Conformal and Topological Field Theories 

We make a few remarks on the connection between quantum groups and topol'l6 
gical ani', conform&1 field th~ries. ~ee also the articles by Seiberg, 
Frohlich, DeVega, Boudreau, Carlip,3 LeClair32 in this volume. 

Quantum group has a universal fusion-braiding relation (see (2.33». 
Thus the relation is true for any representation at any value(s) of the 
deformation parameter(s). 

Monodromy and the restriction on q to be a rational root of unity. 

Often derivations of link invariants based on representation theory of 
quantum groups restrict q not to be a rational root of unity. This is 
related to the fact that the Hopf algebra of the quantum group may have a 
nontrivial ideal for such values of q. The tangle and link invariants 
derived in this paper are universal, so they are valid for any value of q. 
On ~e other hand, quantum groups appear to manifest themselves in confor-
mall and topological field theories only for values of q that are 
rational roots of unity. One of the properties of conformal field theory 
is that two-point correlation functions have a well defined covering 
space. This implies that if the two fields defining the correlation func
tion are intertwined, the correlation function changes only by a phase. 
Such phases define the monodromies of the two-point correlation function. 
Translated into the language of quantum group, this property means that 
the element al(8-al) E ~'1lJ2' must be diagonal in both algebras of the direct 
product. To examine what this constraint means we divide the bases e u and 

eU of ~' into two parts, 

(8.1) 

where ek (ek) is a product of ki's but not of the ralSlng and lowering 
elements X~'s, while e (ex) has factors involving the X:'s (X~'s). We If x 1 1 , 

call {ek, e} the Cartan sector. It generates an Abelian sub algebra ~c' 

any of whose matrix representation can be diagonalized. We call {e, eX} 
x 

the X-sector; any subalgebra generated by generators involving a nonvan
ishing subset of the X-sector is nonAbelian; its matrix represenation can
not be diagonalized. Write 

(8.2) 

where for convenience we have factored out a q-dependent central factor 1fx 

from the second term. Then 

al(8-1Yt) = edllJeke. + 1f(eexllJeke + eekllJexek) + 1f1feeYllJexe (8.3) 
k J x k X x x yx y 

This would lie in the direct product of two Cartan sectors only if the 
nonAbelian parts in the fourth term could cancel completely the nonAbelian 
second and third terms. This cancellation is no! a universal property of 
~'. Cancellation can occur, however, in representations, at least for 
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specific values of the defopnation parameter q. It is known 9/at for the 
fundamental representations of , = A, B, C, D and A ( , and for 

D D D D l. 
higher representations of untwisted4,3, as well as twisted2 ,34 quantum 
groups, 11 has an x-independent common factor of the form 

][ 

where a and b are some rational number that depends on the algebra. For 
example, for the fundamental representation of, = AD_1 tV 4I4(n), 

a = -(n-l)/n, b = 2; , = 4I4(n) (8.S) 

In these cases, 1R(!fo1i'l) will be in the Cartan sector provided that 

m = some intger (8.6) 

Note from (8.2), however, that (8.6) is a sufficient condition for IR it
self to be restricted to the Cartan sector. This suggests that, at least 
in these cases, the monodromy condition in conformal field theory 
restricts the quantum group to be effectively Abelian for which all repre
sentations are homomorphic to some unitary representations. 

For the fundamental representations n of (untwisted) 4I4(n), it can be 
shown that the universal element -' and the central element T are 

(8.7) 

(8.8) 

where a and b are given by (8.S). Thus, under the monodromy constraint of 
(8.6), n(-') is just the identity operator to within a phase, and ntr) is 
just a phase to within a normalization factor equal to the dimension of 
the representation. This is another indication that the monodromy condi
tion forces the standard quantum group to act trivially in conformal field 
theory. Note that, because of the tangle theorem and (S.18), writhing and 
knotting of a field gives only a phase, for any value of q. 

The situation in twisted quantum groups is somewhat more complicated. Here 
the condition restricting 1R(!foli'l) to the Cartan sector still appear'\, -- we 
do not have a theorem for this -- to be given by (8.4) such that q = 1 for 
some rational b. This again restricts R itself to the Cartan sector, but 
now n(-') as a rule is not proportional to the identity matrix. For the 
N-dimensional representations of the spontaneously broken 414(2) X ZN' 

(8.9) 

where OJ = e2ni/N. Note that for these cases n(T) =0. Although having 
n(T)=O guarantees monodromy, and it is known that for N=2 (which gives the 
Alexander-Conway polynomial) this36 system corresponds to an exactly solv
able free fermion lattice model, the identification of conformal field 
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theories -- if such exist -- corresponding to the representations of the 
twisted quantum groups is still an open problem. 

Holonomy and the Wilson Tangle. Wittenl8 has argued that link invar
iants defined in quantum groups are just the expectation values of Wilson 
lines 

(8.10) 

given by a topological field theory in a three-dimension manifold M with a 
pure Chern-Simons Lagrangian 

1l'cs = k f (AdA + ~ A1 
M 

(8.11) 

The gauge field A is valued in some Lie algebra " Pi are representations 
of " the link L is the union of the contours C., fIJ means path ordering, 

1 

and Tr is the trace of the representations. If we do not take, say, the 
trace of the representation P I on the contour C I' then the quantity 

(8.12) 

is matrix-valued in the PI representation of,. If '(8.10) is indeed a 

link invariant, then from the tan~e theorem in section 5 we expect the 
quantity fJf defined by (8.12), which we shall call a Wilson tangle, to be 
the invariant of the tangle Tl obtained by cutting Cl in L, and therefore 

be proportional to the identity matrix in Pl. Actually there is a differ

ence between Witten's link invariant and link invariants in quantum 
groups: the role of the universal element 4 in ,', which is crucial for 
the construction of link invariants in quantum groups, is obscure in 
Witten's link invariant. For example, if the Wilson tangle is- indeed pro
portional to the identity matrix, 

'H [L;P I ,P2"] - (~[TI])lp 
I 

then a comparison of (8.10) and (8.12) require that 

(8.13) 

(8.14) 

where Nl = Trp (1) is the dimension of p. However, as we have mentioned 
I I 

several times, in quantum groups the quotient of the link invariant and 
the tangle invariant is proportional to rep(Tr(4», not to the dimension 
of the representation. The discrepancy is removed only if rep(4) is pro
portional to the identity matrix. Earlier we have seen that for non
twisted quantum groups the constraint 

rep(4) '" unit matrix (8.15) 

is the same as the constraint requiring M(tr-I1l) (and indeed I1l itself) to be 
in the Cartan sector, which is to r~ltrict q to be some integral root of 
unity. (For ".:(2), the requirement is q = exp(2ni/(2+k» which is 
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consistent with (8.6) with m=l, k=O.) We shall assume that Witten's link 
invariant indeed corresponds to a link invariant of the (untwisted) quan
tum group in some representation for which rep (h) tV 1. In this case, tangle 
theorem guarantees that (8.13) is satisfied. It was shown in (5.17) that 
for any quasitriangular quantum group whose h is not unipotent the set of 
all tangles is homomorphic to a U(I) group. This implies that the Wilson 
tangle of (8.12) should be interpreted as a generalized holonomy of the 
Chern-Simons-Witten theory, whose holonomy group is just the U(1) group of 
tangle invariants. Thus in the Chern-Simons-Witten theory, when a parti
cle is adiabatically transported around a closed curve in M, even if the 
curve is knotted, or is linked with other closed curves, the tangle 
theorem assures that the particle will acquire at most a phase change. 
From our discussion in section 5, representations of the holonomies are 
equivalent to eigenvalues of Casimir operators of the quantum group. 

Our discussion seems to point to the notion that untwisted quantum groups 
are restricted to acting unitarily - in the sense that rep( til) is restric
ted to the Cartan sector and rep(h) tV 1 - in conformal and topological field 
theories. The restriction, realized by setting q equal to some integral 
root of unity, can be traced to the requirement that in such theories both 
the holonomy and monodromy groups be U(I) groups. But the tangle theorem 
insures the homomorphism between tangles and some U(1) group for any, 
including nonunitary, representation of the quantum group. This suggests 
that if we can find a way to incorporate the appropriate action of h in 
the definition of the Wilson tangle (and the Wilson line), then we may be 
able to remove the restriction on conformal and topological field theories 
having only unitary representations of quantum groups. In this case, the 
holonomy group would still be U(1) - incidentally, this also implies that 
anyons would not be restricted to unitary representations of the braid 
group, but the monodromy group would not be reducible to U(I). 

I have benefitted from communications and discussions with C.N. Yang, J. 
Birman, Michel Couture, Mo-Lin Ge, Louis Kauffman, Yong-Shih Wu, Jurg 
Frohlich and Ruth Lawrence. I especially thank Peter Leivo for helping me 
understand Hopf algebra, Shahn Majid for showing me the proof of (2.30), 
Vaughan Jones for encouraging me to use the Reidemeister theorem to con
struct link invariants, Hosein Hooshangi for testing by computation some 
of the ideas in sections 3 and 5, Nigel Burroughs for helping me get the 
twisted Hopf algebra right, and Wei-Dong Zhao for making several sugges
tions that have been incorporated into sections 6 and 8. 
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Abelian Chern-Simons 
theory 
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term 
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with sources, 205-207 

spin-statistics and, 374-375 
Abelian gauge theory, 23 
ADE models, 595 
Affine commutation relations, 
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theory 

Aharonov-Bohm analysis, see also 
Bohm-Aharonov phase 

braid statistics and, 19, 23 
in FQHE, 482, 484 
in planar physics, 207, 232, 
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Alexander-Conway polynomial, 573 

braid groups and, 579 
quantum groups and, 623, 625, 

643, 650, 652 
solvable models and, 594 

Alexander polynomial, 596 
Alexander's theorem, 425, 638 
Angular momentum, not quantized, 

216 
Anomalous statistics, 212-213 
Anomalous theory, see under 

Symmetry 
Anti-atomic lattices, 173, 184 
Antibrackets, 97, 99 
Antiferromagnetism, 3 
Antifields, 97, 98, 100, 101, 
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Antighost numbers, 87, 92, 95, 

96, 99 

Anti-holomorphic fields, 308, 
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Antipodal maps, 525, 527 
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in Sl(2,C), 522, 531, 532, 533 
in YBA, 396, 397 

Anyons, 19, 20, 21, 486n 
Artin's braid group, 624 

N-state representation of, 573, 
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Atiyah-Witten axioms, 323 
Atomic lattices, 173, 174, 184 
Automorphism 

in quantum topology, 180, 184 
in RCFT, 311, 312, 323, 343, 

351 
in Sl(2,C), 532 
in symmetry, 437 

BA, see Bethe Ansatz 
BAE, see Bethe Ansatz equation 
Banach space, 145 
Base, for topology, 161 
Becchi-Rouet-Stora (BRS) 

operator, 435, 445-446, 
455 

Belavin-Knizhnik theorem, 264 
Bell's inequalities, 123 
Bethe Ansatz (BA) 

coordinate, 416 
of MTM, 610 
nested, 411, 417 
in planar physics, 225 
QISM and, 612, 613 
solvable models and, 585 
in YBA, 387, 390, 402, 407, 

415, 429 
Bethe Ansatz equation (BAE) 

1FT and, 428, 429-430 
light-cone lattices and, 416, 

417-418, 420 
nested, 418 
six vertex model and, 409-410, 

411, 415 
Bianchi identity, 236, 377 
Biedenharn sum-rule, 300 
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Bijective maps, 165-166 
Black holes, 105-128 

description of, 107-109 
discrete physics and, 122-124 
eternal, 121 
Hawking effect and, 111-114 
horizon of, see Horizon 
realistic, 109 
Rindler space and, 109-112, 

113, 114, 118 
string theory and, 107, 120, 

125-126 
thermodynamics and, 115-117 
white holes and, 119-122 

Bloch theorem, 473 
Bogolyubov transformation, 112 
Bohm-Aharonov phase, 364, 369, 

379, see also Aharonov
Bohm analysis 

Bohr correspondence, 397 
Boltzmann's constant, 609 

black holes and, 105, 114, 115 
Boltzmann weight 

in solvable models, 584, 585, 
586, 587, 588, 593 

in statistical mechanics, 
608-609 

Boolean algebra, 150, 151 
Borel subalgebra 

quantum groups and, 626 
in Sl(2,C), 525, 531, 532, 533, 

534 
Borel-Weil-Bott method, 500 
Bose condensation, 484 
Bose-Einstein statistics, 16 
Bose statistics, 17, 62, 367, 

368 
Bosonization, see Non-abelian 

bosonization 
Boundary conditions. twisted 

in QHE, 475-476 
in YBA, 399, 402, 425, 428 

BPZ model, 265, 269 
Bracket polynomial, 592 
Braid groups 

in exotic spin-statistics, 367 
fractional statistics and, 626 
link invariants and, 624 
link polynomials and, see under 

Link polynomials 
N-state representations of, 

573-581 
quantum gravity and, 547-548, 

549 
quantum groups and, 626, 629, 

639 
in solvable models, 583. 

587-588, 595, 600 
from YBA, 387, 421-428 

664 

Braiding/fusing, 15, 629 
in RCFT, 276, 279-281, 282, 

284, 291, 294, 329, 
331 

Braid matrix, 51, 72 
in CFT, 514 
in RCFT, 331 
in SG theory, 618 
in solvable models, 598-599 

link polynomials and, 
594-595, 596-597, 
600 

Braid operator, 588, 593, 595 
Braid quantization condition, 

505-507 
Braid statistics, l5~74, see also 

Three-dimensional local 
quantum theory 

abelian, 15, 23, 63 
algebraic formulation in, 

27-43 
Chern-Simons term in, see Non

abelian Chern-Simons 
term 

Chern-Simons theory in, 15, 21, 
23-27, 73-74 

intertwiners and, see under 
Intertwiners 

non-abelian, 15, 24, 26, 64 
physical realizations of, 

21-23 
spin-statistics and, 16, 17, 

51-52, 59-64 
Brillouin zone, 474, 475 
BRS operator, see Becchi-Rouet-

Stora operator 
BRST generator, 94, 95 
BRST invariance, 96 
ERST symmetry, 81-103 

algebraic topology of, 83-87 
geometric application of, 

88-94 
Hamiltonians and, 81, 82, 

94-96, 99 
Lagrangians and, 81, 82, 

97-100, 101 
non-abelian Chern-Simons theory 

and, 558, 561 

Canonical commutation relations, 
143 

Canonical formalism, 441, 448 
Canonical quantization 

in CSW theory, 334 
of general relativity, 144 
of quantum gravity, 131, 132, 

550 
in RCFT, 346, 356 

Canonical quantum field theory 
(QFT) , 376-382 



Canonical transformation, 95, 99, 
101 

Cardy's postulate, 247-249 
Cartan algebra 

in CFT, 250, 256 
non-abelian Chern-Simons term 

and, 503 
in RCFT, 336-337, 346 
in Sl(2,C), 536 
YBA and, 394, 416, 428 

Cartan-Wey1 generators, 610 
Cartesian polarization, 199, 203, 

206 
Casimir operator 

in CFT, 252 
in non-abelian Chern-Simons 

theory, 556 
in planar physics, 219 
of quantum groups, 624, 644, 

654 
in RCFT, 339 
YBA and, 427 

CBA, see Coordinate Bethe-Ansatz 
Cellular automation, 123 
Cerenkov radiation, 121 
CFT, see Conformal field theory 
Charge-transport operators, 31 
Chebyshev polynomials, 430 
Chern-Simons action, 624 

in planar physics, 194, 227, 
237 

in RCFT, 352, 355 
Chern-Simons term, see also 

Chern-Simons theory 
abelian, see Abelian Chern

Simons term 
non-abelian, see Non-abelian 

Chern-Simons term 
in planar physics, 193, 194, 

195, 196-197, 213, 216, 
220, 221, 237 

in RCFT, 352 
Chern-Simons theory, see also 

Chern-Simons term 
abelian, see Abelian Chern

Simons theory 
braid statistics and, IS, 21, 

23-27, 73-74 
in CFT, 251, 255 
link polynomials and, 573 
non-abelian, see Non-abelian 

Chern-Simons theory 
pure, 197-198 
QHE and, 461 
quantum gravity as, 541, 

542-543 
quantum groups and, 513, 514 
in RCFT, 290 
spin-statistics connection in, 

363-384, see also under 
Spin-statistics 

Chern-Simons-Witten (CSW) theory 
in CFT, 266 
quantum groups and, 624, 625, 

626 
in RCFT, 263, 265, 330, 

342-353, 354, 355, 356, 
357 

coset models and, 342, 
348-350 

extended algebras and, 342, 
343-348 

orbifolds and, 342, 350-353 
quantization and, 334-342 

Wilson lines/tangles in, 624, 
625, 626, 653, 654 

Chiral algebra 
in braid statistics, 51 
in RCFT, 307-313, 342, 343, 

345, 346 
Chiral anomaly, 447 
Chiral fermion model, 416, 421 
Chiral Gross-Neveu model, 420 
Chiral vertex operators (CVOs), 

606 
quantum groups and, 514 
in RCFT, 266-277, 285, 307, 

308, 309, 313, 342, 
357 

Classical lattice statistical 
mechanics, 606, 608-610 

Classical R-matrix, 523 
Clifford algebra, 258 
Closed algebras, 82, see also 

specific types 
Closed braids, 587-588 
Closed sets, 141, 158, 162, 

166-167 
Closure on-shell, 97 
Coboundaries, in planar physics, 

201 
Cocycle relation 

in Lie algebra, 524 
in planar physics, 195, 196, 

199, 201 
in symmetry, 452-453 

Cofinite topology, 161, 167, 169, 
184 

Cohomology 
. in BRST symmetry, 84, 85, 87, 

91, 100-103 
in RCFT, 351 
of Sl(2,C), 523, 524 
in symmetry, 446-447, 453 

Coistropic surface, 96 
Co-Jacobi identity, 524 
Coleman-Mandelstam construction, 

364 
Coleman's theorem, 8 
Collision (scattering) theory, 

71 
Colored braids, 48 
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Compact braided monoida1 
category, 305, 331 

Compact space, 162 
Comu1tip1ication, 274 
Configuration space, 170, 179, 

183, 365 
Conformal analysis, 606, 607-608 
Conformal blocks, 256, 606 

left-moving, 266 
non-abelian Chern-Simons theory 

and, 555 
in RCFT, 266, 268, 269, 275, 

278, 286-287, 288, 296, 
297, 307, 311, 313, 
354 

right-moving, 266 
in SG theory, 618 
in YBA, 425 

Conformal field theory (CFT) , 65, 
264, 275, see also 
Rational conformal field 
theory 

bosonization and, 1, 2 
braid groups and, 574 
braid statistics in, 51 
Chern-Simons theory in, 251, 

255 
non-abelian, 555 

CSW theory and, 266 
1FT and, 430-431 
infinite dimensional algebras 

in, 241-259, see also 
Virasoro algebra 

perturbations of, 606, 618-619 
QFT and, 605, 606 
quantum groups and, 513, 514, 

623-624, 625, 651-654 
SG theory and, 606, 618-619 
two-dimensional, 15, 18, 68 
YBA in, 403, 430-431 

Conformal Lie algebra, 219 
Conformal symmetry, 241, 242, 

245, 605· 
Conformal transformation, 217 
Conformal weight, 244, 246, 247, 

248, 249 
Continuous maps, 135, 163-164, 

165, 168, 169 
Convergence, 153, 154, 155,' 157, 

158, 162, see also 
Convergent sequences 

Convergent sequences, 135, 138, 
142, 154, 157, 164 

Coordinate Bethe-Ansatz (CBA) , 
416 

Copoisson structure, 523-524, 
525 

Cosets 
in CFT, 254-255, 256, 257 
in RCFT, 265, 342, 348-350, 

351, 356, 357 
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Cotton tensor, 236, 237 
Coulomb gauge, 368, 370, 377 
Coulomb interaction, 379, 481 
Coulomb potential, 479 
Coulomb repulsion, 2, 3 
Crossing symmetry, 587, 589-590, 

591, 592, 593, 598 
CSW theory, see Chern-Simons

Witten theory 
CVOs, see Chira1 vertex 

operators 

Dehn twist 
in quantum gravity, 547 
in RCFT, 292, 294, 295, 297 

De1igne's condition, 302-304, 
306, 316 

Differential geometry, 129, 132, 
134, 184-185, see also 
specific types 

Differential modulo delta, 85 
Differentials, in BRST symmetry, 

84 
2+1 Dimensional quantum gravity, 

541-550 
braid groups in, 547-548, 549 
as Chern-Simons theory, 541, 

542-543 
dynamics in, 545-546 
quantization in, 543-544 
space-time in, 543, 545, 

549-550 
3+1 Dimensional quantum gravity, 

549 
Dimension of phase space, on 

surface of genus g, 338 
Dirac analysis, 131, 441-443 
Dirac bracket, 142, 375, 379, 

383 
Dirac constraints, 181, 183 
Dirac delta function, 144 
Dirac energy momentum tensor, 

258 
Dirac equation, 232, 234, 235 
Dirac fermion theory, 5, 454 
Dirac matrix, 196 
Dirac operator, 449 
Dirac quantization, 499 

weak, 103 
Dirac sea, 410, 415, 613 
Directed sets, 162 
Discrete physics, 122-124 
Discrete topology, 160, 161, 167, 

186 
Distance function, 137 
Distributiona! topo!ogy, 171, 

175 
Dual Coxeter number 

in CFT, 252, 257, 258, 259 
in RCFT, 288, 289, 339 

Dua! ideals, 156, 157 



Duality 
in braid statistics, 29, 32 
two-dimensional, 266, 313-330 

Duality identity, 278-290 
Duality matrix, 266-277, 285, 

354 
Duality transformation, 296 
Dual theory, 356-357 
Dynkin diagr~, 250 

link polynomials and, 595 
in RCFT, 312, 343 
in YBA, 417 

Edge states, gapless current
carrying, 489-490 

Eight vertex model 
in SG theory, 609 
in YBA, 401, 404, 411, 429 

Einstein-Hilbert action, 236, 
237 

Einstein Podolski Rosen paradox, 
123 

Einstein's equation, 107, 109, 
227-228, 236, 542 

Einstein's theory, 226, 227, 241 
Einstein tensor, 226, 236 
Energy-momentum tensor 

in CFT, 248, 253, 258 
Dirac, 258 
fractional spin and, 382-383 
in planar physics, 213, 228, 

230 
in SG theory, 607-608, 619 

Equivalence relation, 147, 165, 
167 

Euler-Lagrange equation, 198, 
214 

Euler-Maclaurin formula, 430 
Exactly solvable models, 573, 

584-587, 600 
Exotic fractional statistics, 

478 
Exotic spin-statistics, 363, 

365-371, 384 
canonical QFT with, 376-382 

Exotic statistics, 18 
Extended algebras, 342, 343-348, 

see also specific types 
Exterior derivative operator, 89, 

95 

Factorization equation, see 
Yang-Baxter equation 

Faddeev-Popov determinant, 364, 
435, 447, 449, 450-451 

Faddeev-Popov ghosts, 453, 555, 
558 

Feigin-Fuchs construction, 608, 
618, 619 

Fermi statistics, 17, 62, 367, 
368 

Field theory, see also specific 
types 

in Hubbard model, 1-13, see 
also One-dimensional 
Hubbard model 

in the light cone lattice 
approach, 390 

three-dimensional, 513 
two-dimensional, 192 
in YBA, 398 

Filling factor, 463, 465, 472, 
485 

Filter base, 157, 158, 159. 163, 
164 

Filters, 157, 158, 159, 162, 167 
Filtration degree, 87 
First-class constraints 

in BRST symmetry, 94-95, 96 
exotic spin-statistics and, 

379 
in RCFT, 349 
in topology, 131 

Fixed sets, 170 
Fock modules, 357 
Fock representation, 103 
Fock space, 121, 610 
Fourier transforms, 177, 549 

black holes and, Ill, 112, 125 
FQHE, see Fractional quantum Hall 

effect 
FQS theorem, see Friedan-Qiu

Shenker theorem 
FRA, see Fusion rule algebra 
Fractional quantum Hall effect 

(FQHE), 461, 464, 465 
braid statistics and, 15, 21, 74 
exotic spin-statistics and, 

363 
fractional statistics and, 461, 

478, 481-486 
ground state degeneracy and, 

461, 462-463, 478, 
479-480, 486-490 

impurities and, 481, 487 
IQHE compared with, 478 
Laughlin's wave function for, 

462, 478-481, 483, 
484-485, 489, 493 

Fractional spin, 382-384 
Fractional statistics, 16-21, 23, 

see also specific types 
abelian Chern-Simons term and, 

493 
braid groups and, 626 
Chern-Simons theory and, 365, 

368 
exotic, 478 
in FQHE, 461, 478, 481-486 

Frames, 164, 168-169, 187 
Free energy, thermodynamic limit 

in, 399 
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Free fermion model, 579, 652 
Free Majorana fermion, 605 
Frenke1-Kac construction, 350 
Friedan-Qiu-Shenker (FQS) 

theorem 
in CFT, 243-244, 255 
in RCFT, 265 

Friedan-Shenker modular geometry, 
276, 289, 295 

Functional integrals, 130 
Fundamental selection rule, 

483-484 
Fusion matrix 

in braid statistics, 57, 59, 
64 

in RCFT, 307 
Fusion rule algebra (FRA), see 

also specific types 
in braid statistics, 34 
in CFT, 248 
in RCFT, 268, 270, 271, 287, 

291, 307, 311-312 

Ga1i1eo boosts, 219 
Gauge choice 

non-abelian Chern-Simons theory 
and, 557 

in RCFT, 285 
in symmetry, 454 
in topology, 155, 156 

Gauge field elimination, 499-505 
Gauge-fixed BRST cohomology, 

100-103 
Gauge-fixed stationary surfaces, 

102 
Gauge fixing 

Gribov ambiguity in, 444 
non-abelian Chern-Simons theory 

and, 557-561 
in symmetry, 438, 439, 444 

Gauge groups, 174, 183 
Gauge invariance, 101, 319 
Gauge symmetry, 82, 191 
Gauge systems, 94-96 
Gauge theory, see also specific 

types 
abelian, 23 
black holes and, 110 
braid statistics and, 72, 73 
in BRST symmetry, 94 
non-abelian, 23, 197 
in planar physics, 192-226, see 

also Planar gauge 
theory 

in topology, 155 
Gauge transformation 

in IQHE, 471, 472 
non-abelian Chern-Simons term 

and, 498 
in non-abelian Chern-Simons 

theory, 554, 556, 557 
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Gauge transformation (continued) 
quantum gravity and, 542, 543, 

544, 547 
SG theory and, 611, 615 
symmetry and, 437-438, 439, 

445, 454 
in YBA, 394-395 

Gauss condition, 442 
Gauss' law 

Chern-Simons modified, 196, 
198, 200, 201, 202, 
203, 204, 205 

fractional spin and, 383 
in planar physics, 194, 195, 

196, 198, 200, 201, 
202, 203, 204, 205, 
212 

in RCFT, 335-337, 338, 339 
spin-statistics and, 375, 379, 

380 
Gel'fand spectral theorem, 176, 

177, 515 
General relativity, 129, 133, 

143, 144, 159, 226, 227 
General topology, 129, 183-187 

lattices in, see under 
Lattices 

metric spaces in, see Metric 
spaces 

partially ordered sets in, 135, 
146-149, 161, 181 

topological spaces in, 153-169, 
see also Topological 
spaces 

Ghost field, 435, 445-446 
Ghost numbers, see also Antighost 

numbers 
in BRST symmetry, 84, 85, 86, 

87, 91, 93, 95, 98, 99, 
101, 103 

Faddeev-Popov, 453, 555, 558 
in non-abelian Chern-Simons 

theory, 555, 557, 558, 

pure, 87 

560, 561, 562, 563, 
565, 566, 567, 568, 
569, 570 

in symmetry, 453 
Ghosts of ghosts, 91 
Ginsburg-Landau theory, 488 
GKO coset construction, 265 
Gluing axiom, 296, 324, 325-326 
Gode1 universes, 237 
Graded commutators, 83 
Graded derivations, 83 
Gravity 

black holes and, 105, 111 
canonical quantization of, 131 
planar, see Planar gravity 
quantum, see Quantum gravity 
symmetry and, 435, 439, 449 



Gravity (continued) 
topology of, 131, 132-133 

Green's function 
black holes and, 119 
exotic spin-statistics and, 

367 
in planar physics, 208, 210 
in QHE, 478 

Gribov ambiguity, 435 
Gross-Neveu model, 416 
Ground state degeneracy, 461, 

462-463, 478, 479-480, 
486-490 

Ground states 
antiferroe1ectric, 410 
in CFT, 242, 246, 247, 249, 

250-251, 252 
extreme, 250-251 
in YBA, 410, 429-430 

Haag-Ruelle theory, 71 
Haldane's generalization, 489 
Half-filling, 1, 2, 3, 9-12 
Hall conductance, 461, 462, 465, 

478 
electron motion and, 466, 469 
ground state degeneracy and, 

486, 488 
as topological invariant, 

470-477 
Hall current, 463, 466, 472, 484 
Hamiltonian formalism, 436, 447, 

452 
Hamiltonians 

black holes and, 109, 117 
in braid statistics, 24, 74 
BRST symmetry and, 81, 82, 

94-96, 99 
Dirac, 235 
equivalently constrained, 435 
in Hubbard model, 2-3, 6, 10 
light-cone, 421 
in non-abelian Chern-Simons 

theory, 554 
non-local Dzia1ozhinski-Moriya 

interaction, 407 
in planar physics, 198, 202, 

204, 205, 206, 212, 
213, 215, 217, 219, 
220, 221, 235 

in QHE, 471, 472, 475, 476, 
480, 487 

quantum, 401 
in quantum gravity, 541, 545, 

546, 547, 548, 550 
in quantum mechanics, 22 
in quantum topology, 184 
in RCFT, 338, 351 
spin-statistics and, 365n, 368, 

369, 371, 374, 375, 
378 

Hamiltonians (continued) 
in statistical mechanics, 609 
in symmetry, 435, 436, 441-442, 

447, 452 
in Toda theory, 610 
XXZ Heisenberg, 405 
in YBA, 390; 401, 405, 407, 

421 
Hausdorff space, 166, 167, 168, 

169, 176, 177, 184 
Hawking effect, 111-114 
Hawking radiation, 106 
Hawking temperature, 114, 115, 

116 
Hecke algebra 

link polynomials and, 595, 599 
in ReFT, 331 
in SG theory, 615 

Heegaard splitting, 330 
Heisenberg algebra, 488 
Heisenberg model, 1, 3 
Hexagon identity, 283-284 
Higgs model, 365 
High-Tc superconductivity 

braid statistics and, 15 
exotic spin-statistics and, 

363 
Hubbard model and, 1, 2, 10 
non-abelian Chern-Simons theory 

and, 555 
planar physics and, 192 
QHE and, 461 
two-dimensional, 15 

Hilbert space 
black holes and, 113, 114, 

121-123, 124, 126, 127, 
128 

braid statistics and, 19, 20, 
25, 27, 30, 35, 71, 73 

in BRST symmetry, 103 
in CFT, 242, 245, 249, 256 
in partially ordered lattices, 

152 
in QHE, 489, 490 
for quantum gravity, 543, 544, 

547, 548, 549 
in quantum topology, 170, 171, 

176, 178, 181 
in RCFT, 264-265, 273, 274, 

308, 309, 335, 341, 
351, 352, 354, 356 

in SG theory, 605, 608, 612, 
615, 617, 618, 619, 620 

in YBA, 397 
Holomorphic fields, 308, 310, 311 
Holomorphic polarization, 199, 

203, 207 
Holonomy 

in quantum gravity, 544, 546, 
547, 549, 550 

Wilson tangles and, 653-654 
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Holons, 1 
Homeomorphism 

in general topology, 165, 166, 
168 

in quantum topology, 170, 176, 
179, 180, 183 

HOMFLY polynomial, 596 
Homological perturbation theory, 

82, 85, 102 
Homomorphism 

in quantum gravity, 544 
in RCFT, 298 
in Sl(2,C), 531, 532, 533 
in topology, 164, 169 

Homotopy, contracting, 92 
Hopf algebra 

braid statistics and, 68, 69 
quantum groups and, 624, 625, 

626-631, 643, see also 
Hopf structure, 
twisted 

quasitriangular, 628, 643 
in RCFT, 330-331 
Sl(2,C) and, 518, 519, 520, 

521, 522, 523, 524, 
525, 526, 529, 530, 
532, 533, 534, 536 

YBA and, 393, 397, 426 
Hopf links, 644-645 
Hopf structure, twisted, 623, 

647-649 
Horizon, 107, 109, 115 

displacements of, 118-119 
operator algebra for, 124-128 

Hubbard model 
one-dimensional, 1-13, see also 

One-dimensional Hubbard 
model 

two-dimensional, 1, 12 

Ideals, 156-157, 175-177 
Identification topology, 165, 

186, 187 
Identity matrix, 626, 653 
1FT, see Integrable field theory 
Incompressible quantum fluid 

states, 478 
Indiscrete topology, 161 
Induced maps, 174 
Induced topology, 164 
Infinite dimensional algebras, 

241-259, see also 
Vir as oro algebra 

Infinite distributive law, 169 
Injective maps, 169 
Integrable field theory (1FT) 

CFT and, 430-431 
YBA and, 387, 390, 397, 

419-420, 422-423, 
428-431 
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Integral quantum Hall effect 
(IQHE), 461, 464, 465 

FQHE compared with, 478 
impurities and, 487 
Laughlin's argument for, 462, 

470-472, 486, 489 
non-interacting electrons and, 

472-475 
Internal time, 134 
Intertwiners 

braid statistics and, 34, 35, 
40-52, 53-59, 71, 72 

in RCFT, 274, 297-299, 302, 
303, 304, 309 

Invariant Thirring model, 6 
Inverse set maps, 163 
IQHE, see Integral quantum Hall 

effect 
IRF models 

basic relations in, 587 
link polynomials and, 589, 590, 

591, 595-597, 600 
in statistical mechanics, 584, 

585 
Irreducible representation 

in CFT, 242, 245, 246, 247, 
248, 249, 253, 255, 
256, 259 

in RCFT, 299, 300 
inSG theory, 616 
unitary, see Unitary 

irreducible 
representation 

Ising model 
in CFT, 246 
in RCFT, 267, 271, 291-294 
two-dimensional, 18 

Isomorphism 
in RCFT, 298, 299, 303, 305, 

323 
in Sl(2,C), 514, 515, 517, 522, 

525, 533 
in topology, 165, 166 

Jacobians 
in quantum topology, 181-182 
in symmetry, 452 

Jacobi identity, see also Co
Jacobi identity 

in BRST symmetry, 83, 84, 86 
in CFT, 241, 258 

Jastrow form, 479, 480 
Jones polynomial 

braid groups and, 573, 574, 
579 

Chern-Simons interpretation of, 
514 

quantum groups and, 650 
solvable models and, 592, 594, 

596, 599 



Jordan-Wigner transformation, 
246 

Kac-Moody algebra 
in CFT, 242, 249-250, 252, 254, 

255, 256 
quantum groups and, 623, 627, 

644 
in RCFT, 288-289, 312, 337, 

341, 343-348 
in Sl(2,C), 527, 538 
in Toda theory, 610 

Kac-Peterson formula, 289 
Kaufman polynomial, 596 
Kerr-Newmann solution, 108 
Kerr solution, 228 
Klein-Gordon equation, 232, 234 
Knizhnik-Zamolodchikov equation, 

24, 339-340 
Knots, 323, 513, 514 

Chern-Simons theory and, 364 
non-abelian, 555 

crossing symmetry in, 589 
exactly solvable models and, 

573 
framed, 314 
link/tangle relationship in, 

624 
in RCFT, 313-319, 331 
in three-dimensional local 

quantum theory, 65-71 
universal link invariant and, 

631, 638 
universal tangle invariant and, 

642, 643 
in YBA, 422-423, 425 

Kostant-Sourieau approach, 500 
Kosterlitz-Thouless transition, 

404 
Koszul complex, 102 
Koszul-Tate resolution, 92, 95, 

98 
Kronecker delta, 209, 588, 590 
Kruskal coordinates, 108, 109, 

111, 118 
Kubo formula, 473-474, 476 

Lagrange density, 192, 193, 197 
Lagrangian formalism 

non-abelian Chern-Simons term 
and, 499-505 

in symmetry, 449-450 
Lagrangians 

black holes and, 110, 114 
braid statistics and, 72, 73, 

74 
BRST symmetry and, 81, 82, 

97-100, 101 
exotic spin-statistics and, 

376 

Lagrangians (continued) 
non-abelian Chern-Simons term 

and, 493, 494, 495, 
499-505, 509 

non-abelian Chern-Simons theory 
and, 554, 555 

in planar physics, 202-204, 
205, 206, 213, 214, 
215, 216, 217, 218, 
237 

in RCFT, 341 
singular, 435 
in symmetry, 435, 438, 441-443, 

449-450 
Yang-Mills gauge, 435 
in YBA, 420, 421 

Landau gauge 
in Chern-Simons theory, 555, 

558, 561 
in QHE; 467-468 

Landau-Ginzburg theory, 372 
Landau level 

exotic spin-statistics and, 
371 

in QHE, 463, 465, 468, 469, 
471, 473, 478 

fractional statistics and, 
484 

Laughlin wave function and, 
479 

Langevin equation, 467 
Lattices, 186, 187 

anti-atomic, 173, 184 
atomic, 173, 174, 184 
complemented, 150, 152 
complete, 150 
continuum limit of, 415 
distributive, 150 
in general topology, 140, 

156-158, 163, 164, 166, 
168, 169, 183, 184 

partially ordered type, 135, 
149-152 

light-cone, see Light-cone 
lattices 

modular, 150 
non-distributive, 151 
in quantum topology, 172-177, 

178, 180 
in solvable models, 583, 587, 

592, 599 
Laughlin's argument, 462, 

470-472, 486, 489 
Laughlin's wave function 

in braid statistics, 20 
for FQHE, 462, 478-481, 483, 

484-485, 489, 493 
Left-movers 

in chiral algebra, 308-313 
on lattices, 412 

Leibnitz rule, 83, 84 
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Lie algebra 
in CFT, 249, 250, 251, 252, 

254, 256, 258, 259 
conformal, 219 
non-abelian Chern-Simons term 

and, 500, 501, 502 
in non-abelian Chern-Simons 

theory, 554 
in planar physics, 193, 219 
quantum groups of, 623, 624, 

626, 627, 629, 642, 
643, 644 

in RCFT, 267, 304, 331, 334, 
336, 353, 354 

Sl(2,C) and, 513, 514, 515, 
523, 524-525, 527, 531, 
536, 537 

in solvable models, 595, 600 
in symmetry, 436, 437, 439, 

446 
in Toda theory, 610 
YBA and, 387, 394, 401, 410, 

416, 419-420, 426, 428 
Light-cone hamiltonians, 421 
Light-cone lattices, 390, 

411-421, 429 
Limit points, 142 
Linear maps, 534 
Link invariants 

non-abelian Chern-Simons theory 
and, 555 

quantum groups and, 513, 623, 
624, 625, 640, 645, 
646-647, 650, 651, 653, 
654 

comparison with other 
constructions in, 
638-639 

in three-dimensional local 
quantum theory, 65, 67 

universal, see Universal link 
invariant 

in YBA, 422-423 
Link polynomials, see also 

specific types 
braid groups and, 573, 574, 

579, see also under 
solvable models, this 
section 

solvable models and, 583-600 
braid groups in, 583, 

587-588, 595, 600 
examples of, 593-597 
Markov trace in, 588, 589, 

592, 593, 595, 596, 
597, 599 
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N-state vertex model in, 
593-595, 600 

six vertex model in, 599 
statistical mechanics in, 

583, 584-585 

Link polynomials (continued) 
in symmetry, 453 
in YBA, 425 

Liouville theory, 608, 619 
Locales, 164, 168-169, 187 
Local observable algebra, 29, 31, 

see also specific types 
Lorentz invariants, 241 

black holes and, 114 
in Hubbard model,S, 6, 10 
in symmetry, 449-450 

Lorentz transformation 
black holes and, 110 
braid statistics and, 27 
quantum gravity and, 542 

MacLane coherence theorem, 300 
Mandelstam string operators, 25, 

27, 28 
Manin triple construction, 524 
Maps 

antipodal, 525, 527 
bijective, 165-166 
continuous, see Continuous 

maps 
induced, 174 
injective, 169 
inverse set, 163 
linear, 534 
surjective, see Surjective 

maps 
in topology, 163-166, 168, 169, 

174, 176, 179, 186 
Marginal operators, in Hubbard 

model, 7 
Markov's theorem, 624, 638, 639 
Markov trace 

braid groups and, 573 
link polynomials and, 588, 589, 

592, 593, 595, 596, 
597, 599 

Massive Thirring model (MTM) 
SG theory and, 607, 609, 610 
in YBA, 416, 420, 429 

Matrix pseudo groups, 534 
Maxwell's equation, 241 

in braid statistics, 23 
in exotic spin-statistics, 

376-377 
Maxwell term 

in planar physics, 197, 210 
spin-statistics and, 364, 376, 

378, 384 
Metric functions, 142-146 
Metrics 

bounded, 140 
equivalent, 137-138 
inequivalent, 138-139 
isometric, 137 
operations on, 139-140 
symmetry and, 438-440 



Metric spaces, 134-135, 136-142, 
153, 158, 159, 160, 162, 
164, 167 

Minkowski space 
in planar physics, 212 
three-dimensional, 43 
two-dimensional, 17, 18 

Minkowski space-time, 411 
Modular functor, 295-297 
Modular group 

representation of, 291 
S-matrix in, 276, 323 

Modular invariants 
in CFT, 256-259 

Cardy's postulate of, 
247-249 

in RCFT, 312, 313, 342 
Modular lattices, 150 
Modular tensor category (MTC) , 

297-308, 311, 330, 331, 
332, 350-353, 354, 
355-356 

Monodromy 
braid groups and, 574 
braid statistics and, 58, 59, 

60, 62 
in Ising model, 18 
QISM and, 611 
in RCFT, 269, 271, 272, 278, 

286-287, 288, 302, 305, 
309, 321-322 

for two point function on 
torus, 329 

Morphism 
braid statistics and, 31, 35, 

36, 37, 39, 43-44, 48, 
49, 53, 55, 70, 72, 73 

in RCFT, 304, 305 
in Sl(2,C), 531, 533 
in topology, 163-166, l69n 

Mott-Hubbard insulator, 2, 3 
MTC, see Modular tensor category 
MTM, see Massive Thirring model 

NBA, see Nested Bethe Ansatz 
NBAE, see Nested Bethe Ansatz 

equation 
Neighborhood spaces, 154-158, 

161, 170 
defined, 159 

Nested Bethe Ansatz equation 
(NBAE), 418 

Nested Bethe Ansatz (NBA) , 411, 
417 

Newtonian attraction, 230 
Newtonian gravity, 227 
Newton-Lorentz equation, 466 
Newton's constant, lOS, 226 
N-identical particles, 493, 

494-495, 507-510 
Nineteen vertex model, 579, 593 

Noether's energy-momentum tensor, 
213 

No ghost theorem, 243 
Non-abelian bosonization, 1, 2, 

7, 8, 9, 10, 11, 12 
Non-abelian braid statistics, 15, 

24, 26, 64 
Non-abelian Chern-Simons term, 

493-510, see also Non
abelian Chern-Simons 
theory 

field equation solutions in, 
496-498 

Langrangian formalism and, 
499-505 

model description in, 494-496 
Non-abelian Chern-Simons theory, 

197-204, see also Non
abelian Chern-Simons 
term 

finite renormalization of, 
553-572 

gauge fixing and, 557-561 
at one loop, 553, 556, 557, 

558, 560, 561, 562, 
564-567, 568, 569, 
571 

regularization and, 553, 556, 
557, 561-564, 567, 
571, 572 

at three loops, 555, 556, 
571 

at two loops, 553, 557, 
560-561, 562, 563, 
567-571 

Ward identity and, 553, 557, 
558, 561, 566, 567 

in planar physics, 197-204, 
206 

spin-statistics and, 364 
Non-abelian gauge theory, 23, 

197 
Non-abelian Thirring model, 420 
Non-chiral primary field, 245 
Non-linear delta model, 129, 170 
Non-local Dzialozhinski-Moriya 

interaction Hamiltonians, 
407 

Non-Lorentz invariants, 10 
N-state representations, 573-581 
N-state vertex model 

braid groups and, 579 
link polynomials and, 593-595, 

600 
Null vector L, 267 

Odd-denominator rule, 465, 478, 
483-484 

One-dimensional Hubbard model, 
1-13 

continuum limit of, 4-8 
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One-dimensional Hubbard model 
(continued) 

half-filling in, 1, 2, 3, 9-12 
phase diagram for, 11 
strong coupling limit in, 2-4 

Onsanger's result, 246 
Open algebras, 82, see also 

specific types 
Open sets, 186, 187 

in general topology, 141, 158, 
159, 160, 161, 162, 
164, 166, 168, 169 

in quantum topology, 171, 173 
Orbifold theory, 265, 342, 

350-353 
Orbits 

in BRST symmetry, 89, 89-91, 
95, 96, 98 

p-forms along, 89, 90 
in symmetry, 438, 439, 440-441, 

443-444, 451 
functional measures on, 

447-449 
0(4) symmetry, 1, 2 

Parafermions, 255, 265 
Parastatistics, 16-17 
Partially ordered lattices, 135, 

149-152 
Partially ordered sets, 135, 

146-149, 161, 181 
Partition function of CFT, 247 
Pauli matrix, 196, 259 
Pauli principle, 17, 365 
Pauli-Villars regularization, 

196 
PCM, see Principal chiral model 
Pentagon identity, 279 
Permutation groups, 179-183, 184 
Permutation statistics, 20, 26, 

51, 60, 61, 62, 73 
Perturbation theory, 556, 571 
Perturbative renormalizability, 

132 
Planar gauge theory, 192-226 

Chern-Simons theory in, see 
under Abelian Chern
Simons theory; Non
Abelian Chern-Simons 
theory 

quantum dynamics in, 220-226 
quantum holonomy in, 207-212 
spin-statistics in, 212-213 
topologically massive, 192-197 
wave function in, 225 

Planar gravity, 192, 222, 
226-237 

quantum dynamics in, 231-235 
space-time in, 226, 227-230 
topological elaborations in, 

236-237 
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Planar physics, 191-237, see also 
Planar gauge theory; 
Planar gravity 

Planck length 
black holes and, 106, 121, 126 
in topology, 129, 133, 134 

Planck's constant 
Boltzman's constant and, 609 
in planar physics, 204 
in Sl(2,C), 525, 526 

Planck's law of black body 
radiation, 16 

Poincare algebra 
in braid statistics, 27, 29 
fractional spin and, 383 
in planar gravity, 237 
in quantum gravity, 542 

Pointless topology, 169 
Poisson bracket, 94, 545, 649 
Poisson structure, 515, 517, 523, 

525 
Polarization, 198-199, 201, 203, 

205, 206-207, 208, 211 
Cartesian, 199, 203, 206 
holomorphic, 199, 203, 207 
rotationally invariant, 205, 

206 
Polynomial equations, see also 

specific types 
braid statistics and, 57, 69 
in RCFT, 330-334 

Potts model, 259, 573 
Power sets, 148 
Primary field 

assignment of, 247-249 
concept of, 244 
correlation functions of, 

244-245 
in extension of algebra, 

251-252 
finite number in, 249 
fundamental property of, 

246-247 
non-chiral, 245 

Principal chiral model (PCM) , 
421 

Principal ideal, 156 
Pseudo-metrics, 137, 143, 153, 

160, 167, 172 

QFT, see Quantum field theory 
QHE, see Quantum Hall effect 
QISM, see Quantum Inverse 

Scattering method 
Quantization of coupling 

constant, 194, 202 
Quantum double construction, 514, 

527, 529, 531-533 
Quantum dynamics, 220-226, 

231-235 



Quantum field theory (QFT) , 170, 
177 

black holes in, 105, 109-111 
braid groups and, 573, 574 
canonical, 376-382 
CFT and, 605, 606 
integrable, see Integrable 

field theory 
local relativistic, 16 
many particle systems and, 

372-376 
non-abelian Chern-Simons term 

in, 493, 504 
three-dimensional local, see 

Three-dimensional local 
quantum theory 

YBA in, 387, 402, 403, 410, 
411, 416, 418, 421 

Quantum gravity, 111, 129, see 
also 2+1 Dimensional 
quantum gravity 

black holes and, 111 
topology of, 129, 130, 132, 

133, 144, 185 
Quantum groups, 623-654 

GFT and, 513, 514, 623-624, 
625, 651-654 

csw theory and, 624, 625, 626 
Hopf algebra and, see under 

Hopf algebra 
link invariants in, see under 

Link invariants 
in RCFT, 330-334 
Sl(2,G) quantization in, 

513-538, see also 
Sl(2,C) special linear 
group 

in three-dimensional local 
quantum theory, 15, 
65-71 

topological field theory and, 
623-624, 651-654 

twisted, see Twisted quantum 
groups 

universal link invariant and, 
see Universal link 
invariant 

universal tangle invariant and, 
see Universal tangle 
invariant 

from YBA, 387, 421-428 
Quantum Hall effect (QHE) , 

461-490 
Chern-Simons theory and, 461 

non-abelian, 555 
electron motion in magnetic 

field of, 466-470 
exotic spin-statistics and, 

371 
experimental facts in, 462-466 

Quantum Hall effect (continued) 
fractional, see Fractional 

quantum Hall effect 
impurities and, 475 
integral, see Integral quantum 

Hall effect 
planar physics and, 192 

Quantum Hamiltonians, 401 
Quantum holonomy, 207-212 
Quantum Inverse Scattering method 

(QISM), 606, 607, 
610-612, 613 

Quantum mechanics 
braid groups and, 574 
braid statistics in, 16, 19, 

22 
in QHE, 467-470 
statistical mechanics and, 609 
two-dimensional, 363-384 

Quantum norm theory, 146 
Quantum topology, 129-135, 167, 

170-183, 184-185, 187 
complementary variables in, 

177-179 
eigenstates of, 135 
lattices in, 172-177, 178, 180 
metric functions in, 142-146 
metric spaces in, 135 
permutation groups in, 179-183, 

184 
wave functions in, 135 

Quantum Yang-Baxter equation 
(QYBE), 629 

Sl(2,C) and, 519, 520, 526, 
527, 535 

Quasiparticles 
fractional statistics for, 

481-483 
ground state degeneracy and, 

487, 489 
Laughlin wave function for, 

478, 480-481, 483, 
484-485, 493 

Quasitriangular Hopf algebra, 
628, 643 

QYBE, see Quantum Yang-Baxter 
equation 

Racah coefficients, 285, 299, 
303, 307, 320, 333 

Racah matrix, 331 
Racah's sum-rule, 300 
Ramond-Neveu-Schwarz string 

theory, 246 
Random topology, l84n 
Rational conformal field theory 

(RCFT) , 263-357 
chiral algebra in, 307-313, 

342, 343, 345, 346 
completeness in, 290-297 
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Rational conformal field theory 
(RCFT) (continued) 

CSW theory in, see under 
Chern-Simons-Witten 
theory 

CVOs in, 266-277, 285, 307, 
308, 309, 313, 342, 
357 

2D duality vs. 3D invariance 
in, 266, 313-330 

duality identity in, 278-290 
duality matrix in, 266-277, 

285, 354 
MIC in, see Modular tensor 

category 
Tannaka-Krein theory in, 266, 

297-308 
Rational torus chira1 algebra, 

342, 346 
R-degree, see Resolution degree 
Reducible case, 91 
Reeh-Sch1ieder theorem, 31, 74 
Regge calculus, 543 
Regularization, 553, 556, 557, 

561-564, 567, 571, 572 
Reidemeister moves 

in RCFT, 316-317 
in solvable models, 587, 592 
in YBA, 422 

Reidemeister's theorem 
universal link invariant and, 

623, 624, 631-633, 635, 
639, 640 

universal tangle invariant and, 
640, 643 

Relativity, see General 
relativity; Special 
relativity 

Renorma1ization group equations, 
12 

Resolution degree (R-degree), 84, 
85, 86, 87, 92, 100, 101 

Restricted sine-Gordon (RSG) 
model, 606, 608, 609, 
612-618 

CFT perturbations and, 618, 
619 

Riemann tensor, 236 
Riemannian geometry, 226 

in exotic spin-statistics, 381 
in QHE, 488 
in RCFT, 264, 276, 277, 311, 

334 
in symmetry, 435, 439, 442-443, 

444 
in topology, 130, 132, 138, 

142-144, 145, 153, 172, 
185 

Right-movers 
in chira1 algebra, 308-313 
on lattices, 412 

676 

Rind1er space, 109-112, 113, 114, 
118 

R-matrix 
braid groups and, 575, 579, see 

also under YBA, this 
section 

classical, 523 
in Sl(2,C), 514, 519, 520-521 
triangular, 521 
universal, see Universal R

matrix 
in YBA, 389, 391, 393, 395, 

397-398, 399, 403, 404, 
407 

braid and quantum groups and, 
422, 425 

1FT and, 429 
light-cone lattices and, 416, 

417, 420, 421 
Rotationally invariant 

polarization, 205, 206 
RSG, see Restricted sine-Gordon 

model 

Scattering matrix, 119-122 
Schrodinger equation 

black holes and, 117, 123 
in planar physics, 194, 195, 

198, 206, 220, 221, 
224, 232 

in QHE, 467-468, 473 
quantum gravity and, 541 
in topology, 131, 132n, 184, 

185 
Schur's lemma, 45, 51-52, 54 
Schwarzschi1d solution 

black holes and, 108, 109, 114, 
118-119 

planar gravity and, 228 
Self-linking numbers, 369-370 
Semi-classical limit, 132, 134 
Semigroups, 150, 177 
Separation axioms, 166-167 
Sequences, 162, see also 

Convergent sequences 
SG theory, see Sine-Gordon 

theory 
Simple domain, 28, 31, 43, 48, 

53, 55 
Sine-Gordon (SG) theory, 605, 

619-620 
CFT perturbations and, 606, 

618-619 
conformal analysiS of, 606, 

607-608 
Hubbard model and, 9, 10 
known results concerning, 607 
QISM for, 606, 607, 611 
restricted, see Restricted 

sine-Gordon model 



Sine-Gordon (SG) theory (continued) 
statistical mechanics in, 606, 

608-610 
Toda theory and, 609 
in YBA, 416 

Singularity, in black holes, 107 
Six vertex model 

braid groups and, 425, 427, 
579 

deformation of, 597-598 
link polynomials and, 599 
in YBA, 387, 401, 403, 404-411, 

417, 425, 427 
light-cone lattices and, 413, 

415, 416, 417, 421 
Skein relations, 594 
Sl(2,C) special linear group, 

513-538 
braid groups and, 579 
function space quantization in, 

515, 516, 517-523, 526, 
527-528, 536, 537 

quantizing considerations in, 
514-516 

quantum double construction in, 
514, 527, 529, 531-533 

universal enveloping algebra 
of, see under Universal 
enveloping algebra 

S-matrix 
factorized, 585-586, 587, 593 
in RCFT, 276, 323 
in SG theory, 606, 613-615, 

616-618, 619, 620 
in solvable models, 590 
in YBA, 398, 413, 416, 420, 

429, 431 
Soliton phenomenon, 191 
Solvable models, see also Exactly 

solvable models; specific 
types 

deformation of, 597-599 
link polynomials and, 583-600, 

see also under Link 
polynomials 

transformations of, 597 
SO(4) symmetry, 3, 4, 6, 7, 10 
Space-like cones, 26, 28, 30, 31, 

32, 34, 35, 36, 39, 43, 
44, 48, 49, 53, 55, 70, 
72 

Space-time 
Minkowski, 411 
non-abelian Chern-Simons term 

and, 510 
in non-abelian Chern-Simons 

theory, 555, 556, 557, 
561, 568 

in planar gravity, 226, 
227-230 

Space-time (continued) 
in planar physics, 191, 192 
in quantum gravity, 543, 545, 

549-550 
symmetry and, 436 
topology of, 129, 130, 185-186, 

187 
in YBA, 411 

Special relativity, 241 
Spectral sequence, 87 
Spectral topology, 171, 175, 176, 

177, 178 
Spin 

braid statistics and, 23, 39, 
40, 50, 51, 72, 73 

in Hubbard model, 4, 5, 6, 10, 
12 

non-abelian Chern-Simons term 
and, 510 

planar gravity and, 228, 229, 
230, 232, 234 

QHE and, 462 
in RCFT, 331, 332 
SG theory and, 617 
in YBA, 401-402, 410, 421, 427, 

429 
Spin addition rules, 59-64 
Spin chains, 430, 583, 609 
Spinless test particles, 231, 

232, 235 
Spin network theory, 186 
Spinons, 1 
Spin spectrum, 59-64 
Spin-statistics 

in CFT, 245 
Chern-Simons theory and, 

363-384 
abelian, 374-375 
fractional spin in, 382-384 
non-abelian, 364 
QFT in, 372-376 

exotic, see Exotic spin
statistics 

non-abelian Chern-Simons term 
and, 494, 510 

in planar physics, 212-213 
in QFT, 16, 17, 51-52, 59-64, 

see also under Chern
Simons theory, this 
section 

Stationary surface, 97, 102 
Statistical mechanics, 583, 

584-585 
classical lattice, 606, 

608-610 
Statistics, see also Spin

statistics 
anomalous, 212-213 
exotic, 18 

Statistics matrix, 44, 46 
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Stoke's theorem, 211, 474, 497 
String theory 

Belavin-Knizhnik theorem of, 
264 

black holes and, 107, 120, 
125-126 

CFT and, 243, 246, 252, 264 
fractional statistics and, 18 
in planar physics, 192, 230 
Ramond-Neveu-Schwarz, 246 
symmetry in, 435, 439, 449, 

450 
in topology, 129 

Strongly correlated electrons, 
1-13, see also One
dimensional Hubbard 
model 

Subbase, for topology, 161 
Sublattices, 168, 184, 187 
Subspace topology, 165 
Sugawara construction, 252-254, 

256, 258 
Supergravity, 132-133 
Superselection sectors, 130 
Superstrings, 133 
Supersymmetry, 242, 562 
Surgery, 324, 326, 332 

ambiguity in, 327 
calculations with, 327-328 
Verlinde's formula from, 

328-329 
Surjective maps, 165, 168, 169, 

176, 186 
SU(2) symmetry, 3, 4, 6, 7, 8, 9, 

10, II, 12 
Symmetry, 435-455 

anomalous theory in, 435 
as cohomological problem, 

446-447, 453 
measure with, 452-453 
measure without, 450-451 
problem of, 449-450 

BRS operator in, 445-446, 455 
BRST, see BRST symmetry 
conformal, see Conformal 

symmetry 
Dirac analysis of Lagrangian 

in, 441-443, see also 
under Lagrangians 

gauge, 82, 191 
gauge fixing in, 438, 439, 444 
gauge transformation in, 

437-438, 439, 445, 454 
ghost field in, 435, 445-446 
ghost numbers in, 453 
Gribov ambiguity in, 444 
integral over all fields in, 

453-454 
metric and connections in, 

438-440 

678 

Symmetry (continued) 
notations and basic objects in, 

436-437 
0(4), I, 2 
orbit space in, see under 

Orbits 
Riemannian geometry in, 435, 

439, 442-443, 444 
SO(4), see SO(4) symmetry 
SU(2), see SU(2) symmetry 
U(l), see U(l) symmetry 
Z2, 9, 10 

Tangles, 645, 651, 652 
csw theory and, 626 
degeneracy in, 647 
factorization of, 646 
links and, 623, 624, 625, 640 

Tannaka-Krein theory, 266, 
297-308 

Taylor series, 515, 517 
Teichmuller modular group, 295 
Teichmuller space, 276, 277 
Temperley-Lieb algebra, 590, 591, 

593, 595, 598, 599, 600 
TFT, see Toda field theory 
Thermodynamics 

of black holes, 115-117 
in free energy, 399 

Thirring model 
invariant, 6 
massive, see Massive Thirring 

model 
non-Abelian, 420 
in YBA, 420, 429 

Three-dimensional general 
coordinate invariance, 
266, 313-330 

Three-dimensional local quantum 
theory, 15-74, see also 
Braid statistics 

algebraic formulation of, 
27-43 

knot theory and, 65-71 
quantum group theory and, 15, 

65-71 
Time, 132, 134, 184, see also 

Space-time 
TLJ algebra, 331 
Toda field theory (TFT) , 431, see 

also Affine Toda theory 
Topological field theory, 

'129-187, see also General 
topology; Quantum 
topology 

quantum groups and, 623-624, 
651-654 

in RCFT, 323-324 
Topologically massive gauge 

theory, 192-197 



Topologically massive gravity, 
236-237 

Topological spaces, 137, 153-169 
defined, 159 
frames and locales in, 164, 

168-169 
morphism in, 163-166, l69n 
neighborhood spaces as, see 

Neighborhood spaces 
non-metric convergence in, 

153-154 
separation axioms in, 166-167 

Torus 
ground state degeneracy on, 

487-489 
monodromy for two point 

function on, 329 
proof of equation on, 320-322 

Totally ordered sets, 146 
Transfer matrix, 390, 394, 395, 

399 
light-cone lattices and, 414 
six vertex model and, 406 
twisted, 401 

Triangle inequality, 142, 145 
Triangular relation, see Yang

Baxter equation 
Triangular R-matrix, 521 
Triangular universal R-matrix, 

527 
Twisted quantum groups, 623, 

624-625, 647-651, 652, 
653 

Two-dimensional quantum 
mechanics, 363-384, see 
also Spin-statistics, 
Chern-Simons theory and 

UIR, see Unitary irreducible 
representation 

Ultra-filters, 174 
Unitary irreducible 

representation (UIR) 
non-abelian Chern-Simons term 

and, 493, 495, 500-501, 
503-505, 510 

of Vir, 242-243 
Universal enveloping algebra, see 

also specific types 
in RCFT, 331 
of Sl(2,C), 513, 514, 515, 

522-523, 527-528, 537, 
579 

deformation of, 513, 514, 
516, 523-527, 537 

quantization of, 514, 515, 
522-523, 537 

reconstruction of, 533-536 
Universal link invariant, 623, 

624, 625, 629, 631-638, 
640 

Universal link invariant 
(continued) 

degeneracy in, 646-647 
Universal R-matrix 

in quantum groups, 624, 626, 
628, 629 

in Sl(2,C), 519, 526-527, 529, 
530, 531, 532, 534, 
535, 536, 537 

triangular, 527 
Universal tangle invariant, 623, 

625, 629, 640-645 
Unknots, 638, 642, 645, 650 
Upper sets, 155-156, 161 
U(l) symmetry, 3, 5, 6, 9, 10, 

11 

Vacuum 
in CFT, 243, 246, 247, 248, 

249 
in planar physics, 226 

Vector spaces 
in partially ordered lattices, 

152 
in RCFT, 303, 305 
in YBA, 387, 388 

Verlinde's formula, 270, 286, 
287-288, 289-290, 
306-307, 311, 312 

from surgery, 328-329 
Vertex models, see also specific 

types 
braid groups and, 579 
link polynomials and, 589, 595, 

597, 600 
N-state, see N-state vertex 

model 
quantum groups and, 513 
spin-statistics and, 364 
in statistical mechanics, 

584-585 
in TL class, 595, 600 
in YBA, 399, 402 

Vertex-sos transformation, 69 
Virasoro algebra (Vir) 

in CFT, 241-259 
cosets in, 254-255. 256, 257 
extreme ground states in. 

250-251 
FQS theorem in, 243-244. 255 
Ising model in. 246 
Rac-Moody algebra and. see 

Rac-Moody algebra. in 
CFT 

need for the extension of. 
249 

primary field in. see Primary 
field 

Sugawara construction in. 
252-254. 256. 258 

UIR of. 242-243 
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Virasoro algebra (Vir) (continued) 
in RCFT, 265, 266, 273, 274, 

276, 343, 349 
in SG theory, 618, 619 

W-algebras, 265, 342 
Ward identity, 553, 557, 558, 

561, 566, 567 
Wave functions, 135, 225 
Wess-Zumino action, 453, 454 
Wess-Zumino consistency 

condition, 446 
Wess-Zumino functional, 341 
Wess-Zumino-Witten (WZW) model 

braid statistics and, 24 
in CFT, 253, 255 
in Hubbard model, 7, 8, 9, 10, 

12 
non-abelian Chern-Simons theory 

and, 556 
in RCFT, 265, 271, 288, 289, 

309, 334, 337, 341, 
342, 348, 351, 357 

Weyl alcove, 337, 343 
Weyl anomaly, 450 
Weyl fermions, 446, 449 
Weyl gauge, 195, 198, 204 
Weyl group, 346 
Weyl-Kac characters, 288, 337 
Weyl tensor, 236 
Wheeler-DeWitt equation, 131, 

132 
White holes, 119-122 
Wigner's formula, 235 
Wilson lines 

in CSW theory, 624, 625, 626, 
653, 654 

QISM and, 611 
quantum gravity and, 542, 546 
in RCFT, 336, 338, 339, 

341-342, 344, 345, 346 
Wilson loops, 21, 27, 28 
Wilson tangles 

in CSW theory, 624, 626, 653, 
654 

holonomy and, 653-654 
Witten's link invariant, 654 
Witten's triple cosets, 350 
WKB approximation, 338, 355 
Wong's equation, 495 
Wu-Kadanoff-Wegner 

transformation, 585, 595, 
597 

WZW model, see Wess-Zumino-Witten 
model 

XXZ Heisenberg Hamiltonians, 405 
XYZ Heisenberg spin chain, 609 

Yang-Baxter algebra (YBA) , 
387-431 

680 

Yang-Baxter algebra (YBA) 
(continued) 

braid groups from, 387, 
421-428 

in braid statistics, 18 
description of, 387-398 
gauge transformation in, 

394-395 
group invariance of, 392 
1FT and, see under Integrable 

field theory 
Lie algebra and, see under Lie 

algebra 
light-cone lattices and, 390, 

411-421, 429 
physical realizations of, 

398-403 
quantum groups from, 387, 

421-428 
reproduction property of, 393 
shift invariance of, 393 
six vertex model in, see under 

Six vertex model 
trigonometric/hyperbolic, 387, 

392, 402, 419-420, 
421-423, 425-426, 428 

Yang-Baxter equation (YBE) , 
388-389, 391, 396 

braid groups from, 422, 423, 
427, 574 

in braid statistics, 48 
classical, 397-398 
quantum, see Quantum Yang-

Baxter equation 
quantum groups from, 422, 423, 

427, 629, 638 
in RCFT, 278, 279, 284, 294 
SG theory and, 612-613, 614, 

615 
six vertex model and, 404 
trigonometric/hyperbolic, 404 
universal link invariant and, 

638 
Yang-Baxter generator, 388, 389, 

393, 394, 405, 422 
Yang-Baxter matrix, 23, 68 
Yang-Baxter operator, 387-388, 

389-390, 392 
braid groups from, 422, 423, 

425, 427, 588 
elliptic, 392, 402 
quantum groups from, 422, 423, 

425, 427 
rational, 392, 402 
in solvable models, 587, 588, 

589-591, 595, 598 
trigonometric/hyperbolic, 392, 

402 
Yang-Baxter relation 

braid groups and, 573, 575-576 
in SG theory, 617 



Yang-Baxter relation (continued) 
in solvable models, 583-585, 

586, 587, 597 
Yang-Baxter set, enhanced, 638 
Yang-Mills action, 553 
Yang-Mills density, 192, 194 
Yang-Mills field, 442 
Yang-Mills gauge Lagrangians, 

435 
Yang-Mills potential, 495 
Yang-Mills regulator, 564 

Yang-Mills term, 197, 364, 561 
Yang-Mills theory 

in symmetry, 435, 447, 449, 
450, 452 

in topology, 129, 131, 148 
YBA, see Yang-Baxter algebra 
YBE, see Yang-Baxter equation 

Z2 symmetry, 9, 10 
Z-variance, 389 
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